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Abstra
t | In this work, we investigate the

joint sour
e-
hannel 
oding issue of transmitting

non-uniform independent and identi
ally distributed

(i.i.d.) sour
es over additive white Gaussian noise

(AWGN) 
hannels via Turbo 
odes. The sour
e re-

dundan
y in the form of non-uniformity is exploited

in the Turbo de
oder via a modi�ed extrinsi
 infor-

mation. In 
ontrast to previous work, non-systemati


re
ursive 
onvolutional en
oders are proposed as the


onstituent en
oders, whi
h produ
e almost uniform

outputs for heavily biased sour
es. As a result, un-

like the outputs of systemati
 en
oders, they are suit-

ably mat
hed to the 
hannel input sin
e a uniformly

distributed input maximizes the 
hannel mutual in-

formation and a
hieves 
apa
ity. Simulation results

show substantial gains a
hieved over previously de-

signed systemati
 Turbo 
odes, and the gaps to the

optimal Shannon limit are therefore signi�
antly re-

du
ed.

I. Introdu
tion and Motivation

In almost all the theory and pra
ti
e of error-
ontrol 
od-

ing, the sour
e that is en
oded for transmission over the 
han-

nel is assumed to be uniform i.i.d.; i.e., the sour
e is assumed

to generate memoryless bit streams fD

k

g

1

k=1

, where

PrfD

k

= 0g = PrfD

k

= 1g = 1=2:

In reality, however, substantial amount of redundan
y is often

observed in natural sour
es. For example, many un
ompressed

binary images (e.g., fa
simile do
uments and medi
al images)

may 
ontain as mu
h as 80% of redundan
y in the form of non-

uniformity (e.g., [8, 14℄); this 
orresponds to a probability

p

0

4

=PrfD

k

= 0g = 0:97:
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In this 
ase, a sour
e en
oder would then be used. A sour
e

en
oder is said to be optimal if it 
an eliminate all the sour
e

redundan
y and generates uniform i.i.d. outputs. However,

most existing sour
e en
oders are only sub-optimal (parti
u-

larly �xed-length en
oders that are 
ommonly used for trans-

mission over noisy 
hannels); therefore, the sour
e en
oder

output 
ontains a 
ertain amount of residual redundan
y. For

example, the 4.8 kbits/s US Federal Standard 1016 CELP

spee
h vo
oder produ
es line spe
tral parameters that 
on-

tains 41:5% of residual redundan
y due to non-uniformity

and memory [3℄. Therefore, the reliable 
ommuni
ation of

sour
es with a 
onsiderable amount of residual or natural re-

dundan
y is an important issue. Several studies (e.g., [1℄-[4℄,

[10, 13, 16, 20, 21℄, et
.) have shown that appropriate use of

the sour
e redundan
y 
an signi�
antly improve the system

performan
e.

Turbo 
odes [6, 7℄ have been regarded as one of the most

ex
iting breakthroughs in 
hannel 
oding, and ex
ellent per-

forman
e has been demonstrated for uniform i.i.d. sour
es over

AWGN 
hannels. In [11℄ the authors 
onsidered using Turbo


odes for sour
es with memory. However, to the best of our

knowledge, the issue of designing Turbo 
odes for non-uniform

i.i.d. sour
es has not been fully studied, ex
ept for the re
ent

work in [22, 23℄, where the sour
e redundan
y in the form of

non-uniformity was exploited in the Turbo de
oder via a mod-

i�ed extrinsi
 information term, and the en
oder stru
ture was

optimized in a

ordan
e with the sour
e distribution. As a re-

sult, signi�
ant 
oding gains were a
hieved in these works over

the standard Berrou Turbo 
ode, and the performan
e results


ompared fairly well to the Shannon limit, also known as the

optimal performan
e theoreti
ally a
hievable (OPTA).

