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Abstract—We consider zero-delay analog coding of a Gaussian
source over a Gaussian channel with additive correlated Gaussian
interference known to the transmitter. The receiver aims to
jointly estimate the source signal and the state interference.
We propose a layered parametric analog coding scheme based
on linear and sawtooth mappings. We derive an upper bound
on the distortion for the parametric scheme by assuming a
suboptimal decoder. To optimize the system parameters, we use
two suboptimal methods. The first one is partially numerical
and part of the parameters are derived assuming no sawtooth
mapping; the other one, however, is based on minimizing the
derived upper bound. To improve the performance whenever
storage and offline design complexity are not an issue, we design
a nonparametric mapping through an iterative process based on
joint optimization between the encoder and the decoder using
the necessary conditions for optimality. Numerical results show
that the nonparametric and parametric mappings outperform
the linear scheme and overcome the saturation effect.

I. INTRODUCTION

In a point-to-point communication system, it is well known
that for a Gaussian source transmitted over an additive white
Gaussian channel (AWGN) with equal source-channel band-
width, a simple analog coding that outputs a scaled version
of the source is optimal in the mean square sense [1]. This
linear analog approach, which is referred to as uncoded
transmission, has low complexity and zero coding delay; this
is not the case, however, for the optimal separate source-
channel coding (tandem scheme) which requires infinite delay
and complexity [2]. Moreover, for a Gaussian source sent
over an AWGN channel with Gaussian additive interference
known (non-causally) to the transmitter, a tandem scheme
which comprises an optimal quantizer followed by Costa’s
dirty paper channel code [3] is optimal in the absence of
correlation between the source and the interference. In [4],
the authors consider a communication scenario with additive
interference at the transmitter and side information at the
receiver in which they propose a scheme based on lattice
coding. For correlated source-interference, the authors in [5]
propose a hybrid digital-analog (HDA) scheme for the matched
source-channel bandwidth case; although this scheme is able
to benefit from the correlation between the source and the
interference, the optimal performance is not yet known. In [6],
we study HDA coding under a similar communication scenario
but with mismatch source-channel bandwidth. In some cases,
the receiver is simultaneously interested in recovering the
source signal and the state interference. This communication
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problem was first considered in [7]; the authors show that
the optimal rate-state-distortion tradeoff is achieved by using
analog state transmission and message transmission via dirty
paper coding. In [6], we also study this problem when the
source and the interference are correlated; we propose a high
delay HDA scheme that performs close to the outer bound.

Low delay analog coding is getting more relevant than ever
with the increase popularity of wireless sensor networks [8]–
[14]. Different from the works in [6], [7] which assume infinite
complexity and delay, in this paper, we focus on zero delay
and low complexity analog coding and study the reliable
communication of memoryless Gaussian source and state
interference over AWGN channels with interference known
to the transmitter.
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Fig. 1. System model.

II. PROBLEM FORMULATION

We consider the transmission of analog source and channel
state interference over an AWGN channel with additive inter-
ference that is known to the transmitter. Our aim is to estimate
the source V and the interference S which are assumed to have
a Gaussian distribution. As shown in Fig. 1, the source and
the interference are transformed into a channel input X using
a nonlinear mapping, α(·) : R× R→ R. The received signal
is given by Y = α(V, S) +S+W , where X = α(V, S) is the
channel input and W is additive Gaussian noise, independent
of V and S, with variance σ2

W

(
W ∼ N (0, σ2

W )
)
. The channel

operates under an input average power constraint P given by

E[α(V, S)2] ≤ P (1)

where E[·] denotes expectation. Moreover, we assume that
(V, S) are correlated via the following covariance matrix

ΣV S =

[
σ2
V ρσV σS

ρσV σS σ2
S

]
(2)

where σ2
V , σ2

S are, respectively, the variance of the source
and the interference, and ρ is the source-interference correla-
tion coefficient. At the receiver side, the estimated source-
interference pairs are reconstructed as follows (V̂ , Ŝ) =
γ(Y ) =

(
γv(Y ), γs(Y )

)
, where γv(·), γs(·) : R→ R.



