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Abstra
t

A model for a binary additive noise 
ommuni
ation 
hannel with memory is

introdu
ed. The 
hannel noise pro
ess, whi
h is generated a

ording to a ball

sampling me
hanism involving a queue of �nite length M , is a stationary ergodi


M 'th order Markov sour
e. The 
hannel properties are analyzed and several of its

statisti
al and information theoreti
al quantities (e.g., blo
k transition distribution,

auto
orrelation fun
tion, 
apa
ity) are derived in 
lose form. The 
apa
ity of the

queue-based 
hannel is also analyti
ally and numeri
ally 
ompared for a variety

of 
hannel 
onditions with the 
apa
ity of other binary models, su
h as the �nite-

memory 
ontagion 
hannel, the Gilbert-Elliott 
hannel and the Frit
hman 
hannel.
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1 Introdu
tion

Most real world 
ommuni
ation 
hannels are known to experien
e fading and noise dis-

tortions in a bursty fashion. In order to design e�e
tive 
ommuni
ation systems for su
h


hannels, it is 
riti
al to fully understand their behavior. This is a
hieved via 
hannel

modeling, where the primary obje
tive is to provide a model whose properties are both


omplex enough to 
losely 
apture the real 
hannel statisti
al 
hara
teristi
s, and simple

enough to allow mathemati
ally tra
table system analysis.

The most 
ommonly used models to represent the dis
retized version (under hard-

de
ision demodulation) of binary-input fading 
hannels with memory are the Gilbert-

Elliott 
hannel (GEC) [4, 2℄ and the Frit
hman 
hannel (FC) [3℄. These models, whi
h

have been partly adopted for histori
al reasons (as they were introdu
ed in the 1960s),

are des
ribed by binary additive error sour
es generated via �nite-state hidden Markov

models (HMMs)

1

. Due to their HMM stru
ture, su
h 
hannels are often diÆ
ult to

mathemati
ally analyze (parti
ularly when in
orporated within an overall sour
e and/or


hannel 
oded system) sin
e they do not admit exa
t 
losed-form expressions for their

�
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A des
ription of other lesser known, but related, �nite or in�nite state HMM based 
hannel models

is provided in [10℄.



blo
k transition distribution and 
apa
ity. In [1, Se
tion VI℄, Alajaji and Fuja proposed a

simple binary additive 
hannel with memory, referred to as the �nite memory 
ontagion


hannel (FMCC), where the noise pro
ess is generated via a �nite-memory version of

Polya's 
ontagion urn s
heme [9℄. The resulting 
hannel has a stationary ergodi
 M 'th

order Markov noise sour
e and is fully des
ribed by only three parameters. Furthermore,

unlike the GEC and FC models, it admits single-letter analyti
al expressions for its

blo
k transition distribution and 
apa
ity, whi
h is an attra
tive feature for mathemati
al

analysis. This model has re
ently been adopted in several joint sour
e-
hannel 
oding

studies (e.g., [5, 11℄) where the 
hannel statisti
s are in
orporated into the system design

in order to fully exploit the 
hannel 
apa
ity (whi
h is higher than the 
apa
ity of the

traditionally used equivalent memoryless 
hannel a
hieved via ideal interleaving).

In this work, we introdu
e a new binary additive noise 
hannel with memory based

on a �nite queue of length M . The 
hannel model, of whi
h a simpli�ed version was

studied in [12℄, has also an M 'th order Markov noise sour
e that is fully 
hara
terized

by four parameters, making it more sophisti
ated than the FMMC for 
hannel modeling

(as it has an additional degree of freedom) while remaining mathemati
ally tra
table.

Indeed, it 
an be shown that the FMMC is a spe
ial 
ase of our proposed queue-based


hannel (QBC) under identi
al 
hannel 
onditions (see Se
tion 3). It is also important

to point out that in a re
ent work [7, 8℄, Pimentel et. al. showed (numeri
ally) that the


lass of binary 
hannel models with additiveM 'th order Markov noise (to whi
h both the

QBC and FMMC models belong) is a good approximation

2

, in terms of auto
orrelation

fun
tion and variational distan
e, to the family of hard-de
ision frequen
y-shift keying

demodulated 
orrelated Rayleigh and Ri
ian fading 
hannels for a broad range of fading

environments.

