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Abstract—A discrete (binary-input 2q-ary output) communica-
tion channel with memory is introduced with the objective tojudi-
ciously capture both the statistical memory and the soft-decision
information of time-correlated fading channels modulated via
binary phase-shift keying and coherently demodulated withan
output quantizer of resolution q. It is shown that the discrete
channel can be explicitly described in terms of its binary input
process and a2q-ary noise process. It is also shown that the chan-
nel is symmetric and admits a simple expression for its capacity
when its noise is stationary ergodic. The2q-ary noise process is
next modeled via a generalized version of the recently studied
binary queue-based channel (2007) to produce a mathematically
tractable stationary ergodic M’th order Markovian noise source
with 2q

+ 2 parameters. Numerical results indicate that the
capacity of the discrete channel withq = 2, 3 is substantially
improved over the cases of perfect channel interleaving (which
yields an equivalent memoryless channel) and of hard-decision
demodulation (q = 1). These results point to potentially large
performance gains achievable by designing coding schemes for
this discrete channel that exploit both its memory and soft-
decision information, as opposed to ignoring either of them.

I. I NTRODUCTION

Wireless communication channels undergo time-varying
multipath fading that is modeled as a time-correlated random
process. Due to the statistical dependence of successive fading
samples, the channel exhibits memory. The development of
iterative decoding schemes for codes (such as low-density
parity-check and turbo codes) that achieve the capacity limit of
memoryless channels, when they operate on binary channels
with memory, was considered in [1]–[3]. These works assume
that the discrete channel (from the input of the modulator
to the output of the hard-quantized demodulator) is modeled
as a binary finite state Markov channel (FSMC) model and
incorporate the FSMC structure in the decoding process in
order to exploit the channel statistical memory. Significant
performance gain is reported relative to traditional schemes
that ignore the channel memory via perfect interleaving. Inthis
latter case, the achievable rates are smaller than those of the
original channel, since it is well known that memory increases
capacity for a wide class of information stable channels (e.g.,
see [4], [5]).

Binary FSMC models that accurately approximate hard-
decision demodulated correlated Rayleigh and Rician flat
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fading channels were proposed in [6]–[9]. Besides the main
interest in binary channels, information-theoretic studies reveal
that soft-decision information can significantly increasethe
capacity for several classes of channels, including additive
white Gaussian noise (AWGN) channels [10], [11], memory-
less (fully interleaved) Rayleigh fading channels [12], additive
colored Gaussian noise channels and intersymbol interference
channels [10]. This work aims at developing simple non-
binary-output FSMC models for time-correlated flat fading
channels that capture both their memory and their soft-decision
information. The new models may be used in designing
new coding/decoding schemes for soft-decision demodulated
channels with memory that result in superior performance over
systems that ignore the channel’s memory (via interleaving)
and/or soft-decision information (via hard demodulation).

We consider a discrete channel composed of a binary
phase-shift keying (BPSK) modulator, a time-correlated flat
Rayleigh fading channel, and aq-bit soft-quantized coherent
demodulator. Motivated by the results in [11], [12], where it
is shown that, for memoryless channels, important capacity
gains are achieved over the hard-decision case(q = 1) with
small values ofq, we considerq = 2, 3.

We first describe the binary-input discrete correlated
Rayleigh fading communication channel with soft-decision
demodulation of resolutionq and show that there exists a2q-
ary noise process (independent from the input process) in such
a way that the2q-ary output process is written as an explicit
function of the binary input and noise process. We refer to this
binary-input discrete channel by the non-binary noise discrete
channel (NBNDC). Next, we derive a formula as well as
simple (numerically computable) upper and lower bounds for
the capacity of this channel when its noise is stationary and
ergodic (which corresponds to a stationary ergodic underlying
fading process). We next model the noise process of the
NBNDC via a2q-ary Markov process generated by modifying
the recently introduced binary queue-based noise process [5].
The resulting non-binary queue-based (QB) noise source is an
M ’th order Markovian stationary ergodic process with2q + 2
independent parameters. Closed-form expressions for several
statistics and the entropy rate of the QB noise process are
established. We then conduct a numerical study to evaluate
the effect of the model parameters (such as the demodulator



resolutionq, noise memory orderM , and noise correlation
coefficient) on the capacity of the NBNDC with QB noise. In
related work, the modeling of non-binary channels via hidden
Markov models has been considered in [13], [14]. However,
unlike what is herein developed, these works do not provide
explicit expressions for the channel statistics and capacity and
are hence less amenable for tractable mathematical analysis.

