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Abstract—We investigate the problem of guessing a discrete
random variable Y under a privacy constraint dictated by
another correlated discrete random variable X, where both
guessing efficiency and privacy are assessed in terms of
the probability of correct guessing. We define 7 (Pxy,¢)
as the maximum probability of correctly guessing Y given
an auxiliary random variable 7, where the maximization is
taken over all P2y ensuring that the probability of correctly
guessing X given Z does not exceed c. We show that the
map ¢ — h(Pxy,e) is strictly increasing, concave, and
piecewise linear, which allows us to derive a closed form
expression for % (Pxy,c) when X and Y are connected
via a binary-input binary-output channel. For {(X;,Y;)}iL,
being pairs of independent and identically distributed binary
random vectors, we similarly define i, (Pxny~,c) under the
assumption that Z" is also a binary vector. Then we obtain
a closed form expression for h, (Pxny~,c) for sufficiently
large, but nontrivial values of <.

I. INTRODUCTION AND PRELIMINARIES

Given private information, represented by a random
variable X, non-private observable information, say Y, is
generated via a fixed channel Py |x. Consider two com-
municating agents Alice and Bob, where Alice observes Y
and wishes to disclose it to Bob as accurately as possible
in order to receive a payoff, but in such a way that X is
kept almost private from him. Given the joint distribution
Pxy, Alice chooses a random mapping P}y, a so-called
privacy filter, to generate a new random variable 7, called
the displayed data, such that Bob can guess Y from Z with
as small error probability as possible while Z cannot be
used to efficiently guess X.

The tradeoff between utility and privacy was addressed
from an information-theoretic viewpoint in [1]-[5], where
both utility and privacy were measured in terms of
information-theoretic quantities. In particular, in [2] both
utility and privacy were measured in terms of the mutual
information I. Specifically, the so-called rate-privacy func-
tion g(Pxy,c) was defined as the maximum of I(Y; Z)
over all Pyy such that I(X;Z) < e. In the most
stringent privacy setting € = 0, called perfect privacy,
it was shown that g(Pxy,0) > 0 if and only if X is
weakly independent of Y, that is, if the set of vectors
{Pxy(:ly) : y € Y} is linearly dependent. In [4], an
equivalent result was obtained in terms of the singular
values of the operator f — E[f(X)|Y]. Although a con-
nection between this information-theoretic privacy measure
and a coding theorem is established in [2] and [6], the
use of mutual information as a privacy measure is not
satisfactorily motivated in an operational sense. To find
a measure of privacy with a clear operational meaning, in
this paper we take an estimation-theoretic approach and
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define both privacy and utility measures in terms of the
probability of guessing correctly.

Given discrete random variables U € U and V € V, the
probability of correctly guessing U given V is defined as

P.(U|V) = max Pr(U =g(V)) = g}%lgg Pyy (u,v),
where the first maximum is taken over all functions
g:V —U. It is easy to show that P. satisfies the data
processing inequality, i.e., P.(U|W) < P.(U|V) for U, V
and W which form the Markov chain U —o— V —— W.
Thus, we measure privacy in terms of P.(X|Z) which
quantifies the advantage of an adversary observing Z in
guessing X in a single shot attempt.

A similar operational measure of privacy was recently
proposed in [7], where Pz x is said to be e-private if
log P;(UIIJ? < ¢ for all auxiliary random variables U satis-
fying U ~o— X —— Z. This requirement guarantees that
no randomized function of X can be efficiently estimated
from Z, which leads to a strong privacy guarantee. In [8],
maximal correlation [9] was proposed as another measure
of privacy. Operational interpretations corresponding to this
privacy measure are given in [10] for the discrete case and
in [11] for a continuous setup.

To quantify the conflict between utility and privacy, we
define the privacy-aware guessing function f as

A (Pxy,¢€) = P.(Y|Z). (1)

sup
Pyly:X—o—Y ——17,

Pc(X|Z)<e
Due to the data processing inequality, we can restrict
the privacy threshold ¢ to the interval [P.(X), P.(X]|Y)],
where P.(X) is the probability of correctly guessing X in
the absence of any side information. For ¢ close to P.(X),
the privacy guarantee P.(X|Z) < ¢ intuitively means that
it is nearly as hard to guess X observing Z as it is without
observing Z.