The rest of this paper is organized as follows. In Se
tion 2, we investigate the statis-

ti
al properties of the QBC model and derive its stationary distribution, blo
k transition

probability, 
apa
ity and auto
orrelation fun
tion. In Se
tion 3, the QBC is 
ompared

analyti
ally, in terms of 
apa
ity, with the FMCC and a parti
ular 
lass of the Frit
hman


hannel for the same bit error rate (BER), 
orrelation 
oeÆ
ient and memory order M .

Finally, numeri
al results and dis
ussions are presented in Se
tion 4.

2 Queue-Based Channel with Memory

We �rst present the QBC model des
ribed by: Y

n

= X

n

� E

n

, for n = 1; 2; 3; � � �, where

the random variables X

n

, E

n

, and Y

n

are, respe
tively, the nth input, noise, and output

of the 
hannel, and where � denotes addition modulo 2. It is assumed that the input

and error sequen
es are independent from ea
h other. The noise pro
ess is generated

a

ording to the following me
hanism. Consider the following two par
els.

� Par
el 1 is a queue of lengthM , that 
ontains initiallyM balls, as shown in Fig. 1.

-

A

n1

A

n2

A

n3

� � �

A

nM

-

Figure 1: A queue of length M .

2

This 
lass of 
hannels is also shown to be a better approximation than the GEC model, parti
ularly

under Ri
ian fading.



The random variables A

nk

(n is a time index referring to the nth experiment),

k = 1; 2; � � � ;M , represent the 
olor of the ball in the 
orresponding 
ell of the

queue at time n:

A

nk

=

�

1; if the kth 
ell 
ontains a red ball,

0; if the kth 
ell 
ontains a bla
k ball:

� Par
el 2 is an urn that 
ontains a very large number of balls where the proportion

of bla
k balls is 1� p and the proportion of red balls is p, where p 2 (0; 1); usually

p� 1=2.

We assume that the probability of sele
ting par
el 1 (the queue) is ", while the probability

of sele
ting par
el 2 (the urn) is 1� " and " 2 (0; 1). The error pro
ess fE

n

g

1

n=1

is gener-

ated a

ording to the following pro
edure. By 
ipping a biased 
oin (with Pr(Head)="),

we sele
t one of the two par
els (sele
t the queue if Heads and the urn if Tails). If par-


el 2 (the urn) is sele
ted, a pointer randomly points at a ball, and identi�es its 
olor.

If par
el 1 (the queue) is sele
ted, the pro
edure is determined by the length of the

queue. If M � 2, a pointer points at the ball in 
ell k with probability 1=(M � 1 + �),

for k = 1; 2; � � � ;M � 1 and � � 0, and points at the ball in 
ell M with probability

�=(M � 1+�), and identi�es its 
olor. If M = 1, a pointer points at the ball in the only


ell of the queue with probability 1; i.e., � = 1.

� If the sele
ted ball is red, we introdu
e a red ball in 
ell 1 of the queue, pushing

the last ball in 
ell M out.

� If the sele
ted ball is bla
k, we then introdu
e a bla
k ball in 
ell 1 of the queue,

pushing the last ball in 
ell M out.

The error pro
ess fE

n

g

1

n=1

is then modeled as follows:

E

n

=

�

1; if the nth experiment points at a red ball,

0; if the nth experiment points at a bla
k ball:

We de�ne the state of the 
hannel to be S

n

4

=(A

n1

; A

n2

; � � � ; A

nM

); the binary M�tuple

in the queue after the nth experiment is 
ompleted. Note that, in terms of the error

pro
ess, the 
hannel state at time n 
an be written as S

n

= (E

n

; E

n�1

; � � � ; E

n�M+1

), for

n �M .