II. T HE NON-BINARY NOISE DISCRETECHANNEL MODEL

A. Discrete Fading Channel with Soft-Decision Demodulation

We consider a discrete fading channel (DFC) composed of a
binary BPSK modulator, a time-correlated flat Rayleigh fading
channel with AWGN, and aq-bit soft-quantized coherent
demodulator. We define the input and output alphabets of the
discrete channel byX = {0, 1}, Y = {0, 1, · · · , 2q − 1},
respectively. The complex envelope of the fading process,
G̃(t), is a zero-mean complex wide-sense stationary Gaussian
process with a known covariance function. The sample of the
fading envelope at thekth signaling interval,Ak = |G̃(kT )|,
whereT is the symbol interval, has the Rayleigh probability
density function with a unit second moment. Let{Xk},
Xk ∈ X , k = 1, 2, · · · , be the input process to the discrete
channel. The sampled received symbol at the output of the
matched filter at thekth signaling interval is written as

Rk =
√

EsAkSk + Nk, k = 1, 2, · · ·

where{Sk} = {(2Xk−1)}, Es is the energy of the transmitted
signal, {Nk} is a sequence of independent and identically
distributed zero-mean Gaussian random variables with vari-
ance N0/2, {Ak} is a stationary time-correlated Rayleigh
process. The processes{Ak} and {Nk} are independent of
each other and of the input process. The random variableRk

is demodulated via aq-bit uniform scalar quantizer to yield
the discrete channel outputYk ∈ Y as follows

Yk = j, if Rk ∈ (T ′
j−1, T

′
j)

for j ∈ Y. The thresholdsT ′
j are uniformly spaced with step-

size∆, satisfying [12]

T ′
j =







−∞, if j = −1
(j + 1 − 2q−1)∆, if j = 0, 1, · · · , 2q − 2
∞, if j = 2q − 1.

Setting δ , ∆/
√

Es and Tj , T ′
j/
√

Es as the normalized
step-size and thresholds, respectively, we can writeTj =
(j + 1 − 2q−1)δ, for j = 0, 1, · · · , 2q − 2. The conditional
probability qi,j(ak) , Pr(Yk = j | Xk = i, Ak = ak), where
i ∈ X , j ∈ Y andak ∈ [0,∞), can be determined as follows:

qi,j(ak) = Pr(T ′
j−1 < Rk < T ′

j | Xk = i, Ak = ak)

= Pr
(

Tj−1 − (2i − 1)ak < Nk√
Es

< Tj − (2i − 1)ak

)

= Q
(√

2γ (Tj−1 − (2i − 1)ak)
)

−
Q
(√

2γ (Tj − (2i − 1)ak)
)

(1)

where γ = Es/N0 is the signal-to-noise ratio (SNR)
and Q(x) = 1/

√
2π
∫∞

x
exp{−t2/2}dt is the GaussianQ-

function. Due to the symmetry of the BPSK constellation and
the quantizer thresholds, we observe from (1) thatqi,j(ak) =
q1−i,2q−1−j(ak). We may also write

qi,j(ak) = q
0,

j−(2q
−1)i

(−1)i
(ak)

for i ∈ X , j ∈ Y. For integern ≥ 1, let Pr(yn | xn, an) ,

Pr(Y1 = y1, . . . , Yn = yn | X1 = x1, . . . , Xn = xn, A1 =
a1, · · ·An = an). Thus

Pr(yn | xn, an) =

n
∏

k=1

qxk,yk
(ak) =

n
∏

k=1

q
0,

yk−(2q
−1)xk

(−1)xk

(ak).