We derive functional properties of the map ¢ —
7 (Pxy,€). In particular, we show that it is strictly in-
creasing, concave, and piecewise linear. Piecewise linearity
(Theorem 1), which is the most important and technically
difficult result in the paper, allows us to derive a tight upper
bound on A (Pxy,e¢) for general Pxy. As a consequence
of concavity, we derive a closed form expression for
7 (Pxy,¢€) for any € € [P(X),Pc(X]|Y)] when X and
Y are both binary. It is shown (Theorem 2) that either the
Z-channel or the reverse Z-channel achieves o (Pxy,¢€) in
this case depending on the backward channel.

We also consider the vector case for a pair of binary
random vectors (X™,Y™) under an additional constraint
that Z™ is a binary random vector. Here, Z™ is revealed
publicly and the goal is to guess Y™ under the privacy
constraint P.(X™|Z™) < &™. This model can be viewed
as a privacy-constrained version of the correlation distil-



lation problem studied in [12]. Suppose Alice and Bob
respectively observe Y™ and Z", where {(Y;, Z;)}", is
independent and identically distributed (i.i.d.) according
to the joint distribution Py 7, and assume that they are
to design non-constant Boolean functions f and g such
that Pr(f(Y™) = g(Z™)) is maximized. A dimension-free
upper bound for this probability was given in [12]. Now
suppose Py z is not given and Alice is to design Pyz)y
(for a fixed Y-marginal) that maximizes P.(f(Y™)|Z")
for a given function f while P.(X"|Z™) < ™. We show
(Theorem 3) that if {(X,;,Y;)}? is ii.d. according to
Pxy with |X| = [Y| = 2 and Py |x is a binary sym-
metric channel, then the maximum of P.(Y™|Z™) under
the privacy constraint P.(X"|Z") < €™ admits a closed
form expression for sufficiently large but nontrivial €. This
then provides a lower bound for the privacy-constrained
correlation distillation problem due to the trivial fact that
P(f(Y™)|Z™) > P(Y™Z™) for any function f.

We omit the proof of most of the results due to space
limitations. The proofs are available in [13].

II. SCALAR CASE

Suppose X and Y are discrete random variables with fi-
nite alphabets X = {1,...,M} and Y = {1,..., N}, res-
pectively, and with joint distribution P = { Pxy (x,y),x €
X,y € Y}, whose marginals over X and ) are
(p1,...,pm) and (gi,...,qn), respectively. Let X re-
present the private data and Y represent a non-private mea-
surement of X, which, upon passing it via a privacy filter
Pzy, is publicly displayed as Z. In order to quantify the
conflict between privacy with respect to X and utility with
respect to Y, the so-called rate-privacy function g(P,¢)
was introduced in [2]. In what follows, we use Arimoto’s
mutual information to generalize this definition.

A. The Utility-Privacy Function of Order (v, 11)

Let H,(X) and H)(X|Z) denote respectively the Rényi
entropy of order v and Arimoto’s conditional entropy of
order v [14], defined for v > 1 as

1 14
Hy(X) = 1—log (Z Px<x>> :
reX
and
1/v
v 14
HXNX|Z) = 1_Vlog Z ZPXZ(x,z)]

ze€Z lxeX

We define (by continuity) H(X) = H(X), HNX|Z) =
H(X|Z), Ho(X) = —logP.(X), and HA(X|Z) =
—logP(X|Z). Arimoto’s mutual information of order
v > 1 is defined as (see, e.g., [14])

INX; 2) = H,(X) — HA(X|2).
Thus INX; Z) = I[(X; Z).
Definition 1. For a given joint distribution P and a pair
(v, ), v, € [1,00], the utility-privacy function of order
(v, p) is

g (P,e) = max  IN(Y;2),

Pzy €2v(P,e) "

where
DY(P,e) = {Pgy : X =Y —— Z,I}X;Z) < ¢}.

