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I. INTRODUCTION

We consider a communication system which employs Ly
transmit and Lg receive antennas. The channel is assumed to
be quasi-static Rayleigh flat fading. It is assumed that only
the receiver has knowledge of the path gains. The additive
noise at receiver j at symbol interval ¢, th, is assumed to be
complex Gaussian with i.i.d.real and imaginary parts. Linear
propagation is assumed, so that for a CSNR of 7, at each
receive antenna, the signal at receive antenna j can be written
as R{ = y
sent from antenna ¢. H is the Lr X Ly path gains matrix.
In the following, we consider the pairwise error probability
(PEP) of space-time orthogonal block (STOB) codes, and then
generalize the solution to space-time trellis (STT) codes, linear
dispersion (LD) codes, and BLAST with ML decoding.
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II. Exact PEP orF STOB CODES

Using the properties of the Laplace transform, we derive
the following expression for the exact PEP of ML decoded
STOB codes:
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where n = L¢Lg and d;; = =|ci —cj| (g is the inverse of

the code rate). The above equatlon can also be derived using
the error analysis results of MRC systems, as noticed in [1].

III. Exact PEP oF STT CODES

Let S and S be two paths on the trellis of a STT code.
Also, define d;; = si — & and matrix U with elements
Uk, = »,,diedy,. Let us assume that U has K distinct
non-zero eigenvalues Ap each with multiplicity n. Setting

22k and denoting the residues of Pya2 §(—s) =
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I, m by .k, we get the pairwise error probabil-
P
ity of STT codes as
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where 3;r = 07'a; . Since the channel is quasi-static, the

same expression can be used for any other space-time codes
(such as LD codes and V-BLAST). Considering error paths of
length 2, a simple expression in the form of the union bound
is used to approximate the system bit error rate (BER). This
is plotted in Figure 1 for the first 4-state Q-PSK STT code.
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IV. ERROR RATE BounDs oF STOB CoODES

The exact PEP expression and the method used for its
derivation can be used to obtain very tight Bonferonni-type
upper and lower bounds [2] on the symbol error rate (SER)
and BER for STOB codes. Numerical results, such as Fig-
ure 2, show that the bounds provide very good estimates on
the system performance. In many cases, the upper and lower
bounds coincide even at low channel signal to noise ratios and
large constellations.
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Figure 1: Results for the 4-state Q-PSK STTC.
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Figure 2: Error rates of STOB codes, Ly =2, L =1,
and 16-PSK constellation.
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