2.1 Properties of the Noise Pro
ess

We now investigate the properties of the binary error pro
ess fE

n

g

1

n=1

. We �rst observe

that, for n �M + 1,

Pr

(M)

(E

n

= 1 j E

n�1

= e

n�1

; � � � ; E

1

= e

1

)

= "

�

e

n�1

M � 1 + �

+ � � �+

e

n�M+1

M � 1 + �

+

e

n�M

� �

M � 1 + �

�

+ (1� ")p

= Pr

(M)

(E

n

= 1 j E

n�1

= e

n�1

; � � � ; E

n�M

= e

n�M

); (1)

where e

l

2 f0; 1g, l = 1; � � � ; n� 1: Hen
e fE

n

g

1

n=1

is a homogeneous (or time-invariant)

Markov pro
ess of order M .



Throughout this work, we 
onsider the 
ase where the initial distribution of the

Markov noise fE

n

g

1

n=1

is drawn a

ording to its stationary distribution; hen
e the error

pro
ess fE

n

g

1

n=1

is stationary. We also obtain that fS

n

g

1

n=1

is a homogeneous Markov

pro
ess with stationary distribution �

(M)

4

= (�

(M)

0

; �

(M)

1

; � � � ; �

(M)

i

; � � � ; �

(M)

2

M

�1

).

If p

(M)

ij

denotes the transition probability that S

n

goes from state i to state j, i; j =

0; 1; � � � ; 2

M

� 1, the transition matrix of the pro
ess fS

n

g

1

n=1


an be written as

Q

(M)

QBC

=

h

p

(M)

ij

i

with

p

(M)

ij

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(M�!

(M)

i

�1+�)"

M�1+�

+ (1� ")(1� p); if j = b

i

2


, and i is even,

(M�!

(M)

i

)"

M�1+�

+ (1� ")(1� p); if j = b

i

2


, and i is odd,

!

(M)

i

"

M�1+�

+ (1� ")p; if j = b

i+2

M

2


, and i is even,

(!

(M)

i

�1+�)"

M�1+�

+ (1� ")p; if j = b

i+2

M

2


, and i is odd,

0; otherwise;

(2)

where !

(M)

i

is the number of \ones" in the M -bit binary representation of the ith row in

Q

(M)

QBC

. We note that any state 
an rea
h any other state with positive probability in a

�nite number of steps; therefore the pro
ess S

n

is irredu
ible (and hen
e ergodi
 [1℄).

It 
an be shown by solving �

(M)

= �

(M)

Q

(M)

QBC

via indu
tion, that the stationary

distribution �

(M)

of the pro
ess is

�

(M)

i

=

Q

M�!

(M)

i

�1

j=0

[j

Cor

1�Cor

+ (1� BER)℄

Q

!

(M)

i

�1

j=0

(j

Cor

1�Cor

+BER)

Q

M�1

j=0

(1 + j

Cor

1�Cor

)

; (3)

for i = 0; 1; 2; � � � ; 2

M

�1, where !

(M)

i

is the number of \ones" in the binary representation

of the de
imal integer i when memory isM ,

Q

a

j=0

(�)

4

=1 if a < 0. Furthermore, the 
hannel

BER and 
orrelation 
oeÆ
ient (Cor) are respe
tively given by

BER = Pr(E

i

= 1) = Pr(E

1

= 1) = p; (4)

and

Cor =

Cov(E

2

; E

1

)

V ar(E

1

)

=

"

M�1+�

1�

(M�2+�)"

M�1+�

: (5)

Lemma 1 The stationary distribution �

(M)

i

obey the following re
ursion:

�

(M)

i

= �

(M+1)

2i

+ �

(M+1)

2i+1

; for i = 0; 1; 2; � � � ; 2

M

� 1: (6)

2.2 Blo
k Transition Probability

For a given input blo
k X = [X

1

; � � � ; X

n

℄ and a given output blo
k Y = [Y

1

; � � � ; Y

n

℄,

where n is the blo
klength, it 
an be shown using the Markovian property of the noise

and state sour
es that the blo
k transition probability of the resulting binary 
hannel is

as follows.