The DFC is thus probabilistically specified in terms of the
channel block conditional probability

P
(n)

DFC (yn | xn) , Pr(Y n = yn | Xn = xn)

= EA1...An

[

n
∏

k=1

q
0,

yk−(2q
−1)xk

(−1)xk

(Ak)

]

(2)

where yn = (y1, · · · , yn), xn = (x1, · · · , xn) and EX [·]
denotes expectation with respect to the random variableX .
For n = 1, a closed-form expression forP (1)

DFC (j), j ∈ Y, is
given by [19]

P
(1)

DFC (j) = m(−Tj−1) − m(−Tj) (3)

where

m(Tj) = 1 − Q(Tj

√

2γ) −

[

1 − Q

(

Tj

√
2γ

q

1
γ
+1

)]

e
−

T2
j

( 1
γ

+1)

√

1
γ

+ 1
.

The expected value in (2) can be directly calculated forn ≤ 3
since the joint probability density function of arbitrarily cor-
related Rayleigh and Rician random variables is only known
in closed form forn ≤ 3 (e.g., see [15], [16]); forn > 3, (2)
can however be determined via simulations.

We next provide an alternative representation for the DFC.

B. Alternative DFC Model: The Non-Binary Noise Channel

It is often convenient to express the channel output process
{Yk} as an explicit function of the input process{Xk} and a
noise process{Zk}, where{Zk} and{Xk} are independent of
each other (e.g., see [18, p. 183]). In this case, one can model
the noise process via a finite-state Markov model which is an
important analytical tool for coding design and performance
evaluation for channels with memory.

Consider now the following non-binary noise discrete chan-
nel (NBNDC)

Yk = (2q − 1)Xk + (−1)XkZk (4)

for k = 1, 2, · · · . We assume that the noise process{Zk} in
(4) is independent of the input{Xk} and is governed by then-
fold distributionP

(n)
NBNDC(z

n) , P
(n)

NBNDC(Z1 = z1, · · · , Zn = zn),



for zk ∈ Y. It directly follows from (4) and the fact that the
input and noise process are independent from each other that
the NBNDCn-fold conditional probability is given by

P
(n)

NBNDC(y
n | xn) = P

(n)
NBNDC(z

n) (5)

where

zk =
yk − (2q − 1)xk

(−1)xk
, k = 1, · · · , n.

Now, note that if the distribution of the noise process{Zk} of
the NBNDC in (5) is given by (2) for eachn, then the DFC
and the NBNDC have the same channel block conditional
probability. Therefore, the NBNDC provides an alternative
representation of the DFC. In the special case whenq = 1
(hard-decision demodulation), the NBNDC expression in (4)
reduces to the familiar expression

Yk = Xk ⊕ Zk

(where⊕ denotes addition modulo 2) which is widely adopted
to model binary (binary-input binary-output) additive-noise
discrete channels with memory [5], [6]. Furthermore, if{Zk}
is memoryless, than we obtain the memoryless binary sym-
metric channel (BSC) which represents the fully interleaved
DFC. The channel capacity of the NBNDC with stationary
ergodic noise{Zk} is studied in the next section.1

III. C HANNEL CAPACITY

Consider the NBNDC described by (4) where the noise
process{Zk} is stationary ergodic. The channel capacity, in
bits per channel use, for this information stable channel is
given by [17], [20]

C = lim
n→∞

C(n) = sup
n

C(n) (6)

where C(n) , maxp(xn)
1
n
I(Xn; Y n), where the maximum

is taken with respect to all input distributionsp(xn) and
I(Xn; Y n) denotes the block mutual information betweenXn

andY n. I(Xn; Y n) can be written as follows

I(Xn; Y n) = H(Y n) − H(Y n | Xn) = H(Y n) − H(Zn)

whereH(·) denotes entropy and the last equality follows from
(4) and the independence ofXn andZn. Thus

C(n) =
1

n

(

max
p(xn)

[H(Y n)] − H(Zn)

)

. (7)

The capacity achieving input distribution that maximizes
H(Y n) is determined next.

