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Abstract—A class of burst noise-erasure channels which incor-
porate both errors and erasures during transmission is studied.
The channel, whose output is explicitly expressed in terms of its
input and a stationary ergodic noise-erasure process, is shown
to satisfy a so-called “quasi-symmetry” condition under certain
invertibility conditions. As a result, it is proved that a uniformly
distributed input process maximizes the channel’s block mutual
information, resulting in a closed-form formula for its non-
feedback capacity in terms of the noise-erasure entropy rate and
the entropy rate of an auxiliary erasure process. The feedback
channel capacity is also characterized, showing that feedback
does not increase capacity and generalizing prior related results.

Index Terms—Channels with errors and erasures, channels
with memory, symmetry, non-feedback and feedback capacities.

I. INTRODUCTION

The memoryless binary erasure channel (BEC) and the
binary symmetric channel (BSC) play fundamental roles in
information theory, since they model two types of common
channel distortions in digital communication systems. In a
BEC, at each time instance, the transmitter sends a bit (0 or 1)
and the receiver either gets the bit correctly or as an erasure
denoted by the symbol “e.” The BEC models communication
systems where signals are either transmitted noiselessly or lost.
The loss may be caused by packet collisions, buffer overflows,
excessive delay, or corrupted data. In a BSC, the transmitter
similarly sends a bit, but the receiver obtains it either correctly
or flipped. The BSC is a standard model for communication
systems with noise. For example, in a memoryless additive
Gaussian noise channel used with antipodal signaling and
hard-decision demodulation, when the noise level is above
the signal’s amplitude, a decision error occurs at the receiver
which is characterized by flipping the transmitted bit in the
system’s BSC representation. As opposed to the BSC, the BEC
is, in a sense, noiseless. However in realistic communication
systems, erasures and errors usually co-exist and often occur in
bursts due to their time-correlated statistical behavior. In this
paper, we introduce the noise-erasure channel (NEC) which
incorporates both erasures and noise. This channel model,
which subsumes both the BEC and the BSC, as well as their
extensions with non-binary alphabets and memory, provides
a potentially useful model for wireless networks, where data
packets can be corrupted or dropped in a bursty fashion.
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Let Xi ∈ X = {0, 1, 2, .., q − 1} , Q denote the channel
input at time i and Yi ∈ Y = Q∪ e denote the corresponding
channel output. For the general q-ary erasure channel (EC),
the input-output relationship can be expressed by

Yi = Xi · 1{Z̃i 6= e}+ e · 1{Z̃i = e}, for i = 1, 2, · · · ,

where {Z̃i}∞i=1 is an erasure process (independent of the
message conveyed by the input sequence) with alphabet {0, e},
1(·) is the indicator function, and by definition a + 0 = a,
a · 0 = 0, and a · 1 = a for all a ∈ Q ∪ e. Coding schemes
for burst ECs were studied in [1] and it was proved that
maximum distance separable codes offer optimal burst erasure
protection. The sequential transmission of Markov sources
over burst ECs was considered in [2]. The feedback and non-
feedback capacities of BECs with no-consecutive-ones at the
input were investigated in [3] and [4], respectively. Explicit
computations of the feedback and non-feedback capacities of
energy harvesting BECs were also given in [5], where it was
shown that feedback increases the capacity of such channels.

A discrete q-ary additive noise channel (ANC) with identical
input and output alphabets X = Y = Q is described as Yi =
Xi ⊕q Zi for i = 1, 2, · · · , where {Zi}∞i=1 is a q-ary noise
process (that is independent of the input message) and ⊕q

denotes modulo-q addition. Note that the BSC is a special case
of an ANC: when {Zi}∞i=1 is binary-valued and memoryless
(i.e., the Zis are independent and identically distributed), the
ANC reduces to the BSC. In [6] it was shown that feedback
does not increase the capacity of ANCs with arbitrary memory.
In particular, denoting the capacity with and without feedback
by CANC

FB and CANC, respectively, it is proved in [6] that
CANC = CANC

FB = log q − Hsp(Z), where Hsp(Z) denotes
the spectral sup-entropy rate [7] of the noise process Z =
{Zi}∞i=1. The result of [6], which can also be proved for a
larger class of channels [8], was recently extended in [9] for
the family of compound channels with additive noise.