� For blo
klength n �M ,

Pr

(M)

(E = e) =

Q

n�d

n

1

�1

j=0

[j

Cor

1�Cor

+ (1� BER)℄

Q

d

n

1

�1

j=0

[j

Cor

1�Cor

+BER℄

Q

n�1

j=0

[1 + j

Cor

1�Cor

℄

; (7)

where d

n

1

= e

n

+ � � �+ e

1

, and

Q

a

j=0

(�)

4

=1 if a < 0.

� For blo
klength n �M + 1,

Pr

(M)

(E = e) = L

(M)

n

Y

i=M+1

n

(

d

i�1

i�M+1

+�e

i�M

)

Cor

1�Cor

+BER

1 + (M � 1 + �)

Cor

1�Cor

o

e

i

n

(

M�1�d

i�1

i�M+1

+�(1�e

i�M

)

)

Cor

1�Cor

+ (1�BER)

1 + (M � 1 + �)

Cor

1�Cor

o

1�e

i

; (8)

where

L

(M)

=

Q

M�1�d

M

1

j=0

[j

Cor

1�Cor

+ (1� BER)℄

Q

d

M

1

�1

j=0

(j

Cor

1�Cor

+BER)

Q

M�1

j=0

(1 + j

Cor

1�Cor

)

;

Q

a

j=0

(�)

4

=1 if a < 0, d

M

1

= e

M

+ � � �+ e

1

, d

i�1

i�M+1

= e

i�1

+ � � � + e

i�M+1

(d

b

a

= 0 if

a > b), e

i�M

= x

i�M

� y

i�M

, and e

i

= x

i

� y

i

for i =M + 1; � � � ; n.

2.3 Channel Capa
ity

The QBC is a 
hannel with stationary ergodi
 Markov additive noise of memoryM . The


apa
ity C

(M)

QBC

of the 
hannel is positive sin
e the noise entropy rate is bounded above

by 1 for �xed M , ", p and �. C

(M)

QBC

is given by,

C

(M)

QBC

= lim

n!1

sup

X

1

n

I(X;Y )

= 1�H

(M)

(E

M+1

j E

M

; E

M�1

; � � � ; E

1

)

= 1�

M�1

X

!=0

�

M � 1

!

�

L

(M)

!

h

b

h

!

Cor

1�Cor

+BER

1 + (M � 1 + �)

Cor

1�Cor

i

�

M

X

!=1

�

M � 1

! � 1

�

L

(M)

!

h

b

h

(! � 1 + �)

Cor

1�Cor

+BER

1 + (M � 1 + �)

Cor

1�Cor

i

; (9)

where

Q

a

j=0

(�)

4

=1, if a < 0, h

b

(�) is the binary entropy fun
tion, and

L

(M)

!

=

Q

M�1�!

j=0

[j

Cor

1�Cor

+ (1� BER)℄

Q

!�1

j=0

(j

Cor

1�Cor

+BER)

Q

M�1

j=0

(1 + j

Cor

1�Cor

)

; (10)

whi
h is not a fun
tion of � .

Theorem 1 The 
apa
ity C

(M)

QBC

of the QBC in
reases as the parameter � in
reases for

�xed M , BER and Cor, and 
onverges to 1 as � approa
hes to in�nity for all M , BER

and Cor 6= 0.



2.4 Auto
orrelation Fun
tion

The auto
orrelation fun
tion (ACF) of a binary stationary pro
ess fE

n

g

1

n=1

is given by:

R[m℄ = EfE

i

E

i+m

g = Pr(E

i

= 1; E

i+m

= 1)

=

1

X

e

i+1

=0

� � �

1

X

e

i+m�1

=0

Pr(E

i

= 1; E

i+1

= e

i+1

; � � � ; E

i+m�1

= e

i+m�1

; E

i+m

= 1);

where EfXg denotes the expe
ted value of the random variable X. Using (7) and (8),

the ACF of the QBC is expressed as follows.

� If m �M � 1,

R[m℄ = BER[Cor +BER(1� Cor)℄: (11)

� If m �M , the ACF of the QBC 
an be obtained by the following re
ursion.

R[m℄ =

1� Cor

1 + (M � 2 + �)Cor

BER

2

+

Cor

1 + (M � 2 + �)Cor

 

m�1

X

i=m�M+1

R[i℄ + �R[m�M ℄

!