Definition 1: Let W = {0, 1, · · ·2q−1 − 1} and let{Wk},
Wk ∈ W , be a process withn-fold probability distribution

Pr(Wn = wn) =
∑

xn∈Xn

Pr

(

Zn =
wn − (2q − 1)xn

(−1)xn

)

(8)

1Note that the stationary noise{Zk} defined by (5) and (2) is ergodic
when the covariance function of the fading processG̃(t) is asymptotically
vanishing (such as the Clarke covariance function).

where Zn = (wn − (2q − 1)xn)/(−1)xn

denotes the tuple
obtained from component-wise operations, i.e.,(Z1 = (w1 −
(2q − 1)x1)/(−1)x1 , · · · ,Zn = wn − (2q − 1)xn)/(−1)xn).
The probability assignment (8) is valid since

1 =
∑

zn∈Yn

Pr(Zn = zn)

=
∑

wn∈Wn

∑

xn∈Xn

Pr

(

Zn =
wn − (2q − 1)xn

(−1)xn

)

=
∑

wn∈Wn

Pr(Wn = wn).

The process{Wk} is stationary since{Zk} is stationary;
indeed for any integerm > 0, wn ∈ Wn,

Pr(W1+m = w1, · · · , Wn+m = wn)

=
∑

xn∈Xn

Pr

(

Z1+m =
w1 + (2q − 1)x1

(−1)x1
, · · · ,

Zn+m =
wn − (2q − 1)xn

(−1)xn

)

=
∑

xn∈Xn

Pr

(

Z1 =
w1 + (2q − 1)x1

(−1)x1
, · · · ,

Zn =
wn − (2q − 1)xn

(−1)xn

)

= Pr(W1 = w1, · · · , Wn = wn).

Example 1:Let q = 2 and αj = Pr(Zk = j). The
probability distribution ofW1 is given by

(Pr(W1 = 0), Pr(W1 = 1)) = (α0 + α3, α1 + α2).

Let αi,j = Pr(Zk = i, Zk+1 = j). The probability distribution
of W 2 is given by

(Pr(W 2 = 00), Pr(W 2 = 01), Pr(W 2 = 10), Pr(W 2 = 11))

= (α0,0 + α0,3 + α3,0 + α3,3, α0,1 + α0,2 + α3,1 + α3,2,

α1,0 + α1,3 + α2,0 + α2,3, α1,1 + α1,2 + α2,1 + α2,2).

Consider the2n × 2qn channel transition probability matrix
Qn = [P

(n)
NBNDC(y

n|xn)] corresponding ton channel uses, where
each row (resp. column) ofQn is indexed by a sequencexn

(resp.yn). It can be shown thatQn is symmetric [17] since
its columns can be partitioned into2(q−1)n arrays, where each
array is of size2n × 2n with the property that its columns are
permutations of each other and its rows are permutations of
each other [17, p. 94]. This symmetry implies that the channel
capacity is achieved by a uniform input distribution [17, p.94].

Proposition 1: The value ofH(Y n) under a uniform input
distribution overXn = {0, 1}n is given by

max
p(xn)

[H(Y n)] = n + H(Wn). (9)

Proof: We need to calculate

H(Y n) = −
∑

yn∈Yn

Pr(Y n = yn) log2 Pr(Y n = yn) (10)



for a uniform input distribution. In this case

Pr(Y n = yn) =
1

2n

∑

xn∈Xn

Pr

(

Zn =
yn − (2q − 1)xn

(−1)xn

)

. (11)

According to the symmetry ofQn, the probability (11) is the
same for2n distinct values ofyn. Substituting (11) into (10)
and using Definition 1, we have

max
p(xn)

[H(Y n)] = −
∑

wn∈Wn

Pr(Wn = wn) log2

(

Pr(Wn = wn)

2n

)

and hence (9) follows.
Substituting (9) into (7) yields

C(n) = 1 +
1

n
[H(Wn) − H(Zn)]. (12)

Corollary 1: The channel capacity (6) is given by

C = lim
n→∞

C(n)

= 1 + lim
n→∞

1

n
[H(Wn) − H(Zn)] (13)

= 1 + H(W ) −H(Z) (14)

in bits/channel use, whereH(W ) , limn→∞(1/n)H(Wn)
andH(Z) , limn→∞(1/n)H(Zn) denote the entropy rates
of {Wn} and{Zn}, respectively.