In [22, 23℄, the Turbo en
oders used are re
ursive systemati



onvolutional (RSC) en
oders. Although the gains a
hieved

in these works are 
onsiderably signi�
ant, the OPTA gaps

for heavily biased sour
es are still relatively big. Also, when

p

0

in
reases, the gaps be
ome wider. Analysis on the en-


oder output reveals that the drawba
k lies in the systemati


stru
ture. Due to the feedba
k, re
ursive non-systemati
 
on-
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Figure 1: Blo
k diagram of the system model.

volutional (RNSC) en
oders 
an generate almost uniformly

distributed output even for very biased sour
es. From infor-

mation theory (e.g., [9℄), we know that the 
apa
ity of a binary

input AWGN 
hannel is maximized by a uniform i.i.d. 
hannel

input; therefore, we propose using RNSC en
oders as the 
on-

stituent Turbo en
oders. Simulation results demonstrate sub-

stantial gains over systemati
 Turbo 
odes. The OPTA gaps

for heavily biased sour
es are hen
e signi�
antly redu
ed.

II. System Model

The blo
k diagram of the system we are 
onsidering is de-

pi
ted in Fig. 1. The sour
e generates a non-uniform mem-

oryless bitstream fD

k

g

1

k=1

, where p

0

= PrfD

k

= 0g 6= 1=2.

Instead of 
ompressing the non-uniform sour
e and 
hannel


oding it via standard sour
e and 
hannel 
odes, the two

operations are 
ombined into one via an appropriately de-

signed joint sour
e-
hannel Turbo 
ode. The data sequen
e is

Turbo en
oded and binary phase-shift keying (BPSK) modu-

lated; then it is transmitted through an AWGN 
hannel whose

mat
hed �lter output is des
ribed by

Y

k

=W

k

+N

k

; k = 1; 2; 3; � � � ;

where W

k

2 f�1;+1g is the BPSK signal of unit energy and

fN

k

g is an i.i.d. Gaussian noise sequen
e with zero mean and

varian
e N

0

=2. We assume that W

k

and N

k

are independent

of ea
h other. At the re
eiver end, the sequen
e is fed into the

Turbo de
oder, whi
h iteratively 
omputes the log-likelihood

ratio (LLR) �(D

k

) of ea
h bit D

k

. The Turbo en
oder used

here is re
ursive non-systemati
, and the Turbo de
oder is

modi�ed a

ordingly for the en
oder stru
ture as well as to

exploit the sour
e redundan
y in the form of non-uniformity.

III. Non-Systemati
 Turbo Codes

Turbo 
odes use two (or more) simple 
onvolutional en-


oders in parallel 
on
atenation linked by an interleaver; in

the de
oder, 
onstituent de
oders are pla
ed in serial 
on
ate-

nation with an interleaver in between, and a deinterleaver is

used in the feedba
k loop from the se
ond 
onstituent de
oder

to the �rst. Ea
h 
onstituent de
oder employs the BCJR algo-

rithm [5℄, and the de
oding pro
ess is realized in an iterative

fashion by ex
hanging the extrinsi
 information between the

two 
onstituent de
oders. In the original work by Berrou et

al. [7℄, extraordinary performan
e has been demonstrated by

using Turbo 
odes for uniform i.i.d. sour
es over AWGN 
han-

nels.

Designing Turbo 
odes for non-uniform i.i.d. sour
es has

been re
ently studied in [22, 23℄, in whi
h the Turbo de
oder

is modi�ed to take advantage of the sour
e redundan
y in the

form of non-uniformity, and the Turbo en
oder is optimized

for a given sour
e probability distribution. For AWGN 
han-

nels, when rate=1/3 and p

0

=0.9, the optimization of the en-


oder yields a 1.18 dB gain over the Berrou (37,21) 
ode, while

exploiting the sour
e redundan
y gives an impressive 2.46 dB

gain. Despite these signi�
ant 
oding gains, the performan
e


an be further improved sin
e the gaps to the Shannon limit

are still relatively wide for heavily biased sour
es. Further-

more, when p

0

in
reases, the OPTA gaps be
ome wider. For

example, when the rate is 1/2, OPTA gaps of 1.56 dB and

2.61 dB are a
hieved for p

0

=0.8 and 0.9, respe
tively.

Note that in [22, 23℄, the en
oders are systemati
, whi
h

is 
ommonly used in almost all the Turbo 
odes literature.

When the sour
e is heavily biased, this systemati
 stru
ture

be
omes a drawba
k. For example, when p

0

=0.9, as part of

the Turbo en
oder outputs, the systemati
 sequen
e (whi
h is

identi
al to the original sour
e sequen
e) 
ontains mu
h more

0's than 1's. If the en
oder is non-re
ursive, when the sour
e is

heavily biased, the parity output would also be heavily biased.