: (12)

2.5 Uniform Queue-Based Channel with Memory

The uniform queue-based 
hannel (UQBC) was investigated in [12℄. A
tually, it is a

spe
ial 
ase of the QBC by �xing � = 1; i.e., the experiment operates on the 
ells of the

queue with equal probability 1=M . The blo
k transition distribution and 
apa
ity of the

UQBC 
an be obtained by setting � = 1 in (7), (8), and (9) (see also [12℄).

Lemma 2 The UQBC with memoryM and the QBC with memoryM+1 and � = 0 have

identi
al blo
k transition probability for �xed BER and Cor; therefore the two 
hannels

have identi
al 
apa
ity under the above 
onditions.

Theorem 2 The 
apa
ity C

(M)

QBC

of the QBC is non-de
reasing in M for �xed BER,

Cor and 0 � � � 1.

Proof For �xed BER and Cor, the 
apa
ity of the QBC is a fun
tion of the memory

order M and parameter �. Let C

(M)

QBC

(�) denote the 
apa
ity of the QBC. Thus, for

0 < � < 1, we have

C

(M)

QBC

(�) < C

(M)

QBC

(1) (by Theorem 1)

= C

(M+1)

QBC

(0) (by Lemma 2)

< C

(M+1)

QBC

(�) (by Theorem 1):

�

3 Comparisons with Other Channels with Memory

In this se
tion, we 
ompare in terms of 
apa
ity the QBC with the FMCC [1℄ and a par-

ti
ular symmetri
 
lass of the Frit
hman 
hannel [3℄ under identi
al 
hannel parameters.



3.1 Comparison with the Finite-Memory Contagion Channel

By 
omparing the UQBC with the FMCC [1℄ in terms of blo
k transition probability,

the following theorem is obtained [12℄.

Theorem 3 The UQBC and the FMCC are statisti
ally identi
al; i.e., they have the

same blo
k transition probability for the same memory M , BER and Cor. Therefore the

two 
hannels have identi
al 
apa
ity under the above 
onditions.

Using Theorem 3 and the results in [1℄, the following asymptoti
 expression for C

(M)

UQBC


an be established as M approa
hes in�nity:

lim

M!1

C

(M)

UQBC

= 1�

Z

1

0

h

b

(z)f

Z

(z)dz; (13)

where h

b

(�) is the binary entropy fun
tion and f

Z

(z) is the beta probability density

fun
tion with parameters BER(1 � Cor)=Cor and (1� BER)(1 � Cor)=Cor (denoted

by u and v respe
tively), i.e.,

f

Z

(z) = �

u;v

(z) =

� (u+ v)

� (u) � (v)

(1� z)

(u�1)

z

(v�1)

; z 2 (0; 1);

where �(�) is the gamma fun
tion: �(x) =

R

1

0

t

x�1

e

�t

dt for x > 0. We also obtain by

Theorem 2 that (13) is an upper bound to the 
apa
ity of the UQBC for a given M .

Corollary 1 For the same M , BER and Cor,

C

(M)

QBC

< C

(M)

FMCC

(when 0 � � < 1); (14)

and

C

(M)

QBC

> C

(M)

FMCC

(when � > 1); (15)

3.2 Comparison with the Symmetri
 Frit
hman Channel

We de�ne the symmetri
 Frit
hman 
hannel with K good states and one bad state ((K,

1)SFC) by the following transition matrix on its states

P

(K,1)SFC

=

2

6

6

6

6

6

4

p

00

(1� p

00

)=K � � � (1� p

00

)=K

(1� p

00

)=K p

00

� � � (1� p

00

)=K

.

.

.

(1� p

00

)=K � � � p

00

(1� p

00

)=K

(1� p

11

)=K � � � (1� p

11

)=K p

11

3

7

7

7

7

7

5

; (16)

where p

ii

is the blo
k transition probability staying in state i, i = 0; 1.

By 
omparing the UQBC with M = 1 with the (K, 1)SFC in terms of the probability

of an arbitrary error sequen
e, we obtain the following theorem.