In the case of hard-decision demodulation (q = 1), the
entropy H(Wn) = 0 for all n, and the expression for
channel capacity in (14) reduces to the well-known formula
C = 1−H(Z) (e.g., see [5]). We can directly obtain upper and
lower bounds onC using (13). SinceH(Zn)/n is decreasing
in n for a stationary process{Zn}, we have

C ≤ min

{

1, 1 +
1

n
H(Wn) −H(Z)

}

, C̄(n). (15)

Combining (15) with the lower boundC(n) ≤ C yields

C(n) ≤ C ≤ C̄(n).

IV. N ON-BINARY QUEUE-BASED MARKOVIAN NOISE

The binary queue-based channel was recently introduced
in [5] to model a binary channel with a stationary ergodic
binary M ’th-order additive Markov noise via a finite queue.
We herein generalize the binary queue set up of [5] to
produce a tractable non-binary Markovian noise model for
the NBNDC. The non-binary queue-based (QB) noise process
{Zk}∞k=1, Zk ∈ Y, is generated by slightly modifying the two-
parcel procedure in [5]: given that we now operate on balls
with |Y| = 2q different colors (instead of only two colors), we
assume that the second parcel (the urn) contains balls labeled
with symbols in Y satisfying the probability distribution
(ρ0, ρ1, · · · , ρ2q−1); see [5] for a detailed description of the
procedure. The resulting QB noise process is a stationary
ergodic M ’th order Markov source and has only2q + 2
independent parameters (as opposed to a general Markovian
process which would require in the order of2qM number
of parameters): the size of the queue,M , the probability

distribution of the balls in the urn, and correlation parametersε
andα, where0 ≤ ε < 1, α ≥ 0. The state process{Sk}∞k=−∞
of the QB noise, defined bySk , (Zk, Zk−1, · · · , Zk−M+1),
is a homogeneous first-order Markov process with an alphabet
of size 2qM . Let pij denote the conditional probability that
Sk = j given thatSk−1 = i, where i = (i0, · · · , iM−1),
j = (j0, · · · , jM−1),for iℓ, jℓ ∈ Y, ℓ ∈ 0, · · · , M − 1. We let
the rows and columns of the state transition probability matrix,
denoted byP, be indexed by the vectorsi andj, respectively.
The (i, j)th entry of the matrixP = [pij ] is given by

pij =

(

M−2
∑

ℓ=0

δj0,iℓ
+ α δj0,iM−1

)

ε

M − 1 + α
+ (1 − ε)ρj0

if jℓ+1 = iℓ, for ℓ = 0, · · ·M − 2, or otherwisepij = 0, where

δi,j =

{

1, if i = j

0, if i 6= j.

It can be shown that theith component of the state stationary
distribution column vectorΠ = [πi] is given by

πi =

2q−1
∏

ℓ=0

ξℓ−1
∏

m=0

(

(1 − ε)ρℓ + m
ε

M − 1 + α

)

M−1
∏

k=0

(

(1 − ε) + k
ε

M − 1 + α

)

(16)

where
∏−1

k=0(·) = 1 andξℓ =
∑M−1

k=0 δik,ℓ. Thus the QB noise
block probabilityPQB(z

n) , Pr(Zn = zn) is as follows:

• For blocklengthn ≤ M

P
(n)

QB (zn) =

2q−1
∏

ℓ=0

ξ′

ℓ−1
∏

m=0

(

(1 − ε)ρℓ + m
ε

M − 1 + α

)

n−1
∏

k=0

(

(1 − ε) + k
ε

M − 1 + α

)

whereξ′ℓ =
∑n

k=1 δzk,ℓ.