In this work, we aim to find an encoder α decoder γ that
minimize the mean square error (MSE) distortion defined by

D , E[(V − V̂ )2]︸ ︷︷ ︸
Dv

+E[(S − Ŝ)2]︸ ︷︷ ︸
Ds

. (3)

This minimization is carried out under the average power
constraint in (1). In the sequel, we will focus on zero delay
analog joint source-channel coding techniques. More precisely,
we study parametric and nonparametric (nonlinear) mappings.
The main attempts in solving this problem without imposing
delay and complexity constraints have used hybrid coding
techniques [6], [7] which perform close to the derived outer
bound (note that the optimal limit for this system is not
known). Our main contributions can be summarized as follows
• To benefit from nonlinearity whenever possible, we study

a parametric analog mapping based on the sawtooth
(modulo) function which has a low design complexity.
We derive an upper bound on the system’s distortion by
assuming a suboptimal decoder at the receiver side. To
optimize the system parameters, we use two suboptimal
methods; the first one is partially numerical in which part
of the parameters are derived by minimizing a (partial)
distortion expression that assumes no sawtooth mapping
is used at the encoder. The other method minimizes the
derived upper bound expression.

• Whenever storage and offline design complexity are not
an issue, we design a nonlinear mapping; this is done
by deriving the necessary conditions for optimality and
proposing an iterative algorithm based on joint optimiza-
tion between the transmitter and the receiver. We refer to
this scheme as a “nonparametric” analog mapping.

III. DISTORTION LOWER BOUND

In our previous work [6, Lemma 4], we derived an outer
bound on the distortion region (Dv, Ds) for the same problem
over fading channels. The bound on Dv was derived by
assuming knowledge of S at the decoder; while the bound on
Ds was obtained without assuming any additional knowledge.
For the AWGN channel, the outer bound simplifies as follows

Dv ≥ Dob
v ,

Var(V |S)σ2
W

ζP + σ2
W

,

Ds ≥ Dob
s ,

σ2
S

(
ζP + σ2

W

)
P + σ2

S + 2
√

(1− ζ)Pσ2
S + σ2

W

(4)

where Var(V |S) = σ2
V (1 − ρ2) is the variance of V given S

and ζ ∈ [0 1]. As a result, the lower bound on the system’s
distortion can be expressed as follows D ≥ infζ{Dob

v +Dob
s }.

IV. LINEAR SCHEME

In this section, we assume that the encoder transforms the
source-interference pair (V, S) into a channel input X using a
linear transformation according to X = α(V, S) =

√
a(α1V +

α2S), where α1, α2 ∈ [−1, 1] and a = P/(α2
1σ

2
V + α2

2σ
2
S +

2α1α2ρσV σS) is a gain factor related to the power constraint
P . In such case, the received signal Y is Gaussian and the
minimum MSE (MMSE) decoder is a linear estimator

V̂ =
E[V Y ]

E[Y 2]
Y, Ŝ =

E[SY ]

E[Y 2]
Y (5)

where E[V Y ] =
√
aα1σ

2
V + (1 +

√
aα2)ρσV σS , E[SY ] =√

aα1ρσV σS + (1 +
√
aα2)σ2

S and E[Y 2] = P + σ2
S +

σ2
W + 2

√
a(α1ρσV σS + α2σ

2
S). The resulting distortion from

reconstructing V and S based on V̂ and Ŝ, respectively, can
be expressed as follows

DLin
v = σ2

V −
E[V Y ]2

E[Y 2]
, DLin

s = σ2
S −

E[SY ]2

E[Y 2]
. (6)

The overall system distortion is then given by DLinear =
infα1,α2

{DLin
v +DLin

s }.

Remark 1 For ρ = 1, the problem reduces to just estimating
the interference S. The linear scheme, which simplifies to
the uncoded scheme (i.e., X =

√
P/σ2

SS), is optimal. The
tightest lower bound on Ds can be obtained by setting
ζ = 0 in (4); in such case the distortion in (4) reduces to
Ds ≥ σ2

Sσ
2
W /
(
(
√
P + σS)2 + σ2

W

)
. It is easy to prove that

this distortion coincides with the one of the uncoded scheme
(use (6) with α1 = 0 and α2 = 1). The optimality of the
uncoded scheme for ρ = 1 was also noticed in [7].

V. PARAMETRIC MAPPING

Recall that since V and S are correlated, we can write the
source as V = ρσV

σS
S + Nρ, where Nρ ∼ N (0, (1 − ρ2)σ2

V )
is independent of S. Motivated by the high delay scheme
that uses analog and hybrid layers [6], we herein propose a
layered scheme based on linear coding and sawtooth mapping
(sawtooth coding is used in [15] for the relay channel). The
sawtooth mapping can be seen as one dimensional lattice
coding; high delay lattice coding is widely studied for AWGN
channel with side information [4], [16].