In this paper, we consider the NEC, a channel with both
erasures and errors whose output Yi at time i is given by

Yi = h(Xi, Zi) · 1{Zi 6= e}+ e · 1{Zi = e}, (1)

where input Xi ∈ X = Q, Yi ∈ Y = Q ∪ e , {Zi}ni=1

is a noise-erasure process with alphabet Z = Q ∪ e which
is independent of the input message, and h : Q × Q → Q
is a deterministic function. ECs and ANCs are special cases
of NECs. If h(x, z) = x for any x ∈ Q and z ∈ Q,
then the NEC reduces to an EC. If h(x, z) = x ⊕q z and
PZi(e) = 0, then the NEC reduces to the ANC. We study



the non-feedback and feedback capacities of the NEC under
certain invertibility conditions on the function h in (1). In
general, the capacity of well-behaving channels with memory
(such as stationary information stable channels) is given as the
limit of the n-fold mutual information sequence [7], [10]–[12],
while the feedback capacity is expressed via the limit of the
n-fold directed information [13], [14]. For some special cases,
single-letter expressions or exact values of the capacities can
be obtained. Examples of channels where feedback capacity
is explicitly determined include the finite-state channel with
states known at both transmitter and receiver [15], the trapdoor
channel [16], the Ising channel [17], and the symmetric finite-
state Markov channel [18].

In this work, we introduce an auxiliary erasure process
{Z̃i}∞i=1 , Z̃, a binary process defined via the noise-erasure
process Z , {Zi}∞i=1, and we prove that the non-feedback
capacity of an NEC with stationary and ergodic noise-erasure
process is given by (1−ε) log q−[H̄(Z)−H̄(Z̃)] (Theorem 1),
where H̄(·) denotes entropy rate. The proof is based on
showing that the n-fold NEC is quasi-symmetric (as per Defi-
nition 5) and hence its n-fold mutual information is maximized
by a uniformly distributed input process. Next, we investigate
the NEC with ideal output feedback. We prove a converse for
the feedback capacity and show that the feedback capacity
coincides with the non-feedback capacity (Theorem 2). This
implies that feedback does not increase the capacity of the
NEC and generalizes the feedback capacity results of [6]
and [8]. The rest of this paper is organized as follows.
We first provide some preliminary results in Section II. In
Sections III and IV, we study the non-feedback capacity and
feedback capacity, respectively, of a class of NECs with certain
invertibility conditions. We conclude the paper in Section V.

II. PRELIMINARIES

A. Feedback and Non-Feedback Capacities

We use capital letters such as X,Y , and Z to denote discrete
random variables and the corresponding script letters X , Y ,
and Z to denote their alphabets. The distribution of X is
denoted by PX , where the subscript may be omitted if there
is no ambiguity. In this paper, all random variables have finite
alphabets. A channel W with input alphabet X and output
alphabet Y is statistically modeled as a sequence of conditional
distributions W = {Wn(·|·)}∞n=1, where Wn(·|xn) is a
probability distribution on Yn for every xn ∈ Xn, which we
call the n-fold channel of W . Finally, let Xn and Y n denote
the n-fold channel’s input and output sequences, respectively,
where Xn = (X1, X2, ..., Xn) and Y n = (Y1, Y2, ..., Yn).

Definition 1: A non-feedback channel code with blocklength
n and rate R ≥ 0 for the n-fold channel of W consists of
an encoder f (n) :M→ Xn and a decoder g(n) : Yn →M,
where M = {1, 2, ..., 2nR}.

The encoder conveys message M , which is uniformly
distributed over M, by sending the sequence Xn = f (n)(M)
over the channel which in turn is received as Y n at the receiver.
Upon estimating the sent message via g(n)(Y n), the resulting
decoding error probability is P (n)

e = Pr{g(n)(Y n) 6= M}.

Definition 2: The non-feedback channel capacity, denoted
by C, is defined as the supremum of all rates R for which
there exists a sequence of non-feedback channel codes with
blocklength n and rate R, such that limn→∞ P

(n)
e = 0.