• For blocklengthn ≥ M + 1

P
(n)

QB (zn) =

n
∏

i=M+1

[(

i−1
∑

ℓ=i−M+1

δzi,zℓ
+ αδzi,zi−M

)

× ε

M − 1 + α
+ (1 − ε)ρzi

]

π(z1,··· ,zM) (17)

where the expression forπ(z1,··· ,zM ) is given in (16).

The correlation coefficient for the QB noise is a non-negative
quantity given by

Cor =
E[ZkZk+1] − E[Zk]2

Var(Zk)
=

ε
M−1+α

1 − (M − 2 + α) ε
M−1+α

where Var(Zk) denotes the variance ofZk. We conclude
this section by establishing a closed-form expression for the
entropy rateH(Z) of the QB noise. Letw0, · · · , w2q−1 be
non-negative integers such thatw0 + · · · + w2q−1 = M − 1



and let the probability distributionsΓi, i = 0, · · · , 2q − 1, be
defined as

Γi =

(

w0 ε

M − 1 + α
+ (1 − ε)ρ0, · · · ,

(wi + α)ε

M − 1 + α
+ (1 − ε)ρi,

· · · ,
w2q−1 ε

M − 1 + α
+ (1 − ε)ρ2q−1

)

.

Then

H(Z) =

M−1
∑

w0

· · ·
M−1
∑

w2q
−1=0

(

M − 1

w0, w1, · · · , w2q−1

)

×
[

L(w0+1,w1,··· ,w2q
−1)H(Γ0) + L(w0,w1+1,··· ,w2q

−1)H(Γ1)

+ · · · + L(w0,w1,··· ,w2q
−1+1)H(Γ2q−1)

]

where

L(w0,w1,··· ,w2q
−1) =

2q−1
∏

ℓ=0

(

wℓ−1
∏

m=0

(1 − ε)ρℓ + m
ε

M − 1 + α

)

M−1
∏

k=0

(

(1 − ε) + k
ε

M − 1 + α

)

.

V. CAPACITY NUMERICAL STUDY

In this section, we present numerical results to examine the
behavior of the channel capacity of the NBNDC with QB noise
in terms of the demodulator resolutionq, noise memory order
M and correlation coefficient Cor.

Since the noise process is described in terms of2q + 2
independent parameters:(ρ0, · · · , ρ2q−1), ε, α andM , we fix
the values of(ρ0, · · · , ρ2q−1) so that we can assess the effects
of α, M , andε (or equivalently Cor) on the channel capacity.
As the underlying physical channel is the time-correlated
Rayleigh fading channel described in Section II.B, we obtain
the values of(ρ0, · · · , ρ2q−1) by settingρj = P

(1)
DFC (j) for

j = 0, · · · , 2q − 1, whereP
(1)

DFC (j) is given by (3) in terms of
the quantization parametersδ andq and the SNRγ.2

We first calculate the lower bound for the capacityC(n)

using (12) and (17) forn as large as 11. One objective is to
determine the optimal value of the quantization stepδ (in the
sense of maximizing channel capacity) under different channel
conditions. Fig. 1 showsC(11) versusδ for q = 2 and SNR
γ = 5 dB. For this figure, we selected three QB noise models
with varying levels of correlation and memory. The models are
QB1 (M = 2, α = 1.0, Cor = 0.3), QB2 (M = 2, α = 0.5,
Cor = 0.5) and QB3 (M = 4, α = 2.0, Cor = 0.5). The
capacity of the DMC (binary-input2q-output) with the same
values ofq, δ, γ is also shown as a reference. Note that the
DMC can be regarded as the channel resulting when perfect
interleaving is employed on the NBNDC (withε = 0 or Cor=
0). We observe from the curves that capacity is maximized for

2Note that we herein choose the QB noise parameters so that only the first-
order statistics of the NBNDC and the underlying fading channel are matched
“

i.e., ρj = P
(1)
DFC(j)

”

. As stated in the conclusions, a systematic fitting of
the QB noise parameters to the DFC (conducted, as in [7], by minimizing the
Kullback-Leibler divergence rate between the DFC and the NBNDC noise
sources will be undertaken in future work.

approximately the same value ofδ for all models. Thus, the
values ofδ tabulated in [12] for the DMC can also be used
for the NBNDC with QB noise.