Note that @¥ (P, ¢) cannot be empty since all channels
Pzy with Z independent of X satisfy INX;Z) =0, and
so they belong to DY (P, ¢) for any € > 0. Using a similar
technique as in [15], one can show that £ — g(**) (P, ¢)
is strictly increasing for any v, > 1. It is also worth
mentioning that an application of Minkowski’s inequality
implies that the map Pzy — exp{ “UIA(Y;Z) ¢ is
convex for v > 1, and thus the maximum in the definition
of g*)(P,¢) is achieved at the boundary of the feasible
set where I)(X;Z) = e. We denote g(®>)(P,¢) and
gD (P, ¢) respectively by g(P,e) and g(P,¢). Since
I.(Y;Z) = log Plg(c}(/%), g (P,e) can be equivalently
described as the smallest I' > 0 such that P.(Y]Z) <
Pc(Y)2F, for every Py satisfying Po(X|Z) < Pc(X)25.
We note that for small e the condition I (X;Z) < ¢
intuitively means that it is nearly as hard for an adversary
observing Z to predict X as it is without Z. Therefore,
9°°(P,0) quantifies the efficiency of guessing Y from Z
such that P.(X|Z) = P.(X). It is thus interesting to obtain
a necessary and sufficient condition for P under which
g>°(P,0) > 0. We obtain such a condition for the special
case of binary X and Y in the next section.

In general, the map v +— I(X;Z) is not monotonic'
and hence Py might belong to 9"(P,e) but not to
DH(P,e) for ;o < v. Nevertheless, the following lemma
allows us to obtain upper and lower bounds for g(*-*) (P, -)
in terms of g*°(P, ).

Lemma 1. Let (X,Y) be a pair of random variables
having joint distribution P and v, € (1,00). Then

g (Poe) < g™ (Pw(vie)) + Hu(Y) — Hoo(Y),

where (v, €) = Y=Le+ L Hoo(X). Furthermore, we have
fore > H,(X) — Hy(X) that

1
) (p oy > P o _
9 €)= , PV, €
(P.) 2 Lg™(P o) ~ =
= £

19 Heo(Y),

where p(v,€) :

This lemma shows that the family of functions
g" (P, ¢) for v, > 1 can be bounded from above and
below by ¢°°(P,d), where § depends on ¢ and v. The
case ¥ = p = 1 is studied in [2]. As a result, in the
following section we only focus on g*°(P,¢). It turns out
that it is easier to study % (P, ), defined in (1), instead. It
is straightforward to verify that

(P, 2P (X))

P(Y)
and hence all the results for % (P,¢) can be translated to
results for g°° (P, ). In particular, perfect privacy g>° (P, 0)
corresponds to % (P, P.(X)). Notice that A (P,P.(X)) >
P.(Y) is equivalent to ¢g*°(P,0) > 0. As opposed to
I(X;Z) with 1 < v < o0, I(X;Z) = 0 does not

g (P,e) = log

't is relatively easy to show that if X is uniformly distributed, then
IX(X; Z) coincides with Sibson’s mutual information of order v [14]
which is known to be increasing in v [16, Theorem 4]. Consequently,
v IA(X; Z) is increasing over (1, 00] if X is uniformly distributed.
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Fig. 1. Typical graph of £ (¢). The dotted line represents the chord
connecting (p, A (p)) and (Pc(X|Y), 1) which can be viewed as
a trivial lower bound for #(-).

necessarily imply the independence of X and Z (unless X
is uniformly distributed). In particular, the weak indepen-
dence? argument from [2, Lemma 10] (see also [4]) cannot
be applied for g°°. For the sake of brevity, we simply write
f(e) for (P, e) when there is no risk of confusion.