However, this is not the 
ase when the en
oder is re
ursive.

Due to the feedba
k stru
ture, the parity output 
an be almost

uniformly distributed even for a very heavily biased sour
e

input.

It has been shown in [17℄ that the empiri
al distribution of

any good 
ode (i.e., a 
ode approa
hing 
apa
ity with asymp-

toti
ally vanishing probability of error) 
onverges to the input

distributions that a
hieve 
hannel 
apa
ity. Sin
e the 
apa
ity

of a binary input AWGN 
hannel is a
hieved when its mutual

information is maximized by a uniformly distributed input,

we should only 
onsider 
odes whose empiri
al distributions

are 
lose to the 
apa
ity-a
hieving distributions. This implies

that, if a non-systemati
 en
oder is adopted in 
onjun
tion

with a re
ursive stru
ture, the above drawba
k 
an be re-

solved sin
e the resulting joint sour
e-
hannel Turbo 
ode is

more suitably mat
hed to the 
hannel, and therefore an im-

proved performan
e is expe
ted.

Fig. 2 shows our proposed non-systemati
 Turbo en
oders.

In a) the �rst 
onstituent en
oder has two parity outputs while

the se
ond has only one parity output; so the overall rate is

1/3. In b) both 
onstituent en
oders have two parity outputs

and the overall rate is 1/4. Stru
ture b) 
an a
hieve the same

overall rate of 1/3 by pun
turing. Stru
ture a) is virtually a
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Figure 2: Non-Systemati
 Turbo en
oder stru
tures.

spe
ial 
ase of stru
ture b) obtained by 
ompletely pun
turing

X

2h

k

; therefore, a generally designed de
oder for stru
ture b)


an also be used for stru
ture a).

In [22, 23℄, the RSC en
oders are optimized for a given

sour
e distribution by 
hoosing the best feedba
k and feed-

forward polynomials iteratively. For RNSC en
oders, an ex-

haustive sear
h for the best stru
ture is 
omputationally im-

pra
ti
al. In our simulations, we �x the best feedba
k and

feed-forward polynomials found in [22, 23℄, and sear
h for the

other best feed-forward polynomial. Sear
hes are performed

separately (with pun
turing) for rate-1/2 and rate-1/3 en-


oders.

IV. De
oder Modifi
ations

When RSC en
oders are used as 
onstituent en
oders, the

log-likelihood ratio (LLR) in the BCJR algorithm [5℄ employed

by the Turbo de
oder 
an be de
omposed into three terms [7℄:

�(D

k

) = L


h

(D

k

) + L

ex

(D

k

) + L

ap

(D

k

);

where L


h

(D

k

), L

ex

(D

k

) and L

ap

(D

k

) are the 
hannel tran-

sition term, the extrinsi
 term and the a priori term, respe
-

tively.

When RNSC en
oders are used as 
onstituent en
oders,

�(D

k

) 
an only be de
omposed into two terms:

�(D

k

) = L

ex

(D

k

) + L

ap

(D

k

);

where the new extrinsi
 term involves two parity sequen
es,

L

ex

(D

k

) = log

P

e

P

e

0


(y

h

k

; y

g

k

j1; e; e

0

) � �

k�1

(e

0

) � �

k

(e)

P

e

P

e

0


(y

h

k

; y

g

k

j0; e; e

0

) � �

k�1

(e

0

) � �

k

(e)

;

where for i = 0; 1,


(y

h

k

; y

g

k

ji; e; e

0

) = p(y

h

k

jD

k

= i; E

k

= e)

�p(y

g

k

jD

k

= i; E

k

= e)

�PrfD

k

= ijE

k

= e; E

k�1

= e

0

g;

and where E

k

is the en
oder state at time k, y

h

k

and y

g

k

are

the noise 
orrupted version of x

h

k

and x

g

k

, whi
h are the parity

bits generated from the two feed-forward polynomials. �

k

(e)

and �

k

(e) are de�ned and 
an be re
ursively 
omputed as in

[7℄. Also, as in [22, 23℄, sin
e the sour
e is non-uniform i.i.d.,

log((1�p

0

)=p

0

) is used as the initial a priori input to the �rst

de
oder at the �rst iteration

1

; then it 
an be veri�ed via the

BCJR algorithm's derivation that this term will appear in the

output �(D

k

) as an extra term. In our design, we then use

L

ex

+ log((1 � p

0

)=p

0

) as the new extrinsi
 information for

both 
onstituent de
oders at ea
h iteration.

