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ABSTRACT

This paper considers the transmission of a Reed-Solomon (RS)
code over a binary modulated time-correlated flat Rician fad-
ing channel with hard-decision demodulation. We define a
binary packet (symbol) error sequence that indicates whether
or not an RS symbol is transmitted successfully across the
discrete channel whose input enters the modulator and whose
output exits the demodulator. We then approximate the dis-
crete channel’s packet error sequence using an M th order
Markov queue-based channel (QBC). In other words, the QBC
is used to model the discrete channel at the packet level. Mod-
eling accuracy is evaluated by comparing the simulated prob-
ability of codeword error (PCE) for the discrete channel with
the numerically evaluated PCE for the QBC. Modeling results
identify accurate low-order QBCs for a wide range of fading
conditions and reveal that modeling the discrete channel at
the packet level is an efficient tool for non-binary coding per-
formance evaluation over channels with memory.

1. INTRODUCTION

Reed-Solomon (RS) codes are non-binary burst-error correct-
ing codes of considerable importance in transmission systems
operating over fading channels [1,2]. Due to their symbol (an
element of the Galois field GF(2b)) orientation, RS codes are
well suited to an environment where errors occur in bursts.

This work considers the transmission of RS codes over a
hard-decision binary frequency-shift keying demodulated flat
time-correlated fading channel with hard-decision demodula-
tion. The binary communication channel from the input of
the modulator to the output to the demodulator is referred to
as the binary discrete channel (DC) model.

We construct a binary packet error process for the DC
model, where the packet (or symbol) length is equal to b (the
length of the binary representation of the RS field element).
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Hereafter, we refer to a packet as a binary sequence of length
b. In this case, the kth packet error bit is equal to 0 whenever
the kth RS symbol is successfully transmitted across the DC
model. Otherwise, the packet error bit is equal to 1. We then
approximate the binary packet error process of the DC model
using a recently introduced [3] queue-based channel (QBC)
model which is a stationary M th order additive Markov noise
channel with only four parameters. The QBC at the packet
level (i.e., at the symbol level) generates a binary sequence
indicating whether or not an RS symbol is transmitted suc-
cessfully across the DC model and captures the correlation
among consecutive RS symbols.

The development of an accurate QBC for the DC model
allows analytical coding performance evaluation with arbi-
trary fading rates and hence provides the tools for the con-
struction of powerful coding techniques that effectively ex-
ploit the channel statistical memory as opposed to ignoring it
via interleaving. Indeed, codes designed taking into account
the channel memory can considerably outperform the tradi-
tional codes designed for the equivalent memoryless chan-
nel (realized via perfect interleaving) [4–6]. This is infor-
mation theoretically justified as it is known that for a wide
class of information stable channels (e.g., channels with ad-
ditive stationary ergodic noise), memory increases capacity
(e.g., see [3]).

Under bounded distance decoding, the probability of code-
word error for RS codes is obtained from the probability of
m symbol (packets) errors in a block of length n symbols,
P (m, n) [7]. It is worth mentioning that the expressions for
P (m, n) developed in the literature to study the performance
of binary block codes over finite-state channel (FSC) models
at the bit level [8,9] can be readily applied to study the perfor-
mance of RS codes over FSC at the packet level. In this later
case, the code’s field size is a parameter of the model and is
not considered in the P (m, n) calculation. Thus, the devel-
opment of FSC models at the packet level, such as the QBC
modeling studied in this paper, can significantly simplify the
performance analysis of RS codes over channels with mem-
ory.
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We generalize the results obtained in [10] by developing
an expression for the probability distribution of the packet er-
ror process of the DC model with Rician fading under the as-
sumption of constant (quasi-static) fading within a packet in
order to parameterize higher-order Markovian QBC models
in slow fading environments. Modeling results identify the
QBC parameters for several fading conditions and reveal that
low-order QBCs (M ≤ 4) provide a good fit for the packet
error process of the DC model, as opposed to higher-order
QBC models required to model the DC error process at the
bit level for slow fading [11]. Thus, the derivation of QBC
models at the packet level facilitates both the modeling and
the RS coding performance analysis.