Recall that channel W is memoryless if Wn(yn|xn) =
Πn

i=1W
1(yi|xi) for all n ≥ 1, xn ∈ Xn and yn ∈ Yn, when

there is no feedback. Thus, a memoryless channel is defined
by its input alphabet X , output alphabet Y and transition
probabilities W 1(y|x), x ∈ X and y ∈ Y . For memoryless
channels, the superscript “1” is usually omitted. Shannon’s
channel coding theorem [19] establishes that

C = max
PX

I(X;Y ) (2)

for memoryless channels. The above coding theorem can be
extended to show that (e.g., see [7], [10]–[12], [20])

C = sup
n
Cn = lim

n→∞
Cn (3)

for stationary and information stable channels1 where

Cn = max
PXn

1

n
I(Xn;Y n).

We next consider the situation where the channel is
equipped with an ideal feedback channel such that at any time
instant i > 1, the encoder has access to all previously received
channel outputs (from time 1 to i− 1).

Definition 3: A feedback channel code with blocklength
n and rate R for the n-fold channel of W consists of a
sequence of encoding functions f

(n)
i : M × Yi−1 → X

for i = 1, ..., n and a decoding function g(n) : Yn → M,
M = {1, 2, ..., 2nR}, where Y0 is the empty set.

Under feedback, the encoder maps the message M (which is
uniformly distributed overM) by taking into account the pre-
viously received channel outputs; in other words, the encoder
sends the input sequence Xn, where Xi = f

(n)
i (M,Y i−1) for

i = 1, · · · , n, over the channel which is received as Y n and
decoded as g(n)(Y n). The decoding error probability is again
given by P (n)

e = Pr{g(n)(Y n) 6= M}.
Definition 4: The feedback channel capacity, denoted by

CFB , is defined as the supremum of all rates R for which there
exists a sequence of feedback channel codes with blocklength
n and rate R, such that limn→∞ P

(n)
e = 0.

For memoryless channels, the feedback and non-feedback
capacities are equal. However for channels with memory,
CFB ≥ C since the class of feedback codes includes non-
feedback codes as a special case.

B. Quasi-symmetry

In general, the optimization problem in (2) is difficult to
solve analytically. However, it is shown in [12], [21], [22]
that when the channel satisfies certain “symmetry” properties

1In this paper we focus on stationary and information stable channels. A
channel is stationary if every stationary channel input process results in a
stationary joint input-output process. Furthermore, loosely speaking, a channel
is information stable if the input process that maximizes the channel’s block
mutual information yields a joint input-output process that behaves ergodically
(see for example [10], [11], [20] for a precise definition).



the optimal input distribution in (2) is uniform and the channel
capacity can be expressed analytically. This result was further
extended to so-called “quasi-symmetric” channels in [23].

The transition matrix of a discrete memoryless channel
(DMC) with input alphabet X , output alphabet Y , and transi-
tion probabilities {W (y|x)}x∈X ,y∈Y is the |X | × |Y| matrix
Q with the entry W (y|x) in the xth row and yth column. For
simplicity, let px,y ,W (y|x) for all x ∈ X , y ∈ Y .

A DMC is symmetric if the rows of its transition matrix
Q are permutations of each other and the columns of Q are
permutations of each other. The DMC is weakly-symmetric
if the rows of Q are permutations of each other and all the
column sums in Q are identical [21], [22].

Lemma 1 ( [21], [22]): The capacity of a weakly-symmetric
DMC is attained by the uniform input distribution and satisfies

C = log |Y| −H(q1, q2, ..., q|Y|)

where (q1, q2, ..., q|Y|) is an arbitrary row of Q and

H(q1, q2, ..., q|Y|) = −
|Y|∑
i=1

qi log qi.

It readily follows that a symmetric DMC is weakly-
symmetric. We also note that Gallager’s notion for a symmetric
channel [12, p. 94] is a generalization of the above symmetry
definition in terms of partitioning Q into symmetric sub-
matrices. In turn, Gallager-symmetry is subsumed by the
notion of quasi-symmetry below.