V. Simulation Results and Dis
ussions

In this se
tion, we present simulation results of our non-

systemati
 Turbo 
odes for uniform i.i.d. sour
es over BPSK-

modulated AWGN 
hannels. The performan
e is measured in

terms of bit error rate (BER) versus E

b

=N

0

, where E

b

is the

average energy per sour
e bit and N

0

=2 is the varian
e of the

Gaussian additive noise pro
ess. All simulated Turbo 
odes

have 16-state 
onstituent en
oders and use the same pseudo-

random interleaver introdu
ed in [7℄. The sequen
e length is

N = 512 � 512 = 262144 and 200 blo
ks are used; this would

guarantee a reliable BER estimation at the 10

�5

level with

524 errors. The number of iterations used in the de
oder is

20. All presented results are for Turbo 
odes with stru
ture

b) en
oders as they have a better performan
e than the 
odes

with stru
ture a) en
oders. Simulations are performed for

rates R




= 1=3 and R




= 1=2 with p

0

=0.8 and 0.9. From

our simulations, for both rates 1/3 and 1/2, the best RNSC

en
oder stru
ture found for p

0

=0.8 has ea
h 
onstituent en-


oder with the feedba
k polynomial 35 and feed-forward poly-

nomials 23 and 25, denoted by (35,23,25); for p

0

=0.9 the best

stru
ture is (31,23,27). Several other en
oders give very 
om-

petitive performan
e; for example, (35,23,21) and (35,23,31)

for p

0

=0.8, (31,23,35) and (31,23,37) for p

0

=0.9 also give a

good performan
e that is very 
lose to the one o�ered by the

above en
oders.

Fig. 3 shows the performan
es of our rate-1/3 non-

systemati
 Turbo 
odes in 
omparison with their systemati


peers investigated in [22, 23℄, as well as with Berrou's (37,21)


ode, whi
h o�ers the best water-fall performan
e (among 16-

state en
oders) for uniform i.i.d. sour
es. At the 10

�5

BER

level, when p

0

=0.8, our (35,23,25) non-systemati
 Turbo 
ode

o�ers a 0.45 dB gain over its (35,23) systemati
 peer; when

p

0

=0.9, the improvement is 0.89 dB with the en
oder stru
-

ture (31,23,27). In 
omparison with Berrou's (37,21) 
ode

performan
e, the gains a
hieved by exploiting the sour
e re-

dundan
y and en
oder optimization are therefore 1.48 dB and

3.25 dB for p

0

=0.8 and 0.9, respe
tively.

Fig. 4 shows similar results for rate-1/2. We observe that

the gains are generally more signi�
ant. In 
omparison with

the best systemati
 Turbo 
ode performan
es, at the 10

�5

BER level, for p

0

=0.8 and 0.9, the gains a
hieved are 0.69

dB and 1.56 dB, respe
tively. Furthermore, the gains due to

1

This simple modi�
ation of appropriately using the sour
e in-

formation in the Turbo de
oder for non-uniform sour
es is also

brie
y mentioned in [12℄ and [11℄; but it is not expli
itly studied or

assessed.
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ombining the optimized en
oder with the modi�ed de
oder

that exploits the sour
e redundan
y are 1.57 dB (p

0

=0.8) and

3.72 dB (p

0

=0.9).

To a
hieve a desired rate by pun
turing, using di�erent

pun
turing patterns may result in a di�eren
e in the perfor-

man
e. For example, when stru
ture b) is used for an overall

rate of 1/3, we may 
hoose to pun
ture 1/4 of ea
h parity

sequen
e a

ording to various patterns, or we may pun
ture

half of two parity sequen
es, and leave the other two sequen
es

inta
t. Simulations show the best pun
turing pattern is to

keep the parity sequen
e generated from feed-forward 23 in-

ta
t and pun
ture half of the one generated from the other

feed-forward polynomial. The performan
e of this pun
tur-

ing pattern is about 0.2 dB better than the other patterns; in

parti
ular it is 0.3 dB better than the performan
e o�ered by

stru
ture a). For an overall rate of 1/2, stru
ture b) is also

better than a), and the best pun
turing pattern is to delete

all even (odd) position bits of the sequen
es generated from

feed-forward 23, and delete all odd (even) position bits of the

sequen
es generated from the other feed-forward polynomial.

