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Abstract —

joint source-channel coding

In this work, we investigate the
issue of transmitting
non-uniform independent and identically distributed
(i.i.d.)
(AWGN) channels via Turbo codes. The source re-

dundancy in the form of non-uniformity is exploited

sources over additive white Gaussian noise

in the Turbo decoder via a modified extrinsic infor-
mation. In contrast to previous work, non-systematic
recursive convolutional encoders are proposed as the
constituent encoders, which produce almost uniform
outputs for heavily biased sources. As a result, un-
like the outputs of systematic encoders, they are suit-
ably matched to the channel input since a uniformly
distributed input maximizes the channel mutual in-
formation and achieves capacity. Simulation results
show substantial gains achieved over previously de-
signed systematic Turbo codes, and the gaps to the
optimal Shannon limit are therefore significantly re-
duced.

I. INTRODUCTION AND MOTIVATION

In almost all the theory and practice of error-control cod-
ing, the source that is encoded for transmission over the chan-
nel is assumed to be uniform i.i.d.; i.e., the source is assumed

to generate memoryless bit streams {Dy }72,, where
PT{Dk = 0} = PT{Dk = 1} = 1/2.

In reality, however, substantial amount of redundancy is often
observed in natural sources. For example, many uncompressed
binary images (e.g., facsimile documents and medical images)
may contain as much as 80% of redundancy in the form of non-

uniformity (e.g., [8, 14]); this corresponds to a probability

po2Pr{Dy =0} = 0.97.
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In this case, a source encoder would then be used. A source
encoder is said to be optimal if it can eliminate all the source
redundancy and generates uniform i.i.d. outputs. However,
most existing source encoders are only sub-optimal (particu-
larly fixed-length encoders that are commonly used for trans-
mission over noisy channels); therefore, the source encoder
output contains a certain amount of residual redundancy. For
example, the 4.8 kbits/s US Federal Standard 1016 CELP
speech vocoder produces line spectral parameters that con-
tains 41.5% of residual redundancy due to non-uniformity
and memory [3]. Therefore, the reliable communication of
sources with a considerable amount of residual or natural re-
dundancy is an important issue. Several studies (e.g., [1]-[4],
[10, 13, 16, 20, 21], etc.) have shown that appropriate use of
the source redundancy can significantly improve the system

performance.

Turbo codes [6, 7] have been regarded as one of the most
exciting breakthroughs in channel coding, and excellent per-
formance has been demonstrated for uniform i.i.d. sources over
AWGN channels. In [11] the authors considered using Turbo
codes for sources with memory. However, to the best of our
knowledge, the issue of designing Turbo codes for non-uniform
i.i.d. sources has not been fully studied, except for the recent
work in [22, 23], where the source redundancy in the form of
non-uniformity was exploited in the Turbo decoder via a mod-
ified extrinsic information term, and the encoder structure was
optimized in accordance with the source distribution. As a re-
sult, significant coding gains were achieved in these works over
the standard Berrou Turbo code, and the performance results
compared fairly well to the Shannon limit, also known as the
optimal performance theoretically achievable (OPTA).

In [22, 23], the Turbo encoders used are recursive systematic
convolutional (RSC) encoders. Although the gains achieved
in these works are considerably significant, the OPTA gaps
for heavily biased sources are still relatively big. Also, when
po increases, the gaps become wider. Analysis on the en-
coder output reveals that the drawback lies in the systematic
structure. Due to the feedback, recursive non-systematic con-
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Figure 1: Block diagram of the system model.

volutional (RNSC) encoders can generate almost uniformly
distributed output even for very biased sources. From infor-
mation theory (e.g., [9]), we know that the capacity of a binary
input AWGN channel is maximized by a uniform i.i.d. channel
input; therefore, we propose using RNSC encoders as the con-
stituent Turbo encoders. Simulation results demonstrate sub-
stantial gains over systematic Turbo codes. The OPTA gaps

for heavily biased sources are hence significantly reduced.