Definition 5 ( [23]): A DMC with input alphabet X , output
alphabet Y , and transition matrix Q is quasi-symmetric if, for
some m ≥ 1, Q can be partitioned along its columns into m
weakly-symmetric sub-matrices, Q̃1, Q̃2, ..., Q̃m, where Q̃i a
sub-matrix of size |X | × |Yi| for i = 1, ...,m, with Y1 ∪ ... ∪
Ym = Y and Yi ∩ Yj = ∅, for any i 6= j, i, j = 1, 2, ...,m.

Lemma 2 ( [23]): The capacity of a quasi-symmetric DMC
is attained by the uniform input distribution and is given by

C =

m∑
i=1

aiCi,

where, for i = 1, · · · ,m, ai ,
∑

y∈Yi
px,y is the sum of any

row of Qi, and

Ci = log |Yi| −H
(

any row of
1

ai
Qi

)
is the capacity of the ith weakly-symmetric sub-channel whose
transition matrix is 1

ai
Qi.

III. NON-FEEDBACK CAPACITY OF A CLASS OF NECS

In this paper, we study a class of NECs with memory as
defined in (1) and for which the function h : Q × Q → Q
satisfies the following invertibility conditions:2

• (S-I) Given any x ∈ Q, the function h(x, ·) is one-to-
one, i.e., if h(x, z) = h(x, z̃) then z = z̃ for any x ∈ Q.
This condition implies the existence of a function h̃ :

2These conditions are similar to the ones considered in [8].

Q × Q → Q such that for any x, h̃(x, ·) is one-to-one
and h(x, h̃(x, y)) = y.

• (S-II) Given any y ∈ Q, the function h̃(·, y) is one-to-one.
The above properties and (1) enable us to explicitly express
the channel’s noise-erasure variable Zi at time i in terms of
the input Xi and the output Yi as follows

Zi = h̃(Xi, Yi) · 1{Yi 6= e}+ e · 1{Yi = e}. (4)

We further assume that the noise-erasure process Z = {Zi}∞i=1

is stationary and ergodic and independent of the transmitted
message. We next present our first main result.

Theorem 1: The capacity of an NEC without feedback is

C = (1− ε) log q − (H̄(Z)− H̄(Z̃)),

where ε = PZi
(e) is the probability of an erasure, H̄(·)

denotes entropy rate, and Z̃ = {Z̃i}∞i=1 is an auxiliary erasure
process derived from the noise-erasure process Z as follows

Z̃i =

{
0 if Zi 6= e
e if Zi = e.

(5)

Proof: An NEC with stationary and ergodic noise-erasure
process Z = {Zi}∞i=1 is stationary and information stable.
Therefore, its non-feedback capacity is given by (3):

C = lim
n→∞

Cn = lim
n→∞

max
PXn

1

n
I(Xn;Y n).

Focusing on Cn, note that it can be viewed as the capacity of
a discrete memoryless channel with input alphabet Xn, output
alphabet Yn, and Yi = h(Xi, Zi) ·1{Zi 6= e}+ e ·1{Zi = e},
for i = 1, 2, ..., n. Let Wn(·|·) and Q(n) denote the transition
probability and transition matrix of this channel, respectively,
and let q̄yn|Xn denote the column of Q(n) associated with the
output yn, i.e.,

q̄yn|Xn , [Wn(yn|xn)]Txn∈Xn ,

where the superscript “T ” denotes transposition and the entries
of q̄yn|Xn are listed in the lexicographic order. For example,
for binary input alphabet and n = 2,

q̄y2|X2 = [W 2(y2|00),W 2(y2|01),W 2(y2|10),W 2(y2|11)]T .

For any S ⊆ N , {1, 2, ..., n}, define

YS , {yn : yi = e for i ∈ S, yi 6= e for i /∈ S},

and
QYS |Xn , [q̄yn|Xn ]yn∈YS ,

where the columns of QYS |Xn are collected in the lexi-
cographic order in yn ∈ YS . We first show that the n-
fold channel Q(n) of the NEC is quasi-symmetric.3 Note
that {QYS |Xn}S⊆N is a partition of Q(n). Also in light of
properties S-I and S-II, we have the following two lemmas
which imply the quasi-symmetry of the NEC and whose proofs
we omit due to space limitations.