VI. Shannon Limit

In his landmark papers [18℄, [19℄, Shannon established the

Lossy Information Transmission Theorem, also known as the

Joint Sour
e-Channel Coding Theorem with Fidelity Criterion

[15℄. From this theorem, we know that for a given memory-

less sour
e and a given memoryless 
hannel with 
apa
ity C,

for suÆ
iently large sour
e blo
k lengths, the sour
e 
an be

transmitted via a sour
e-
hannel 
ode over the 
hannel at a

transmission rate of R




sour
e symbols/
hannel symbols and

reprodu
ed at the re
eiver end within an end-to-end distortion

given by D if the following 
ondition is satis�ed [15℄:

R




� R(D) < C; (1)

where R(D) is the sour
e rate-distortion fun
tion. For a dis-


rete binary non-equiprobable memoryless sour
e with distri-

bution p

0

, we have that D = P

e

4

= BER under the Hamming

distortion measure [9℄; then R(D) be
omes

R(P

e

) =

(

h

b

(p

0

)� h

b

(P

e

); 0 � P

e

� minfp

0

; 1� p

0

g

0; P

e

> minfp

0

; 1� p

0

g

where h

b

(�) is the binary entropy fun
tion:

h

b

(x) = �x log

2

x� (1� x) log

2

(1� x):

For AWGN 
hannels, the 
hannel 
apa
ity is a fun
tion of

E

b

=N

0

; i.e., C = C(E

b

=N

0

). Therefore, the optimum value

of E

b

=N

0

to guarantee a BER of P

e


an be solved using (1)

assuming equality. This optimum value of E

b

=N

0

is 
alled

the Shannon limit, or OPTA. The Shannon limit 
annot be

expli
itly solved for a BPSK-modulated input due to the la
k

of a 
losed form expression; so it is 
omputed via numeri
al

integration.

For the above simulations, the OPTA values at the 10

�5

BER level are 
omputed and provided in Table 1. The OPTA

gaps, whi
h are the distan
es between our system perfor-

man
es and the 
orresponding OPTA values, are provided in

Table 2. We 
an 
learly remark that the OPTA gaps are sig-

ni�
antly redu
ed by non-systemati
 Turbo 
odes: less than

0.9 dB for p

0

= 0:8 and within 1 dB for p

0

= 0:9.



Sour
e distribution R




= 1=2 R




= 1=3

p

0

= 0:8 -1.81 -2.24

p

0

= 0:9 -4.14 -4.40

Table 1: OPTA values in E

b

=N

0

at BER=10

�5

level (in

dB), AWGN 
hannel.

Sour
e Systemati
 [22, 23℄ Non-Systemati


distribution R




= 1=2 R




= 1=3 R




= 1=2 R




= 1=3

p

0

= 0:8 1.56 1.19 0.87 0.74

p

0

= 0:9 2.61 2.02 1.05 1.13

Table 2: OPTA gaps in E

b

=N

0

at BER=10

�5

level (in

dB), AWGN 
hannel.

VII. Con
lusions

In this work, the joint sour
e-
hannel 
oding issue of

designing Turbo 
odes for transmitting non-uniform i.i.d.

sour
es over AWGN 
hannels is investigated. Re
ursive

non-systemati
 Turbo 
odes are proposed for the 
onsidered

sour
es. The non-systemati
 Turbo en
oder output, whi
h is

almost uniformly distributed for even heavily biased sour
es, is

suitably mat
hed to the 
hannel input as it nearly maximizes

the 
hannel mutual information. Simulation results show sub-

stantial 
oding gains (up to 1.56 dB) a
hieved in 
omparison

with systemati
 Turbo 
odes designed in [22, 23℄, and the

OPTA gaps are signi�
antly redu
ed.
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