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Abstract—In this paper, we present a novel algorithm that
guarantees of finding a variable-length error-correcting code
(VLEC) with minimal average codeword length for a fixed free
distance dfree. We also propose a low complexitymaximum a
posterior (MAP) decoding algorithm for our codes under the
premise that the receiver knows the number of codewords being
transmitted. The resulting VLEC provides significant gains over
other codes from the literature. When compared with separate
source-channel tandem codes with identicaldfree, such as a
tandem code consisting of a Huffman source code concatenated
with a (2, 1, 4) tail-biting convolutional channel code, our system
has only a0.3 dB performance loss at a bit error rate of 10−5

while requiring significantly less decoding complexity.

I. I NTRODUCTION

In [1], Buttigieg explored properties of VLECs and con-
firmed that dfree affects the error performance of VLECs.
Along with this finding, several approaches to construct
VLECs targeting a givendfree were proposed in [5] and [7].
In [1], Buttigieg also modified the Viterbi algorithm (VA) to
realize a MAP decoder for VLECs. Later in 2008, Huanget al.
[3] proposed a trellis-based MAP priority-first search decoding
algorithm for VLECs and empirically showed a complexity
improvement over Buttigieg’s MAP decoder. Recently, Savari
and Kliewer [8] focused on minimizing the average codeword
length of VLECs. In their design each codeword is required to
have Hamming weightW , whereW is a multiple of an integer
≥ 2, resulting in a class of VLECs withdfree ≥ 2. In [9], an
algorithm to develop VLECs with largestdfree was proposed
under the premise that all codeword lengths are known in
advance. A similar approach was used in [10] for constructing
good error-correcting arithmetic codes. Other related work can
be found in [12], [13].

In this work, a novel algorithm that can construct optimal
VLECs in terms of minimal average codeword length under a
fixeddfree is proposed. By assuming that the receiver knows the
number of codewords that have been transmitted, an efficient
two-phase MAP priority-first search decoder is presented for
the constructed optimal codes. Our joint source-channel VLEC
system outperforms the codes of [1] and [7]. We also compared
it, in terms of performance and complexity, with a traditional
tandem coding scheme that concatenates separately designed
source and channel codes when transmitting a binary non-
uniform memoryless source over a binary phase-shift keying
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(BPSK) modulated additive-white Gaussian noise (AWGN)
channel.

II. PRELIMINARIES

Let S , {α1, α2, · · · , αK} be the alphabet of a discrete
memoryless source with respective source symbol probabilities
p1, p2, · · · and pK . Let C , {c1, c2, · · · , cK} be their cor-
responding binary VLEC codewords. The average codeword
length ofC is then given by|C| ,

∑K

i=1 pi|ci|, where|ci| is
the length of codewordci.

A. Free Distance

Let XL,N , {x1x2 · · ·xL : ∀xi ∈ C and
∑L

i=1 |xi| = N}
be a set of bitstreams consisting ofL codewords with overall
lengthN . DefineXN ,

⋃

i≥1 Xi,N . Thedfree of C as defined
in [1] is given by

dfree(C) , min{d(a, b) : a, b ∈ XN for someN anda 6= b},

where d(a, b) denotes the Hamming distance between bit-
streamsa andb.

B. MAP Decoding Criterion

Assume the sequence of codewords of overall lengthN is
transmitted over a binary-input memoryless channel and the
received vectorr , (r1, r2, · · · , rN ). Define the hard decision
of ri as

yi ,

{

1 if φi < 0
0 otherwise

,

whereφi , ln[Pr(ri|0)/Pr(ri|1)]. It can then be derived [3]
that, with ⊕ denoting modulo-2 addition, the MAP decision
v̂ satisfies

N
∑

i=1

(yi ⊕ v̂i)|φi| − lnPr(v̂) ≤
N
∑

i=1

(yi ⊕ vi)|φi| − lnPr(v)

for all v ∈

{

XN , if the receiver only knowsN ;
XL,N , if the receiver knows bothL andN .

C. Trellis Diagram

In [1], Buttigieg employed a VLEC decoding trellisTN as
illustrated in Fig. 1(a) forC = {00, 010, 0110}, in which state
Sj denotes the number of bits decoded thus far isj. If the
receiver knows bothL and N , we can have an extension
trellis TL,N , where Si,j denotes the numbers of decoded
codewords and decoded bits arei andj, respectively, as shown
in Fig. 1(b).



(a) Trellis TN (b) Trellis TL,N

Fig. 1. Trellis representations of a VLEC. The red-color, blue-color and
green-color arrows correspond respectively to the transition of transmitting
codewords A, B and C.

Fig. 2. Relation between a parent node and its children in a search tree.

III. C ODE CONSTRUCTION

Recently, Huanget al. [4] proposed a new search algorithm
to construct optimal reversible variable-lengths codes. We
herein observe that by modifying the algorithm in [4], an
algorithm that guarantees finding optimal VLECs for a given
d∗free can be obtained. To demonstrate our algorithm, we first
construct the search tree for VLECs, then describe the search
algorithm step by step.

A. Search Tree

To construct a VLEC withK elements, a search tree is
used in which each nodeX contains three elements denoted
by {CX,AX, f(X)}. HereCX = {cX1, c

X
2, · · · , c

X
t} denotes the set

of t codewords that have been selected for the desired VLEC.
AX = {aX1, a

X
2, · · · } is the set of possible bitstreams, excluding

all bitstreams whose prefix is inCX, which could be a codeword
for CX (candidate codewords) listed in order of non-decreasing
lengths:|aX1| ≤ |aX2| ≤ · · · . Finally, f(X) is used as a metric
for the search algorithm; it is defined as

f(X) =

t
∑

i=1

pi · |c
X
i |+

K
∑

i=t+1

pi · |a
X
i−t|.