3The NEC, being quasi-symmetric, satisfies a weaker (and hence more
general) notion of “symmetry” than the ANC [6] and the channel in [8] which
are both symmetric.



Lemma 3: For any S ⊆ N , each row of QYS |Xn is a
permutation of

p̄ZS , [PZn(zn)]zn∈ZS ,

where

ZS , {zn : zi = e for i ∈ S, zi 6= e for i /∈ S},

and the entries of p̄ZS are collected in the lexicographic order
in zn ∈ ZS .

Lemma 4: For any S ⊆ N , the column sums of QYS |Xn

are identical and are equal to

q|S|PZ̃n(z̃(n,S)),

where Z̃i, i = 1, · · · , n, is defined in (5) and z̃(n,S) denotes
the n-tuple whose components satisfy

z̃i(n,S) =

{
0 for i ∈ N/S
e for i ∈ S.

Now we are ready to calculate Cn. By Lemma 2, we have

Cn =
1

n

∑
S⊆N

∑
zn∈ZS

PZn(zn) ·
[

log qn−|S|

−H
(

any row of
1∑

zn∈ZS PZn(zn)
QYS |Xn

)]
=

1

n

∑
S⊆N

∑
zn∈ZS

PZn(zn)
[
log qn−|S|

−H

((
PZn(ẑn)∑

zn∈ZS PZn(zn)

)
ẑn∈ZS

)]

=
1

n

∑
S⊆N

∑
zn∈ZS

PZn(zn)
[

log qn−|S| −H(Zn|Zn ∈ ZS)
]

=
1

n

∑
S⊆N

PZ̃n(z̃(n,S))
[

log qn−|S| (6)

−H(Zn|Z̃n = z̃(n,S))
]

=
1

n

[
n log q − log q

∑
z̃n∈Z̃n

PZ̃n(z̃n)

n∑
i=1

1(z̃i = e)

−
∑

z̃n∈Z̃n

PZ̃n(z̃n)H(Zn|Z̃n = z̃n)
]

=
1

n

[
n log q − log q · E

[ n∑
i=1

1(Z̃i = e)
]
−H(Zn|Z̃n)

]
= log q − 1

n
log q

n∑
i=1

E
[
1(Z̃i = e)

]
− 1

n
H(Zn|Z̃n)

= (1− ε) log q − 1

n
(H(Zn)−H(Z̃n)),

where (6) follows from (5). Therefore,

C = lim
n→∞

Cn

= (1− ε) log q − (H̄(Z)− H̄(Z̃)).

Observation: We note the following special cases:
• If {Zi}∞i=1 is memoryless, then

C = (1− ε) log q − (H̄(Z)− H̄(Z̃))

= (1− ε) log q −H(Z1|Z̃1). (7)

• If we set Z = {0, e} and h(x, z) = x, then Zi = Z̃i

and C = (1 − ε) log q, recovering the capacity of the
burst EC [1]. We further remark that unlike the latter
channel (for which memory in its erasure process does not
increase capacity), the capacity of the NEC with memory
can be strictly larger than the capacity of its memoryless
counterpart (i.e., the channel with a memoryless noise-
erasure process with identical marginal distribution as the
NEC’s stationary ergodic noise-erasure process). This can
be for example realized for NECs with (strictly depen-
dent) stationary mixing Markov noise-erasure processes.

• If ε = 0, then C = log q − H̄(Z) and we recover the
capacity of the discrete symmetric channel in [8] which
subsumes the ANC [6].

IV. FEEDBACK CAPACITY OF A CLASS OF NECS

We next show that feedback does not increase the capacity
of NECs which satisfy our invertibility conditions on h(·, ·).