A. System Structure

The proposed scheme is composed of two superposed layers
and outputs

X = c(X1 +X2) (7)

where c is a gain factor related to the power constraint (defined
later). The first layer, which outputs X1 =

√
Ps/σ2

SS, simply
scales the interference S, where Ps ≤ P represents the power
consumed by this layer. The second layer, starts by forming a
linear combination of the partial information of the source Nρ
and the interference S; this is given by Xa = α1Nρ + α2S,
where α1, α2 are real parameters. We then use a sawtooth
mapping S(·) on Xa to output X2 as follows

S(Xa) = (Xa−2Λm) for Xa ∈
[
Λ(2m−1),Λ(2m+1)

)
(8)

where m is an integer and Λ is a nonnegative parameter
dependent on the channel condition. The gain factor c in (7) is

given by c =
√
P/(Ps + E[X2

2 ] + 2
√
Ps/σ2

SE[SX2]), where
E[X2

2 ] can be written as follows

E[X2
a ]+

∑
m

−4Λm

∫
Dm

xap(xa)dxa︸ ︷︷ ︸
I1

+4Λ2m2

∫
Dm

p(xa)dxa︸ ︷︷ ︸
I2

(9)
and E[SX2] is given by

α2σ
2
S −

∑
m

2Λm

∫ ∫
Dm

sf(xa − α2s)p(s)dxads (10)



where Dm =
[
Λ(2m − 1),Λ(2m + 1)

)
is the mth domain

region of S(·), p(·) denotes a probability density function (pdf)
and f(·) is the pdf of α1Nρ ∼ N (0, α2

1σ
2
V (1−ρ2)). Note that

the integrals in (9) can be simplified as follows

I1 =

√
E[X2

a ]√
2π

[
−exp

(
−(Λ(2m+ 1))2

2E[X2
a ]

)
+exp

(
−(Λ(2m− 1))2

2E[X2
a ]

)]
,

I2 =
1

2

[
erf

(
Λ(2m+ 1)√

2E[X2
a ]

)
− erf

(
Λ(2m− 1)√

2E[X2
a ]

)]
(11)

where erf(·) is the Gaussian error function. At the decoder
side, to obtain an estimate of the source and the interference,
we use the optimal MMSE estimator (V̂ = E[V |Y ], Ŝ =
E[S|Y ]). The use of an optimal decoder comes at the expense
of computational and design complexity. To lower the design
complexity, we resort to two suboptimal methods for choosing
the system parameters as described next.

B. System Optimization

1) Method 1: In this method, the optimized parameters α1

and α2 are found by assuming that no sawtooth mapping is
used. In such case, the parameters α1 and α2 are found by
minimizing the MSE distortion DNρ from reconstructing Nρ
using a linear MMSE (LMMSE) estimator. This distortion is
given by (assuming no sawtooth mapping) DNρ = σ2

V (1 −
ρ2) − E[NρY ]2

E[Y 2] . The sawtooth parameter Λ and Ps, however,
are found numerically to minimize the overall MSE distortion
D by performing a grid search. This is done by generating a
large set of (V, S,W ) triplets and computing D empirically
for each possible (Ps,Λ) in the search space.

2) Method 2: In this method, we optimize the system
parameters by minimizing an upper bound on the system’s
distortion. To get a closed form expression on the upper bound,
we propose the use of a suboptimal decoder. Let us first
note that the sawtooth mapping, which uses the symmetric
modulo function (8) over the interval [−Λ Λ], can be written
as S(Xa) = Xa mod Λ. To reconstruct the interference, we
simply use an LMMSE estimator based on the received signal
Y . The distortion from reconstructing S is given by

(Ds)parametric = σ2
S −

E[SY ]2

E[Y 2]

= σ2
S −

(c(E[S(Xa mod Λ)] +
√
PsσS) + σ2

S)2

P + σ2
S + σ2

W + 2c(
√
PsσS + E[S(Xa mod Λ)])

where E[S(Xa mod Λ)] can be written as in (10).
To get an estimate of the source V , we first use a modulo

function on the received signal and then apply an LMMSE
estimator. More precisely, we first obtain

Ỹ = (Y/c) mod Λ

=

(
α1Nρ + (α2 +

√
Ps
σ2
S

+
1

c
)S +

W

c

)
︸ ︷︷ ︸

Z

mod Λ (12)

where the last equality follows from the fact that the modulo
operation satisfies the “distributive law” (i.e., [x mod Λ +

y] mod Λ = [x + y] mod Λ). We then decode V using an
LMMSE estimator based on Ỹ . The resulting distortion is