Theorem 4 For the same BER and Cor, and for any K = 1; 2; � � �, the (K, 1)SFC is

statisti
ally identi
al to the UQBC with memory M = 1. Hen
e C

(K, 1)SFC

= C

(M=1)

UQBC

�

C

(M)

UQBC

� C

(M)

QBC

; 8 M � 1 and � � 1:

We 
an explain this result by observing that the good states have the same stationary

distribution

(1�BER)

K

and they have the same transition pattern. Hen
e the good states


an be 
ombined into one big good state with stationary distribution (1 � BER); this

makes (K, 1)SFC behave like the (1, 1)FC (or UQBC with memory 1).



4 Numeri
al Results and Dis
ussion

We next numeri
ally evaluate the 
apa
ity of the QBC, GEC and FC models in terms

of BER and Cor. We 
al
ulate the 
apa
ities of the QBC for memory order M = 2

and � = 10 using (9). We also 
ompute the 
apa
ity of the UQBC for memory order

M = 1; 2; 5; 10, and its asymptoti
 upper bound (as M !1) (see (13)).

Sin
e the GEC is des
ribed by four parameters, we �x p

G

= 0:00002 and p

B

= 0:92

(whi
h make our target Cor range from 0.1 to 0.9 well de�ned) and 
al
ulate the 
apa
ity

in terms of BER and Cor using the algorithm of [6℄.

In [3℄, an expli
it expression for the 
apa
ity of the FC 
hannel with a single-error

state and K good states ((K, 1)FC) is provided (an expli
it formula for FC 
hannels

with more than a single error state is not known in general). We employ this expression

to 
ompute the 
apa
ity of the (2, 1)FC with the transition probability matrix

P

(2, 1)FC

=

2

4

p

00

(1� p

00

)=2 (1� p

00

)=2

0:1 0:5 0:4

(1� p

11

)=2 (1� p

11

)=2 p

11

3

5

:

where p

00

and p

11

vary as BER and Cor vary.
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Figure 2: Capa
ity vs � for QBC.

Numeri
al 
apa
ity results for the above three 
hannels are presented in Figs. 2 - 5.

The e�e
t of the 
ell parameter � on the 
apa
ity of the QBC is shown in Fig. 2; we note

that for the same BER, Cor and memory order M , the 
apa
ity in
reases with � as

predi
ted in Theorem 1. Furthermore, Fig. 2 illustrates Theorem 2 in the range � � 1.

The results of Theorem 3, Corollary 1 and Theorem 4 are numeri
ally illustrated in

Figs. 3 - 5. We also note from the �gures that the 
apa
ity of all 
hannel models in
reases

with de
reasing BER and in
reasing Cor (as expe
ted). We furthermore observe that, for

the 
onsidered parameters, the QBC with M = 2 and � = 10 has the biggest 
apa
ity,

whereas the UQBC with M = 1 (or (1, 1)FC) provides the smallest 
apa
ity. When

Cor = 0:1, the GEC and the UQBC with M = 1 have nearly equal 
apa
ities. For the

same BER, the 
apa
ity of the QBC 
an be either smaller or bigger than that of the

GEC and (2, 1)FC, depending on the values of Cor, M and � (see Fig. 5).



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BER

C
a

p
a

ci
ty

QBC, M=2, α=10

UQBC, M→ ∞
(2,1)FC
UQBC, M=10
UQBC, M=1, (or (1,1)FC)
GEC

Figure 3: Capa
ity vs BER for Cor=0.1; p

G

= 0:00002 and p

B

= 0:92 (for GEC).
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Figure 4: Capa
ity vs BER for Cor=0.9; p

G

= 0:00002 and p

B

= 0:92 (for GEC).

In 
on
lusion, we point out that our QBC models enjoy the important feature of being

able to 
hara
terize a wide 
lass of binary 
ommuni
ation 
hannels with �nite Markovian

memory, while remaining mathemati
ally simple and 
exible (even for large values of the

memory M). They hen
e provide an interesting and less 
omplex alternative to the

traditional GEC and Frit
hman models.
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