2. COMMUNICATION SYSTEM

We consider an (n, k) RS coded communication system with
RS symbols over the Galois field GF(2b) whose codewords
are of length n = 2b − 1 symbols and contain k information
symbols. The code can correct up to t = �(n−k)/2� symbols
(under bounded distance decoding), where �x� is the greatest
integer less than or equal to x. Each symbol in GF(2b) is
mapped to a binary b-tuple (the vector space representation
of the corresponding field element) and transmitted across a
binary discrete (binary-input, binary-output) communication
channel.

The DC model is composed of a binary frequency-shift
keying (BFSK) modulator, a time-correlated flat Rician fad-
ing channel with additive white Gaussian noise, and a hard
quantized demodulator. The complex envelope of the fading
process, G̃(t), is a complex wide-sense stationary Gaussian
process with normalized second moment, i.e., E[|G̃(t)|2] =
1 (where E[·] denotes expectation), and covariance function
given by Clarke’s model C(τ) = 1/(1 + KR)J0(2πfDτ)
where J0(x) is the zero-order Bessel function of the first kind,
fD is the maximum Doppler frequency, and KR is the Ri-
cian factor. We define a binary error process {Ek}∞k=1, where
Ek = 0 indicates no bit error at the kth signaling interval of
length T , and Ek = 1 indicates a bit error. The probability
of an error sequence of length n at the bit level for the DC
model, en = e1e2 . . . en is given in [12, Eq. 3] and is denoted
here as PDC(en).

To construct the binary success/failure process {βk}∞k=1

of the transmitted packets (sequences of b bits) of the DC
model, the binary error process {Ek}∞k=1 is divided into pack-
ets of length b. The event βk = 0 indicates the successful
transmission of the kth packet, i.e., the sequence E(k−1)b+1 · · ·
Ekb is an all-zero sequence (denoted by 0b), and βk = 1 in-
dicates a packet error (at least one bit in this packet is incor-
rectly decoded). Thus each binary random variable βk is a
function of the sequence E(k−1)b+1 · · ·Ekb and it is the bi-
nary packet error process {βk}∞k=1 that the QBC model will
herein attempt to emulate. Thus the sequence {βk}∞k=1 spec-
ifies the DC model at the packet level.

2.1. The QBC Model

The QBC generates a binary M th-order stationary Markov
noise process {Zk}∞k=1 using a finite queue [3]. The model is
defined in terms of four parameters: the size of the queue, M ,
the bit error rate (BER), p = Pr(Zk = 1), and correlation pa-
rameters ε and α, where 0 ≤ ε < 1, α ≥ 0. The state process
of the QBC {Sk}∞k=1, where Sk � (Zk, Zk−1, · · · , Zk−M+1),
is a first-order Markov process with 2M ×2M transition prob-
ability matrix P = [pij ] given by [3, Eq.(4)] and state station-
ary distribution column vector Π = [πi] given by [3, Eq.(5)].

We define two 2M ×2M matrices P(0) and P(1), P(0)+
P(1) = P, where the (i, j)th entry of the matrix P(z) is the
probability the model generates an error bit z when the QBC
state process transitions from state i to j. For the QBC, the
first 2M−1 columns of P(0) are exactly the same as those
of P, while the remaining 2M−1 columns are zeros. Sim-
ilarly, the first 2M−1 columns of P(1) are all zeros, while
the remaining 2M−1 columns are exactly the same as those
of P. The binary additive (first-order) Markov noise chan-
nel (BAMNC) with non-negative correlation coefficient is a
special case of the QBC with M = α = 1 and correla-
tion coefficient ε. The autocorrelation function (ACF) of the
QBC, RQBC[m] = E[ZiZi+m], satisfies a recursion given in [3,
p.2821]. The correlation coefficient, CorQBC, for the QBC is a
non-negative quantity given by