(Dv)parametric = σ2
V −

E[V (Z mod Λ)]2

E[(Z mod Λ)2]
(13)

where Z is defined in (12), E[(Z mod Λ)2] is given by

E[Z2]− 4Λ
∑
m

m

∫
D̃m

zp(z)dz + 4Λ2
∑
m

m2

∫
Dm

p(z)dz

(14)
and E[V (Z mod Λ)] can be expressed as follows

E[V Z]−
∑
m

2Λm

∫
D̃m

∫∫
vp(v|s)p(z|v, s)p(s)dvdsdz

(15)
where D̃m =

[
Λ(2m − 1),Λ(2m + 1)

)
is the mth domain

region of S(·). Note that integrals in (14) can be simplified
in a similar way as in (11) and distributions in (15) are
Gaussian. The upper bound on the system’s distortion Dupper

for parametric mapping is then given by

Dupper = (Dv)parametric + (Ds)parametric. (16)

Note that (α1, α2, Ps,Λ) are found by minimizing Dupper.

Remark 2 For low correlation values between the source
and the interference, we propose to use a slightly different
decoder (for method 2) for estimating V that gives a better
performance. The only modification is that Ỹ = −α2Y

cκ mod Λ,

where κ =
(√

Pu
σ2
S

+ 1
c

)
. After some manipulations, we can

write Ỹ = (α1V + Weq) mod Λ, where Zeq = −α2W
cκ −

(1 + α2

κ )Xa mod Λ. Note that Weq can be regarded as an
equivalent noise term.

VI. NONPARAMETRIC MAPPING

We next present a scheme based on joint optimization
between the encoder and the decoder through an iterative
algorithm. Closed form expressions for α(·) and γ(·) =
(γv(·), γs(·)) that minimize the distortion D may not exist; this
makes the optimization of the encoder and decoder difficult.
The rest of this section is dedicated to the design of the source-
channel mapping α(V, S) and the decoder γ(Y ). Using the
Lagrange multiplier method, the constrained minimization of
the MSE distortion D subject to the power constraint in (1) can
be recast into an unconstrained minimization via the Lagrange
cost function J(α, γ) given by

E[
(
V − γv(Y )

)2
] + E[

(
S − γs(Y )

)2
] + λE[α(V, S)2] (17)

where λ is used to control the average power. The above
unconstrained minimization is still hard to solve due to interde-
pendencies between the optimized components. To solve this,
we proceed in a way similar to classical design problems [17]
by deriving necessary conditions for optimality.

A. Necessary Conditions for Optimality

The optimal encoder mapping α∗ (assuming γ is fixed) is

arg min
α

{
E[
(
V − V̂

)2
]+E[

(
S− Ŝ

)2
]+λE[α(V, S)2]

}
. (18)



Using Bayes’ rule, the distortion E[
(
V − V̂

)2
] is given by∫∫∫

p(v, s)p(y|α(v, s), s)(v − v̂)2dvdsdy (19)

where p(·|·) denotes a conditional pdf. Similarly, the distortion
E[
(
S − Ŝ

)2
] can be expressed as follows∫∫∫

p(v, s)p(y|α(v, s), s)(s− ŝ)2dvdsdy. (20)

The average consumed power is given by

P =

∫∫
p(v, s)α(v, s)2dvds. (21)

Since p(v, s) in (19), (20) and (21) is nonnegative, the encoder
α∗ can be optimized “pointwise” for each (v, s) according to

arg min
x∈R

{∫
p(y|x, s)[(v − v̂)2 + (s− ŝ)2]dy + λx2

}
.

(22)
Thus, (22) is a necessary condition for an optimal encoder.

On the receiver side, the optimal decoder γv in the MSE
sense (assuming α is fixed) is given by E[V |y] as follows

γ∗v(y) =

∫∫
vp(y|v, s)p(v, s)dvds∫∫
p(y|v, s)p(v, s)dvds

. (23)

Similarly, the optimal decoder γs in the MSE sense (assuming
α is fixed) is given by E[S|y] as follows

γ∗s (y) =

∫∫
sp(y|v, s)p(v, s)dvds∫∫
p(y|v, s)p(v, s)dvds

. (24)

B. Design Algorithm

Using the above necessary conditions for optimality, we
optimize α and γ via an iterative process based on (22), (23)
and (24). The update equations (22), (23) and (24) yield a
lower distortion at each iteration step; Thus, with a finite
amount of training data, convergence is guaranteed. The main
problem with such iterative process is that the final solution
depends on the choice of the initial mapping in the algorithm
and convergence to the global optimum is not ensured. The
design Algorithm 1 is as follows:

1) Choose some initial mapping for the encoder α.
2) Find the optimal decoder γ = (γv, γs) according to (23)

and (24).
3) Set the iteration index i = 0 and the cost J (0) =∞.
4) Set i = i+ 1.
5) Find the optimal mapping α according to (22).
6) Find the optimal decoder γ = (γv, γs) according to (23)

and (24).
7) Evaluate the cost function J (i). If the relative improve-

ment of J(i−1)−J(i)

J(i−1) < ε or i > Imax, stop iterating.
Else go to step 4.