The effects of the parametersM andα on the capacity of
the NBNDC with QB noise are next illustrated in Fig. 2 for
quantization parametersq = 2 andδ = 0.44 and SNRγ = 5
dB. The following properties were proved for the channel with
binary QB noise [5]: (i) its capacity strictly increases with α
for fixedM ≥ 2, distribution(ρ0, ρ1) and Cor; (ii) its capacity
increases withM , for fixed (ρ0, ρ1) and Cor whenα ≤ 1. The
curves in Fig. 2 numerically point out that these two capacity
properties are also valid for the NBNDC with2q-ary QB noise,
where property (ii) holds forα less than a certain threshold.

Fig. 3 presents upper and lower capacity bounds versus
Cor for M = 2, α = 0.5 and q = 1, 2, 3 with γ = 5 dB,
and δ = 0.44 when q = 2, and δ = 0.24 when q = 3.
For comparison purposes, we also provide the capacity of
the memoryless fading channel with unquantized output and
either without channel state information at both the transmitter
and the receiver (labeled DMC-noCSI) [19] or with channel
state information at only the receiver (labeled DMC-CSI) [21].
These capacities represent the largest achievable rates under
perfect interleaving for an unquantized Rayleigh fading chan-
nel without or with channel state information, respectively.3

We remark from the figure that quantization resolutions of only
2 or 3 bits produce important capacity gains for our channel
with memory relative to the hard-quantized (q = 1) and fully
interleaved (Cor= 0) channels. For example, when Cor= 0.3,
the capacity gain ofC(11) (q = 3) over C̄(11) (q = 1) is
18.5%; it is 26.5% when we compareC(11) (q = 3) with
the BSC (Cor= 0, q = 1). Furthermore, for each value ofq,
there is a minimal value of noise correlation Cor for which
the capacity of the NBNDC with QB noise is larger than that
of the corresponding unquantized memoryless channel. These
capacity gains indicate that exploiting the noise memory is
more worthwhile than ignoring it via interleaving, even with
low-precision quantization (small values ofq).

VI. CONCLUSIONS

We introduced a binary-input2q-ary output discrete channel
(denoted by NBNDC) to properly represent both the statistical
memory and the soft-decision information of BPSK-modulated
time-correlated Rayleigh fading channels when they are coher-
ently demodulated via aq-bit output quantizer. The NBNDC’s
output is explicitly described in terms of its binary input and
a 2q-ary noise. This channel reduces to the familiar binary
channel with modulo-2 additive noise whenq = 1 (i.e., under
hard-decision demodulation). We derived a simple formula (as
well as computable upper and lower bounds) for its capacity
under stationary ergodic noise. We also generalized the binary
queue-based (QB) noise process introduced in [5] to obtain
a 2q-ary QB stationary ergodicM th order Markovian noise
model that is mathematically tractable (being fully described

3The capacity of the DMCs (corresponding to the case Cor= 0) with
increasing values ofq converges to the value indicated by DMC-noCSI when
q → ∞ andδ → 0 [19].



in terms of 2q + 2 parameters as opposed to2qM parame-
ters needed for a general non-binaryM ’th order Markovian
source). We established closed-form analytical expressions for
the statistics and the entropy rate of the2q-ary QB noise
process in terms of its2q + 2 parameters. Finally, we carried
a numerical study for the capacity of our NBNDC with QB
noise, revealing substantial capacity gains over the casesof
perfect channel interleaving and hard-decision demodulation
via the use of only 2 or 3-bit output quantization.

In future work, we plan to fit the discrete soft-quantized
correlated fading channel via the NBNDC with QB noise and
validate the modeling in terms of codeword error probability
under error correcting codes. In light of the capacity gains
shown in Section V, another interesting direction is the con-
struction of practical high-performing codes that exploitboth
the channel’s noise memory and soft-decision information.
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