Theorem 2: Feedback does not increase the capacity of an
NEC satisfying conditions S-I and S-II, i.e.,

CFB = C = (1− ε) log q − [H̄(Z)− H̄(Z̃)],

where {Z̃i}∞i=1 is defined in (5).
Proof: For any sequence of feedback channel codes with

rate R and error probability satisfying limn→0 P
(n)
e = 0, we

have

nR ≤ I(W ;Y n) + nεn (8)

=

n∑
i=1

H(Yi|Y i−1)−
n∑

i=1

H(Yi|Y i−1,W ) + nεn

=

n∑
i=1

H(Yi|Y i−1)−
n∑

i=1

H(Zi|Y i−1,W,Xi, Zi−1) + nεn

(9)

=

n∑
i=1

H(Yi|Y i−1)−
n∑

i=1

H(Zi|Zi−1) + nεn (10)

=

n∑
i=1

H(Yi|Y i−1, Z̃i−1)−H(Zn) + nεn (11)

≤
n∑

i=1

H(Yi|Z̃i−1)−H(Zn) + nεn

=

n∑
i=1

∑
z̃i−1

P (Z̃i−1 = z̃i−1)H(Yi|Z̃i−1 = z̃i−1)

−H(Zn) + nεn

≤
n∑

i=1

∑
z̃i−1

P (Z̃i−1 = z̃i−1)×

max
PXi|Z̃i−1 (·|z̃i−1)

H(Yi|Z̃i−1 = z̃i−1)−H(Zn) + nεn



=

n∑
i=1

∑
z̃i−1

PZ̃i−1(z̃i−1)
[(

1− PZi|Z̃i−1(e|z̃i−1)
)

log q

+ hb
(
PZi|Z̃i−1(e|z̃i−1)

)]
−H(Zn) + nεn (12)

=

n∑
i=1

[
(1− ε) log q +H(Z̃i|Z̃i−1)

]
−H(Zn) + nεn

= n(1− ε) log q +H(Z̃n)−H(Zn) + nεn,

where εn → 0 as n→∞, (8) follows from Fano’s inequality,
(9) holds since Xi = fi(W,Y

i−1), i = 1, 2, ..., n, and Zi

is given by (4). Moreover, (10) holds because Zn and W
are independent of each other, (11) follows from (5) and (4),
(12) follows from Corollary 1 in the Appendix, and hb(ε) ,
−ε log ε − (1 − ε) log(1 − ε) is the binary entropy function.
We thus have

CFB ≤ (1− ε) log q − lim
n→∞

1

n

[
H(Zn)−H(Z̃n)

]
= (1− ε) log q −

[
H̄(Z)− H̄(Z̃)

]
= C.

This inequality and the fact that CFB ≥ C complete the proof.

V. CONCLUSION

We investigated a class of NECs satisfying invertibility
conditions which can be viewed as a generalization of the EC
and ANC with memory. The non-feedback capacity was de-
rived in closed form based on introducing an auxiliary erasure
process with memory and proving that the n-fold channel is
quasi-symmetric. We then showed that the feedback capacity
is identical to the non-feedback capacity, demonstrating that
feedback does not increase capacity. We point out that our
results in Theorems 1 and 2 can be generalized to NECs
with arbitrary noise-erasure process (not necessarily stationary
or information stable) using generalized spectral information
measures [6], [7]. Future work include deriving the non-
feedback and feedback capacities of compound channels with
NEC components and examining the extension of the results
of [9]. Another interesting direction is the study of the
capacity-cost function of the NEC with and without feedback.
Preliminary results indicate that for a class of NECs with linear
input costs and a Markovian noise-erasure process, feedback
does increase the capacity-cost function under a judiciously
chosen feedback encoding strategy.

APPENDIX

Lemma 5: If Y denotes the output of the NEC with
invertibility conditions S-I and S-II and ε = PZ(e), then

max
PX

H(Y ) = (1− ε) log q − hb(ε).

Proof: Letting Z̃ = 0 if Z 6= e, and Z̃ = e if Z = e, we
have

max
PX

H(Y ) = max
PX

[I(X;Y ) +H(Y |X)]

= max
PX

I(X;Y ) +H(Z)

= (1− ε) log q − (1− ε)H(Z|Z̃ 6= e) +H(Z) (13)

= (1− ε) log q − (1− ε)H(Z|Z̃ 6= e) +H(Z̃) +H(Z|Z̃)

= (1− ε) log q − hb(ε),

where (13) follows from (7).
Corollary 1: If random variable A is jointly distributed with

Z and is conditionally independent of X and Y given Z, then

max
PX

H(Y |A = a) = (1− εa) log q − hb(εa),

for a ∈ A, where εa = P (Z = e|A = a).
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