B. Privacy-Aware Guessing Function

It is clear from (1) that P(Y) < #(e) < 1, and
f(e) = 1if and only if € > P.(X|Y). A direct application
of the Support Lemma [17, Lemma 15.4] shows that it
is enough to consider random variables Z supported on
Z = {1,...,N + 1}. Thus, the privacy filter Py can
be realized by an N x (N + 1) stochastic matrix F.
Let F be the set of all such matrices. Then both utility
UP,F) =P(Y|Z) and privacy P(P,F) = P.(X|Z) are
functions of F' € F and we can express % () as

h(e) = max UP,F).
P(P,e)<e
It can be verified that F' — P (P, F') and F' — U(P, F’) are

continuous convex functions over JF. It can also be shown
that the set

={(P(P, F),

is convex. Furthermore, since the graph of #(e) is the
upper boundary of R, we conclude that ¢ — #A(e) is
concave, and so it is strictly increasing and continuous
on [Pc(X),P.(X|Y)]. As a consequence, for every ¢ €
[Pc(X),Pc(X|Y)] there exists G such that P(P,G) =
and U(P,G) = #f(e). We call such a privacy filter G
optimal at €.

The following theorem reveals that 7(-) is a piecewise
linear function, as depicted in Fig. 1.

UP,F)): FeF}

Theorem 1. The function f : [Pc(X),P(X|Y)] — R is
piecewise linear, i.e., there exist K > 1 and thresholds
P(X)=¢0<e1<...<erg =PX|Y) such that #o is
linear on [g;_1, ;) for all1 < i< K.

Consider the map ’H . F — [0,1] x [0,1]
given by H(P,F) = (P(P,F),U(P,F)). Let D =

2Using a similar proof as in [2], it can be shown that g(*>#) (P, 0) > 0
for v, i € [1,00) if and only if X is weakly independent of Y.

{D € Mnxn+1: ||D| =1}, where || - || denotes the Eu-
clidean norm on My, (n41), the set of real matrices of
size N x (N 4+ 1). For G € F define

D(G)={D eD:G+1tD € F for some ¢t > 0}.

The proof of the previous theorem is heavily based on the
following technical, yet intuitive, result: for every G € F,
there exists § > 0 such that # is linear on [G,G + 0D]
for every D € D(Q).

The proof technique allows us to derive the slope of
A on [g;_1,&;], given the family of optimal filters at a
single point € € [g;_1,¢;]. For example, since the family
of optimal filters at ¢ = P.(X]|Y) is easily obtainable,
it is then possible to compute % on the last interval. In
the binary case, this observation and the concavity of %
allow us to show that 7 is linear on its entire domain
[Pe(X), Pe(X]Y)]

C. Binary Case

Assume now that X and Y are both binary. Let
BIBO(«, 3) denote a binary input binary output channel
from X to Y with Py x(-|0) = (@,a) and Py x(:[1) =
(B,53), where # = 1 — x for € [0,1]. Notice that
if X ~ Bernoulli(p) with p € [,1), then Pc(X) = p
and hence % (p) corresponds to the maximum of P.(Y|Z)
under perfect privacy P.(X|Z) = p. Furthermore, if
Py|x = BIBO(«, 3) with o, 3 € [0 ,3), then we have
P.(X|Y) = max{ap, Bp} + Bp. Notice that if ap < fp,
then P.(X|Y) = P.(X) = p.

The binary symmetric channel with crossover probabil-
ity «, denoted by BSC(«), and also the Z-channel with
crossover probability (3, denoted by Z(3), are both exam-
ples of BIBO(«, ), corresponding to o« = 8 and « = 0,
respectively. Let ¢ := Pr(Y = 1). We say that perfect
privacy yields a non-trivial utility if P.(Y|Z) > P.(Y') for
some Z such that P.(X|Z) = P.(X), or equivalently, if
#(p) > max{q, q}. The following lemma determines 7% (p)
in the non-trivial case ap > [p.

Lemma 2. Let X ~ Bernoulli(p) with p € [%

5. 1) and
Py x = BIBO(a, B) with a, B € [0, %) such that ap > Bp.

Then B
1-— if aap® < BBp?,
Ap) = { Cq if P Bp
q otherwise,
where ¢ = ap + Bp and
a
(= 2200 @)
Bp —ap’

Notice that 1 — (¢ > ¢ if and only if ( < 1, which
occurs if and only if p € (%, 1). Also, it is straightforward
to show that 1 — (g > ¢ if and only if aap?® < 5p?. In
particular, we have the following necessary and sufficient
condition for non-trivial utility under perfect privacy.