CorQBC =
ε

M−1+α

1 − (M − 2 + α) ε
M−1+α

. (1)

3. DERIVATION OF PACKET ERROR STATISTICS

The bit error rate of the packet error process of the DC model,
denoted as BERβ , is given by

BERβ = Pr(βi = 1) = 1 − PDC(0b). (2)

We express the ACF of a binary stationary process as

R[m] = Pr(1Ωm−11) = 1 + Pr(0Ωm−10) − 2 Pr(0) (3)

where Ωm−1 is the set of all binary sequences of length m −
1. For the packet error process of the DC model, Pr(0) =
Pr(βk = 0) = PDC(0b), and Pr(0Ωm−10) = Pr(βk =
0, βk+m = 0) is obtained from PDC(02b) with the (i, j)th en-
try of the 2b × 2b normalized covariance matrix modified to
J0(2πfD|i1 − j1|T ) where

j1 =
{

j + (m − 1)b, if j ≥ b + 1
j, if j < b + 1.

(4)

A similar definition holds for i1. We denote P ′
DC(02b) �

Pr(βk = 0, βk+m = 0). Thus, the ACF for the packet er-
ror process of the DC model is expressed from (3) as

Rβ [m] = 1 + P ′
DC(0

2b) − 2PDC(0b). (5)
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The correlation coefficient of the packet error process of the
DC model, denoted by Corβ , is expressed as

Corβ =
PDC(02b) − P 2

DC
(0b)

PDC(0b)(1 − PDC(0b))
. (6)

3.1. Probability of the Packet Error Sequence under Slow-
Fading Conditions

An approximation for Pr(βk = 1) and R[m] for the packet
error process of the DC model with Rayleigh fading was de-
rived in [10] under the assumption that the fading process is
constant within a packet, but varying from packet to packet
according to Clarke’s model. We herein generalize the results
obtained in [10] by developing an expression for the proba-
bility of a packet error sequence of length n for the DC model
with Rician fading under the same assumptions in order to pa-
rameterize higher-order QBC models as may be required in a
slow fading environment.

Let Ak = |G̃(kT )| be a constant fading amplitude within
a packet. For a packet of length b, using the binomial theorem,
the conditional packet error probability can be written as [10]

Pr(β1 = �1 | a1) =
b∑

k=�1

(−1)k+�1

(
b

k

)
[Pr(E1 = 1 | a1)]k.

The conditional probability of a packet error sequence is writ-
ten as

Pr(β1 = �1, β2 = �2, · · · , βn = �n | a1, a1+b, · · · , a1+(n−1)b) =

bX
k1=�1

· · ·
bX

kn=�n

nY
i=1

(−1)ki+�i

 
b

ki

!
[Pr(E1+(i−1)b = 1 | a1+(i−1)b)]

ki .

For BFSK modulation with non-coherent demodulation

[Pr(e1+(i−1)b = 1 | a1+(i−1)b)]ki =
(

1
2

)ki

e−
Es
N0

ki
2 a2

1+(i−1)b .

We then write the probability of the packet error sequence for
the DC model as

Pr(β1 = �1, β2 = �2, · · · , βn = �n) =
b∑

k1=�1

· · ·
b∑

kn=�n

n∏
i=1

(−1)ki+�i
(

b
ki

) (
1
2

)ki E[e−
Es
N0

ki
2

Pn
i=1 a2

1+(i−1)b ]

=
b∑

k1=�1

· · ·
b∑

kn=�n

n∏
i=1

(−1)ki+�i
(

b
ki

) (
1
2

)ki ×

exp{−Es

N0
KR1TF((KR + 1) I + Es

N0
CF)−11}

det(I + Es

N0
(1 + KR)−1CF)

(7)
where I is the identity matrix of length n, Es/N0 is the signal-
to-noise ratio, matrix F = diag(k1/2, · · · , kn/2), 1 is the all-
one vector of size n, and the (i, j)th entry of C is J0(2πfD|i−
j|bT ), 1 ≤ i, j ≤ n. The next section considers the problem
of fitting the discretized Rayleigh and Rician DC model at
the packet level using QBC models (including the BAMNC
model).
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Fig. 1. Comparison of the ACFs of the Rayleigh DC model
and the BAMNC models, for Es/N0 = 20 dB, fDT = 0.005,
KR = −∞ dB. Packets of length 8.