II. SYsTEM MODEL

The block diagram of the system we are considering is de-
picted in Fig. 1. The source generates a non-uniform mem-
oryless bitstream {Dj}72,, where po = Pr{D; = 0} # 1/2.
Instead of compressing the non-uniform source and channel
coding it via standard source and channel codes, the two
operations are combined into one via an appropriately de-
signed joint source-channel Turbo code. The data sequence is
Turbo encoded and binary phase-shift keying (BPSK) modu-
lated; then it is transmitted through an AWGN channel whose
matched filter output is described by

YkZWk+Nk; k:1:2:37"':

where Wy, € {—1,+1} is the BPSK signal of unit energy and
{Ni} is an i.i.d. Gaussian noise sequence with zero mean and
variance No/2. We assume that Wy and Ny are independent
of each other. At the receiver end, the sequence is fed into the
Turbo decoder, which iteratively computes the log-likelihood
ratio (LLR) A(Dy) of each bit Dy. The Turbo encoder used
here is recursive non-systematic, and the Turbo decoder is
modified accordingly for the encoder structure as well as to
exploit the source redundancy in the form of non-uniformity.

III. NON-SYSTEMATIC TURBO CODES

Turbo codes use two (or more) simple convolutional en-
coders in parallel concatenation linked by an interleaver; in
the decoder, constituent decoders are placed in serial concate-
nation with an interleaver in between, and a deinterleaver is

used in the feedback loop from the second constituent decoder

to the first. Each constituent decoder employs the BCJR algo-
rithm [5], and the decoding process is realized in an iterative
fashion by exchanging the extrinsic information between the
two constituent decoders. In the original work by Berrou et
al. [7], extraordinary performance has been demonstrated by
using Turbo codes for uniform i.i.d. sources over AWGN chan-

nels.

Designing Turbo codes for non-uniform i.i.d. sources has
been recently studied in [22, 23], in which the Turbo decoder
is modified to take advantage of the source redundancy in the
form of non-uniformity, and the Turbo encoder is optimized
for a given source probability distribution. For AWGN chan-
nels, when rate=1/3 and po=0.9, the optimization of the en-
coder yields a 1.18 dB gain over the Berrou (37,21) code, while
exploiting the source redundancy gives an impressive 2.46 dB
gain. Despite these significant coding gains, the performance
can be further improved since the gaps to the Shannon limit
are still relatively wide for heavily biased sources. Further-
more, when pg increases, the OPTA gaps become wider. For
example, when the rate is 1/2, OPTA gaps of 1.56 dB and
2.61 dB are achieved for pp=0.8 and 0.9, respectively.

Note that in [22, 23], the encoders are systematic, which
is commonly used in almost all the Turbo codes literature.
When the source is heavily biased, this systematic structure
becomes a drawback. For example, when pp=0.9, as part of
the Turbo encoder outputs, the systematic sequence (which is
identical to the original source sequence) contains much more
0’s than 1’s. If the encoder is non-recursive, when the source is
heavily biased, the parity output would also be heavily biased.
However, this is not the case when the encoder is recursive.
Due to the feedback structure, the parity output can be almost
uniformly distributed even for a very heavily biased source
input.

It has been shown in [17] that the empirical distribution of
any good code (i.e., a code approaching capacity with asymp-
totically vanishing probability of error) converges to the input
distributions that achieve channel capacity. Since the capacity
of a binary input AWGN channel is achieved when its mutual
information is maximized by a uniformly distributed input,
we should only consider codes whose empirical distributions
are close to the capacity-achieving distributions. This implies
that, if a non-systematic encoder is adopted in conjunction
with a recursive structure, the above drawback can be re-
solved since the resulting joint source-channel Turbo code is
more suitably matched to the channel, and therefore an im-

proved performance is expected.

Fig. 2 shows our proposed non-systematic Turbo encoders.
In a) the first constituent encoder has two parity outputs while
the second has only one parity output; so the overall rate is
1/3. In b) both constituent encoders have two parity outputs
and the overall rate is 1/4. Structure b) can achieve the same
overall rate of 1/3 by puncturing. Structure a) is virtually a
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Figure 2: Non-Systematic Turbo encoder structures.

special case of structure b) obtained by completely puncturing
X?h, therefore, a generally designed decoder for structure b)
can also be used for structure a).

In [22, 23], the RSC encoders are optimized for a given
source distribution by choosing the best feedback and feed-
forward polynomials iteratively. For RNSC encoders, an ex-
haustive search for the best structure is computationally im-
practical. In our simulations, we fix the best feedback and
feed-forward polynomials found in [22, 23], and search for the
other best feed-forward polynomial. Searches are performed
separately (with puncturing) for rate-1/2 and rate-1/3 en-
coders.