Corollary 1. Let X ~ Bernoulli(p) with p € [3,1) and
Pyx = BIBO(a, ) with a,3 € [0 ,é) such that ap >

Bp. Then g (P, 0) > 0 if and only if aap® < BPp* and
pe(3.1).

Remark that the condition a@p? < BBp* can be equiv-
alently written as

Px 1y (0]1) Pxy (0[0) < Pxy (1]0) Px |y (1]1).
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Fig. 2. The optimal privacy filters for Py|x = BIBO(«, §).

The following theorem establishes the linear behavior of
h when Py|x = BIBO(«, 8).

Theorem 2. Let X ~ Bernoulli(p) for p € [%,1) and
Py|x = BIBO(«, B) with o, 8 € [0, 3). If &p > fBp, then
for any € € [p,ap + Bpl, we have the following:
o If aap® < Bp?, then
h(e) =1 - ((e)g,
where ¢ = ap + p and
ap+pp—ce
((e) = ———.
Bp—ap
Furthermore, %.(¢) is achieved by the Z-channel

Z(¢(e)) (as shown in Fig. 2).
o If aap® > BBp?, then

fu(e) =1—-¢(e)g,

3)

where 3
pe ap + pp — e
¢ (5) =
ap — Pp
Moreover, Tu(e) is achieved by a reverse Z-channel
with crossover probability ((g) (as shown in Fig. 2).

Proof Sketch. Recall that € — #(g) is concave, and thus
its graph lies above the segment connecting (p, f(p)) to
(P(X]Y),1). In particular,

R(e) = A(p) + (= - p) [Pl(;'f;@p} .

By Lemma 2, the above inequality becomes

q(c — p)
f(e) > h(p)+ Bp — apl{(x&ﬁ2<,3[§p2}
a(c —p)
tap gy Hearzeiy @)

Since ¢ — h(e) is piecewise linear, its right derivative
exists at ¢ = P.(X|Y"). Using the geometric properties of
‘H used to prove Theorem 1, we can show that

T 4

Bp — ap {aap?<pBp?}
+ﬁ1{aaﬁ2zm§p2}’
which is equal to the slope of the chord connecting
(p,7(p)) to (P.(X]Y),1) described in (4). The concavity
of A (-) thus implies that the inequality (4) is indeed

equality. ]

R (PU(XIY)) =

Under the hypotheses of the previous theorem, for ev-
ery £ € [Pc(X),P(X|Y)] there exists a Z-channel that
achieves 7 (g). It can be shown that Z-channel is the only
binary filter with this property. It is also worth mentioning

that even if Py |x is symmetric (i.e., « = (3), the optimal
filter cannot be symmetric, unless X is uniform, in which
case BSC(0.5¢(g)) is also optimal.

III. I.I.D. BINARY SYMMETRIC VECTOR CASE

We next study privacy aware guessing for a pair of
binary random vectors (X™,Y™) with X" Y™ € {0,1}".
Recall that in this case it is sufficient to consider auxiliary
random variables having supports of cardinality 2" + 1.
However, this condition may be practically inconvenient.
Moreover, in the scalar binary case examined in the last
section we observed that a binary Z was sufficient to
achieve 7(¢). Hence, it is natural to require the pri-
vacy filters to produce also binary random vectors, i.e.,
Z™ € {0,1}™, which leads to the following definition.
Recall that the data processing inequality implies that
Po(X™) < Po(X™Z™) < P(X™|Y™) and hence we can
assume P (X") <e™ < P (X™|Y™).