4. MODEL PARAMETERS ESTIMATION

Given a DC model with fixed Es/N0, fDT , KR, we first
calculate PDC(0b) and PDC(02b) and the bit error rate BERβ

and the correlation coefficient Corβ using (2) and (6), respec-
tively. The parameters of the BAMNC are obtained by set-
ting p = BERβ and ε = Corβ . We denote by BAMNC-SF
(BAMNC under slow fading) a BAMNC whose parameters p
and ε are derived from (7).

Fig. 1 compares (at the packet level) the ACF of the DC
model with the ACF of the BAMNC and BAMNC-SF models
which are fitted to the DC model. The DC model has param-
eters Es/N0 = 20 dB, fDT = 0.005 and KR = −∞ dB
(Rayleigh fading). Packets are of length 8. We observe a
good ACF agreement between the BAMNC and the DC when
fDT is less than (curves not shown) or equal to 0.005. For
fDT = 0.005, the ACF curves for these two models co-
incide. The BAMNC-SF may be considered acceptable for
fDT = 0.005, but this will be further investigated in the next
section. We also observe that when fDT = 0.001 (curves not
shown), the ACF curves for the BAMNC and BAMNC-SF are
identical, but these curves exhibit greater discrepancies when
compared to that of DC model, which indicates that higher-
order QBC models are required for modeling DC models at
the packet level with slowing-varying fading channels.

We next employ (7) to find the probability of all packet
error sequences of length M + 1 and use these probabilities
to parameterize the M th-order QBC model (M > 1) at the
packet level under slow fading conditions. We denote these
models by M -QBC-SF. This is achieved using the methodol-
ogy proposed in [11] which selects the QBC parameters that
minimize the Kullback-Leibler divergence rate between the
DC and QBC packet error process for identical packet error
rate and correlation coefficient. We denote the bit error rate
and the correlation coefficient obtained using the probabili-
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ties (7) by BERβ−SF and Corβ−SF, respectively. We then set
p = BERβ−SF and CorQBC = Corβ−SF. The parameter α is
then expressed from (1) as

α =
ε + Corβ−SF(1 − M) + (M − 2)ε

Corβ−SF(1 − ε)
. (8)

For a fixed Corβ−SF > 0 and M , the parameter α is a non-
decreasing function of ε and is non-negative whenever ε is in
the interval ∆ given by

∆ =
[

Cor(M − 1)
1 + Cor(M − 2)

, 1
]

. (9)

The parameter ε ∈ ∆ is selected to maximize [11]
∑

zM+1

PDC(zM )[log2 PQBC(zM+1 | zM )] (10)

where PQBC(zM+1 | zM) is the QBC conditional probability
of the noise symbol zM+1 given the previous M symbols.
This is evaluated using the QBC noise block probability [3,
Eq.(6),(7)].

5. NUMERICAL PCE RESULTS

This section presents PCE curves when an RS code is trans-
mitted over the DC model and its QBC approximation at the
packet level. For specific values of the DC model parameters
(Es/N0, fDT , KR) we first calculate the QBC parameters ac-
cording to the procedure described in Section 4 and then use
an extension of the method proposed in [7] to numerically de-
termine the PCE for the QBC model. In order to verify the
effectiveness of a particular QBC model, PCE results for RS
codes over the DC model are obtained by simulations (PCE
simulations over the binary BFSK modulated hard-decision
demodulated fading channels).