Algorithm 1 is nested inside a “bracketing” Lagrange multi-
plier search. We first set λ = λ0. If the designed α produces
E[α(V, S)2] > P , λ0 is increased; else λ0 is decreased. The
search ends if E[α(V, S)2] is close enough to but less than
P . For initialization of the algorithm, we notice that using
the proposed parametric mapping results in better performance
than the linear scheme.

C. Implementation Aspects

For the implementation of (22), (23) and (24), some modi-
fications are required. Since it is intractable to evaluate the
formulas for all real-valued (V, S), we form as in [11] a
set of pairs (V,S) composed of samples drawn from p(v, s).
Since the channel input and output spaces are real valued, we
discretize them using a pulse amplitude modulation alphabets
X and Y , respectively, in each direction. We use

X = Y =

{
−eL− 1

2
,−eL− 3

2
, ..., e

L− 3

2
, e
L− 1

2

}
(25)

where e and L are the resolution and the cardinality of the
set, respectively. In our simulations, we use 105 pairs (V,S),
ε = 10−3, Imax = 15, L = 700 and e = 12/(L− 1).

VII. NUMERICAL RESULTS

In this section, we consider a source-interference pairs
that are transmitted over an AWGN channel with Gaussian
interference and power constraint P = 1. Fig. 2 shows the
performance, defined as 10 log 1

D , versus the correlation ρ for
channel signal-to-noise ratio CSNR , P/σ2

W = 25 dB.
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Fig. 2. Performance versus source-interference correlation ρ, for σ2
V = σ2

S =
1 and CSNR = 25 dB.

The nonparametric mapping outperforms other zero delay
coding schemes; using parametric mapping as initialization
for Algorithm 1 gives 0.5 to 1 dB gain in performance (for
ρ ≤ 0.8) over the case where we use a linear mapping to
initialize the algorithm. The parametric mapping (with MMSE
decoding) which is easier to design, outperforms the linear
scheme and performs relatively close to the nonparametric
mapping. Note that using the optimized parameters resulting
from method 1, gives the ‘best’ performance for high corre-
lation values; for low correlation values, however, it is better
to use the optimized parameters resulting from minimizing
Dupper given by (16) (method 2). This behaviour comes from
the fact that in method 2 we minimize a different objective
function than the one used in method 1. As shown from
Fig. 2, the lower bound obtained from the derived Dupper is
close to the performance of the parametric mapping (optimized
via method 1) with MMSE decoding for low to moderate
correlation values; for high correlation values, we can notice
some gap that is also manifested in the performance of
method 2. Moreover, for the case of ρ = 1, all schemes
revert to the uncoded scheme which is optimal. It is worth



mentioning that the upper bound and the HDA scheme in [6]
are asymptotic in the sense of requiring infinite source and
coding block lengths, hence the gap to the proposed zero delay
schemes is not surprising.

Fig. 3 shows the performance versus CSNR levels. We can
notice that the nonparametric mapping outperforms other zero
delay schemes and that the lower bound found using Dupper

is very close to the performance of the parametric mapping
(optimized via method 1) with MMSE decoder. Moreover, the
use of nonlinear mappings defeats the saturation effect which
is inevitable with the use of the linear scheme.
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Fig. 3. Performance versus CSNR levels, for ρ = 0.5 and σ2
V = σ2

S = 1.

Figs. 4 and 5 show the encoder-decoder structure of the
nonparametric mapping for two different correlation values.
It is clear that the encoder and decoder mappings comprise a
piecewise nonlinear function that combines hard and soft de-
cision signalling. The proposed parametric mapping uses such
combination; this explains the good performance achieved
using parametric mapping. There is always a gain from using
the nonparametric mapping; this is due to the fact that the
nonparametric mapping has a higher degree of freedom in
placing points in space without being restrained to a specific
structure. Such gain comes at the expense of higher storage
and offline design complexity.
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