IV. DECODER MODIFICATIONS

When RSC encoders are used as constituent encoders, the
log-likelihood ratio (LLR) in the BCJR algorithm [5] employed
by the Turbo decoder can be decomposed into three terms [7]:

A(Dk) = Lch(Dk) + Ley (Dk) + Lap(Dk):

where Lo (Di), Lez (Dy) and Lgp(Dy) are the channel tran-
sition term, the extrinsic term and the a priori term, respec-
tively.

When RNSC encoders are used as constituent encoders,

A(Dy) can only be decomposed into two terms:
A(Dk) = Lex(Dr) + Lap(Dr),

where the new extrinsic term involves two parity sequences,

Ze Ze’ V(yl};y yg“—: €, 6,) ’ akfl(el) : ﬂk(e)
e 2 VWi Y10, e, €) - ak—a(€) - Brle)’

where for ¢ =0, 1,

Leo(Dy) = log

= p(yk|Dx =i, Ex =)
p(yl| Dy, =14, By, =e)
'PT{Dk = ’L|Ek = E,Ek_l = 6’},

Yy, yilise,e’)

and where Ej is the encoder state at time k, yf and Y3 are
the noise corrupted version of % and x¥, which are the parity
bits generated from the two feed-forward polynomials. «ay(e)
and B (e) are defined and can be recursively computed as in
[7]. Also, as in [22, 23], since the source is non-uniform i.i.d.,
log((1—po)/po) is used as the initial a priori input to the first

decoder at the first iteration®; then it can be verified via the
BCJR algorithm’s derivation that this term will appear in the
output A(Dy) as an extra term. In our design, we then use
Ley + log((1 — po)/po) as the new extrinsic information for

both constituent decoders at each iteration.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, we present simulation results of our non-
systematic Turbo codes for uniform i.i.d. sources over BPSK-
modulated AWGN channels. The performance is measured in
terms of bit error rate (BER) versus Ey/No, where E is the
average energy per source bit and No/2 is the variance of the
Gaussian additive noise process. All simulated Turbo codes
have 16-state constituent encoders and use the same pseudo-
random interleaver introduced in [7]. The sequence length is
N =512 x 512 = 262144 and 200 blocks are used; this would
guarantee a reliable BER estimation at the 107 level with
524 errors. The number of iterations used in the decoder is
20. All presented results are for Turbo codes with structure
b) encoders as they have a better performance than the codes
with structure a) encoders. Simulations are performed for
rates R = 1/3 and R. = 1/2 with po=0.8 and 0.9. From
our simulations, for both rates 1/3 and 1/2, the best RNSC
encoder structure found for pp=0.8 has each constituent en-
coder with the feedback polynomial 35 and feed-forward poly-
nomials 23 and 25, denoted by (35,23,25); for po=0.9 the best
structure is (31,23,27). Several other encoders give very com-
petitive performance; for example, (35,23,21) and (35,23,31)
for pp=0.8, (31,23,35) and (31,23,37) for pe=0.9 also give a
good performance that is very close to the one offered by the
above encoders.

Fig. 3 shows the performances of our rate-1/3 non-
systematic Turbo codes in comparison with their systematic
peers investigated in [22, 23], as well as with Berrou’s (37,21)
code, which offers the best water-fall performance (among 16-
state encoders) for uniform i.i.d. sources. At the 107° BER
level, when po=0.8, our (35,23,25) non-systematic Turbo code
offers a 0.45 dB gain over its (35,23) systematic peer; when
po=0.9, the improvement is 0.89 dB with the encoder struc-
ture (31,23,27).

performance, the gains achieved by exploiting the source re-

In comparison with Berrou’s (37,21) code

dundancy and encoder optimization are therefore 1.48 dB and
3.25 dB for pp=0.8 and 0.9, respectively.