Fig. 2 presents PCE versus fDT for the (255, 197) RS
code (b = 8, t = 29 symbols) over the BAMNC and the
M -QBC-SF, M = 1, 2, 3, that approximates the DC model
with Rayleigh fading (KR = −∞ dB), for Es/N0 = 20 dB.
Simulation results for the DC model are labeled as DC in the
figures of this section. We observe that the BAMNC-SF is
not adequate for modeling the DC models considered. The
PCE curves of the DC model and the 2-QBC-SF and 3-QBC-
SF match quite well when fDT ≤ 0.002. In particular, the
PCE values of the DC model and the 3-QBC-SF are almost
identical when fDT ≤ 0.001. The BAMNC is reasonably
accurate for fast and medium fading rates, i.e., fDT ≥ 0.01.
Surprisingly, the accuracy of the BAMNC indicated in Fig-
ure 1(b), for fDT = 0.005 (according to the ACF criterion)
is not validated in Fig. 2 (under the PCE criterion).

Fig. 3 shows PCE curves versus Es/N0 for the (255, 155)
RS code (b = 8, t = 50 symbols) over the M -QBC-SF, M =
2, 3, for DC models with Rayleigh fading (KR = −∞ dB) for
fDT = 0.001. We clearly note that 3-QBC-SF is an accurate

1e-05

0.0001

0.001

0.01

0.1

0.001 0.01 0.1

3-QBC-SF
DC

2-QBC-SF
BAMNC-SF

BAMNC

fDT

PC
E

Fig. 2. PCE versus fDT for the (255,197) RS code (b = 8,
t = 29) over the BAMNC and the M -QBC-SF, M = 1, 2, 3.
DC model with Rayleigh fading (KR = −∞ dB), Es/N0 =
20 dB.

model for Rayleigh DC model with fDT = 0.001, for a broad
range of Es/N0. We also observe (curves not shown) that
the 4-QBC-SF provides accurate results in a slower varying
fading channel with fDT = 0.0005 over a broad range of
Es/N0.

Fig. 4 presents PCE versus fDT for the (255, 197) RS
code (b = 8, t = 29 symbols) over the BAMNC and the M -
QBC-SF, M = 2, 3, 4, for the DC model with Rician fading,
KR = 5 dB, Es/N0 = 15 dB. The BAMNC is accurate in the
same range of fDT observed in the Rayleigh case (fDT >
0.01), while the 4-QBC-SF is a good model when fDT <
0.001.
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Fig. 3. PCE versus Es/N0 for the (255,155) RS code (b = 8,
t = 50) over the M -QBC-SF, M = 2, 3. DC model with
Rayleigh fading (KR = −∞ dB), fDT = 0.001.
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Fig. 4. PCE versus fDT for the (255,197) RS code (b = 8,
t = 29) over the BAMNC and the M -QBC-SF, M = 2, 3, 4.
DC model with Rician fading (KR = 5 dB), Es/N0 = 15 dB.

6. CONCLUSIONS

We developed M th order Markovian QBC models at the packet
(symbol) level for an RS coded discrete channel representing
a hard-decision demodulated Rician fading channel (called
the DC model). Since one of the main goals of a model is
to generate a PCE which is approximately the same as the
PCE for the original channel, we evaluated the QBC models
in terms of the PCE criterion. The comparison of the PCE ob-
tained analytically (for the QBC model) and by simulations
(for the DC model) revealed that the M -QBC-SF is a good
approximation for the DC model when fDT ≥ 0.001. In
particular, such QBC models with M ≤ 4 were shown to ap-
proximate well the DC models with slow Rayleigh fading for
a broad range of signal-to-noise ratios. Also, the 4-QBC-SF
is adequate for Rician DC models with fDT = 0.001. The
QBC models developed in this work can be applied to derive
powerful decoding strategies for RS codes that can exploit
channel memory [4, 6, 13].
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