Definition 2. For a given pair of binary ran-
dom vectors (X", Y™), we define h,(ec) for ¢ €
[P (X™), P ™M(X™|Y™)), as

h, () == max PY/™(Y"|Z"), 5)

where the maximum is taken over all (not necessarily
memoryless) channels Pgn|yn» such that Z" € {0,1}",
X" ——Y" —— Z", and P(X™|Z") < e™

Note that this definition does not make any assumption
about the privacy filters Pzn |y~ except that Z™ € {0,1}".
From an implementation point of view, the simplest privacy
filter is a memoryless one such that Z;, is a noisy version
of Y for k = 1,...,n. More precisely, we are interested
in a single BIBO channel Pz)y which, given Y}, generates
Zj, according to

Pznjyn (2"y") = H Pzry (2k|yk)-
k=1
Now, let hl () be defined as max PJZ/"(Y”|Z"), where
the maximum is taken over such memoryless privacy filters
satisfying P.(X™|Z™) < ™. Let @ denote mod 2 addition.
In what follows, we study h,, and hin for the following
setup:
a) Xi,...,X, are ii.d. Bernoulli(p) random variables
with p > 1
b) Yy = Xi @V for k =1,...,n, where V1,...,V,
are i.i.d. Bernoulli(c) random variables independent
of X", such that a < 1.
We first determine A () for this model and show that (as
expected) hl (¢) is independent of n. According to this
model, P.(X™) = p™ and P.(X"|Y") = a", and thus
p<e<La.

Proposition 1. If (X", Y™) satisfies a) and b) with p €
[1,1) and a € [0, ) such that & > p, then
hi(e) = u(e) =1 ((e)g,
for all £ € [p,a], where ((e) is given in (3) and q =
ap + ap.
Note that the proposition reduces to Theorem 2 for
n = 1. However, for n > 2, we have h! (¢) < h, () <
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Fig. 3. The optimal privacy filter for A, (c) for € € [eL, &), where
C2(¢) is defined in (6).

A(Pxnyn,e), as implied by the following theorem. A
channel W is said to be a 2"-ary Z-channel, denoted by
Z, (%), if the input and output alphabets are {0,1}" and
W(ala) = 1 for a # 1, W(0|1) = ~, and W(1]1) = 7,
where 0 = (0,0,...,0) and 1 = (1,1,...,1).

Theorem 3. Assume that (X™,Y™") satisfies a) and b) with
p € [3,1) and a € [0,%) such that & > p. Then, there
exists p < gL < a such that
by (e) =1 —=Cale)q",
for € € [eL, @], where ¢ = ap + ap and
a’ﬂ _ gn
Cnle) = =———>
&= G (epr
Moreover, the channel Z,,((,(€)) achieves h,(c) in this
interval (see Fig. 3 for the case n = 2).

(6)

The memoryless privacy filter assumed in hi (g) is
simple to implement. However, it is clear from Theorem 3
that this simple filter is not optimal even when (X", Y™)
is ii.d. since h, () is a function of n, while Al (¢) is
not. The following corollary bounds the loss resulting from
using a simple memoryless filter instead of an optimal one
for ¢ € [eL,a]. Clearly, for n = 1, there is no gap as

hy(e) = hi(e).

Corollary 2. Ler (X™,Y™) satisfy a) and b) with p €
[%,1) and o € [0,%) such that & > p. If p > % and

'3
a > 0, then for € € [e, &] and sufficiently large n
hy(€) =y (e) = (@ —e)[@(1) —@(n)],  (T)
where I
d(n) = 4

(ap)" — (ap)™
If p= %, then
i ; e
; < <h =
() < B (6) <L) + ®
foreveryn >1and ¢ € [eL, a].

Since ®(n) | 0 as n — oo, (7) implies that, as expected,
the gap between the performance of the optimal privacy
filter and the optimal memoryless privacy filter increases
as n increases. This observation is numerically illustrated
in Fig. 4, where h, (¢) is plotted as a function of ¢ for
n = 2 and n = 10. Moreover, (8) implies that when p= %
and « is small, then A, () can be approximated by h!, (¢).

08 T T |
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EL a

™

Fig. 4. The graphs of h,, (solid curve), h, (dashed curve), and
h' (dotted line) given in Theorem 3 and Proposition 1 for i.i.d.
(X™,Y™) with X ~ Bernoulli(0.6) and Py |x = BSC(0.2).

Thus, we can approximate the optimal filter Z,,((, (¢)) with
a simple memoryless filter given by Z) = Y, & W}, where
Wi, ..., W, are i.i.d. Bernoulli(0.5¢(£)) random variables
that are independent of (X™,Y™).
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