Fig. 4 shows similar results for rate-1/2. We observe that
the gains are generally more significant. In comparison with
the best systematic Turbo code performances, at the 107°
BER level, for pp=0.8 and 0.9, the gains achieved are 0.69
dB and 1.56 dB, respectively. Furthermore, the gains due to

I This simple modification of appropriately using the source in-
formation in the Turbo decoder for non-uniform sources is also
briefly mentioned in [12] and [11]; but it is not explicitly studied or
assessed.
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Figure 3: Turbo codes for non-uniform i.i.d. sources,
R.=1/3, N=262144, AWGN channel. The reference dot-
ted curves are from [22, 23].
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Figure 4: Turbo codes for non-uniform i.i.d. sources,
R.=1/2,N=262144, AWGN channel. The reference dot-

ted curves are from [22, 23].

combining the optimized encoder with the modified decoder
that exploits the source redundancy are 1.57 dB (pp=0.8) and
3.72 dB (pp=0.9).

To achieve a desired rate by puncturing, using different
puncturing patterns may result in a difference in the perfor-
mance. For example, when structure b) is used for an overall
rate of 1/3, we may choose to puncture 1/4 of each parity
sequence according to various patterns, or we may puncture
half of two parity sequences, and leave the other two sequences
intact. Simulations show the best puncturing pattern is to

keep the parity sequence generated from feed-forward 23 in-

tact and puncture half of the one generated from the other
feed-forward polynomial. The performance of this punctur-
ing pattern is about 0.2 dB better than the other patterns; in
particular it is 0.3 dB better than the performance offered by
structure a). For an overall rate of 1/2, structure b) is also
better than a), and the best puncturing pattern is to delete
all even (odd) position bits of the sequences generated from
feed-forward 23, and delete all odd (even) position bits of the
sequences generated from the other feed-forward polynomial.

VI. SHANNON LiMIT

In his landmark papers [18], [19], Shannon established the
Lossy Information Transmission Theorem, also known as the
Joint Source-Channel Coding Theorem with Fidelity Criterion
[15]. From this theorem, we know that for a given memory-
less source and a given memoryless channel with capacity C,
for sufficiently large source block lengths, the source can be
transmitted via a source-channel code over the channel at a
transmission rate of R. source symbols/channel symbols and
reproduced at the receiver end within an end-to-end distortion

given by D if the following condition is satisfied [15]:
Re-R(D) <C, (1)

where R(D) is the source rate-distortion function. For a dis-
crete binary non-equiprobable memoryless source with distri-
bution po, we have that D = P, 2 BER under the Hamming

distortion measure [9]; then R(D) becomes

hb(po)—hb(Pe), OSPS Smin{po,l—po}
07 Pe > min{p07 1 _pO}

e -

where hy(+) is the binary entropy function:
hy(z) = —zlog, z — (1 — x) log,(1 — ).

For AWGN channels, the channel capacity is a function of
Ey/No; ie., C = C(Ep/No). Therefore, the optimum value
of Ey/No to guarantee a BER of P. can be solved using (1)
assuming equality. This optimum value of E,/Nop is called
the Shannon limit, or OPTA. The Shannon limit cannot be
explicitly solved for a BPSK-modulated input due to the lack
of a closed form expression; so it is computed via numerical
integration.

For the above simulations, the OPTA values at the 10~°
BER level are computed and provided in Table 1. The OPTA
gaps, which are the distances between our system perfor-
mances and the corresponding OPTA values, are provided in
Table 2. We can clearly remark that the OPTA gaps are sig-
nificantly reduced by non-systematic Turbo codes: less than
0.9 dB for py = 0.8 and within 1 dB for py = 0.9.
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Po = 0.9

Table 1: OPTA values in E,/No at BER=107° level (in
dB), AWGN channel.

Source ||Systematic [22, 23]|| Non-Systematic
distribution||R. = 1/2|R. = 1/3]|[R. = 1/2|R. = 1/3
1.56 1.19 0.87 0.74
2.61 2.02 1.05 1.13

Po = 0.8
Po — 0.9

Table 2: OPTA gaps in Ej,/Ny at BER=10"° level (in
dB), AWGN channel.

VII. CONCLUSIONS

In this work, the joint source-channel coding issue of
designing Turbo codes for transmitting non-uniform i.i.d.
sources over AWGN channels is investigated. Recursive
non-systematic Turbo codes are proposed for the considered
sources. The non-systematic Turbo encoder output, which is
almost uniformly distributed for even heavily biased sources, is
suitably matched to the channel input as it nearly maximizes
the channel mutual information. Simulation results show sub-
stantial coding gains (up to 1.56 dB) achieved in comparison
with systematic Turbo codes designed in [22, 23], and the
OPTA gaps are significantly reduced.
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