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I. Introdu
tion

We 
onsider a 
ommuni
ation system whi
h employs L

T

transmit and L

R

re
eive antennas. The 
hannel is assumed to

be quasi-stati
 Rayleigh 
at fading. It is assumed that only

the re
eiver has knowledge of the path gains. The additive

noise at re
eiver j at symbol interval t, N

j

t

, is assumed to be


omplex Gaussian with i.i.d. real and imaginary parts. Linear

propagation is assumed, so that for a CSNR of 


s

at ea
h

re
eive antenna, the signal at re
eive antenna j 
an be written

as R

j

t

=

q




s

L

T

P

L

T

i=1

H

ji

s

i

t

+ N

j

t

, where

q




s

L

T

s

i

t

is the signal

sent from antenna i. H is the L

R

� L

T

path gains matrix.

In the following, we 
onsider the pairwise error probability

(PEP) of spa
e-time orthogonal blo
k (STOB) 
odes, and then

generalize the solution to spa
e-time trellis (STT) 
odes, linear

dispersion (LD) 
odes, and BLAST with ML de
oding.

II. Exa
t PEP of STOB Codes

Using the properties of the Lapla
e transform, we derive

the following expression for the exa
t PEP of ML de
oded

STOB 
odes:
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where n = L

t

L

R

and Æ

ij

=

q

g


s

2L

T

j


i
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j

j (g is the inverse of

the 
ode rate). The above equation 
an also be derived using

the error analysis results of MRC systems, as noti
ed in [1℄.

III. Exa
t PEP of STT Codes

Let S and

^

S be two paths on the trellis of a STT 
ode.

Also, de�ne d

i;t

= s

i

t

� ŝ

i

t

and matrix U with elements

u

k;i

=

P

t

d

i;t

d

�

k;t

. Let us assume that U has K distin
t

non-zero eigenvalues �

k

ea
h with multipli
ity n

k

. Setting

Æ
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and denoting the residues of �
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by �

i;k

, we get the pairwise error probabil-

ity of STT 
odes as
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where �

i;k

= Æ

2i

k

�

i;k

. Sin
e the 
hannel is quasi-stati
, the

same expression 
an be used for any other spa
e-time 
odes

(su
h as LD 
odes and V-BLAST). Considering error paths of

length 2, a simple expression in the form of the union bound

is used to approximate the system bit error rate (BER). This

is plotted in Figure 1 for the �rst 4-state Q-PSK STT 
ode.
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IV. Error Rate Bounds of STOB Codes

The exa
t PEP expression and the method used for its

derivation 
an be used to obtain very tight Bonferonni-type

upper and lower bounds [2℄ on the symbol error rate (SER)

and BER for STOB 
odes. Numeri
al results, su
h as Fig-

ure 2, show that the bounds provide very good estimates on

the system performan
e. In many 
ases, the upper and lower

bounds 
oin
ide even at low 
hannel signal to noise ratios and

large 
onstellations.
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Figure 1: Results for the 4-state Q-PSK STTC.
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Figure 2: Error rates of STOB 
odes, L

T

= 2, L

R

= 1,

and 16-PSK 
onstellation.