The search tree is constructed as a binary tree, and the
relation between a parent node and its children is illustrated
in Fig. 2. Specifically, for a parent nodeP, its left child L

is obtained by adding the next candidate codewordaP1 to CL.
SinceaP1 is now a codeword inCL, the setAL needs to be
updated by removing all bitstreams inAP whose prefix isaP1.
Hence, the left childL becomes

CL = CP ∪ {aP1}

AL = {aL1, a
L
2, · · · }

= {a : a ∈ AP andaP1 is not prefix ofa}

f(L) =

t
∑

i=1

pi · |c
P
i |+ pt+1 · |a

P
1|+

K
∑

i=t+2

pi · |a
L
i−t−1|.

On the other hand, the right childR is obtained by rejecting
the next candidate codewordaP1 from its parent node. So, the
right child R becomes

CR = CP

AR = {aP2, a
P
3, · · · } = AP \ {a

P
1}

f(R) =

t
∑

i=1

pi · |c
P
i |+

K
∑

i=t+1

pi · |a
P
i−t+1|.

By traversing the path from the root node, every possible
VLEC can be found in a leaf of the tree.

B. Finding an Optimal VLEC with a Fixed d∗free

Since the search tree can be well-constructed, the priority-
first search algorithm can be easily applied on it. To reduce
the search space, the average codeword length of any existing
VLEC with free distance no less than thed∗free can be used
as an upper bound, denoted byB, during the search process.
The algorithm for finding an optimal VLEC is described as
follows.

Step 1. Initialize the root node as

Croot = ∅

Aroot = {0, 1, 00, 01, 10, 11, 000, 001, · · ·}

f(root) =

K
∑

i=1

pi · |a
root
i |,

and push it into the Stack. Set upper boundB as
the smallest average codeword length of existing
VLECs with free distance no less thand∗free.

Step 2. If the top node of the Stack has selectedK code-
words (i.e.,|Ctop| = K) anddfree(Ctop) = d∗free, then
outputCtop as the optimal VLEC and the algorithm
stops.

Step 3. Generate the two children of the top node as in
Fig. 2 and then delete the top node from the Stack.
If the left child has selectedK codewords with its
free distance≥ d∗free and its associated metricf is
smaller thanB, then updateB = f .

Step 4. Discard the child node which satisfies any one of the
following conditions:

1) It has selected more thanK codewords forC;
2) There is no more candidate inA (i.e.A = ∅);
3) The metricf is larger thanB.

Step 5. Insert the remaining children into the Stack, and
reorder the Stack in order of ascending metrics. Go
to Step 2.

Observation: It should be pointed out that the above code
construction algorithm focuses only on VLECs that satisfy the
prefix-free condition, i.e., VLECs for which no codeword can
be a prefix of any other codeword. Although there exist non-
prefix-free but uniquely decodable VLECs, their implementa-
tion may require extra mechanisms such as buffers; hence,
they are generally regarded as less cost-effective. For this
reason, we restrict ourselves to the search of optimal prefix-
free VLECs as in most previous works [1], [5], [7]-[10].



C. Proof of Optimality

To show that the proposed algorithm can always find a
VLEC with minimal average codeword length and free dis-
tanced∗free, the following lemma is needed.

Lemma 1: The metricf of each node is not greater than
its children:

f(P) ≤ f(L) andf(P) ≤ f(R),

where nodeP is the parent ofL, andR as shown in Fig. 2.
Proof: The candidate codewords of each node are listed

in order of non-decreasing lengths (i.e.,A = {a1, a2, a3, · · · }
with |a1| ≤ |a2| ≤ |a3| · · · ). For the left childL, AL is a
subset ofAP\{aP1}. Hence|aPi+1| ≤ |aLi | for all integersi ≥ 1.
Therefore,

f(P) =

t
∑

i=1

pi · |c
P
i |+

K
∑

i=t+1

pi · |a
P
i−t|

=

t
∑

i=1

pi · |c
P
i |+ pt+1 · |a

P
1|+

K
∑

i=t+2

pi · |a
P
i−t|

≤
t

∑

i=1

pi · |c
P
i |+ pt+1 · |a

P
1|+

K
∑

i=t+2

pi · |a
L
i−t−1|

= f(L).

Since|aPi | ≤ |aPi+1| for i ≥ 1, for the right childR, we have

f(P) =

t
∑

i=1

pi · |c
P
i |+

K
∑

i=t+1

pi · |a
P
i−t|

≤
t

∑

i=1

pi · |c
P
i |+

K
∑

i=t+1

pi · |a
P
i−t+1|

= f(R).

The proposed algorithm repeatedly pops out the node with
smallestf from the Stack. Suppose that the algorithm encoun-
ters the first top node which has selectedK codewords and
its free distance equalsd∗free; then by Lemma 1, no matter how
the algorithm continues, extending any node in the Stack will
generate a node with metricf no smaller then the top node.
Hence, the algorithm yields an optimal VLEC.

IV. MAP D ECODER

Usually, an MAP decoder for VLECs operates under the
assumption that the receiver knows only the number of trans-
mitted bits. However, if the receiver also knows the number
of transmitted codewords, the error performance of the MAP
decoder can be improved. As a result, the MAP decoder can
operate on an extended trellisTL,N as shown in Fig. 1(b).
This extended trellis has much more nodes than the traditional
trellis TN .

We then proceed by representing a path fromS0,0 to
Si,j in trellis TL,N by the codeword it traversesx(i,j)

(0,0) ,

x1x2 · · ·xi ∈ Xi,j , where eachxi ∈ C. We can also represent

x
(i,j)
(0,0) by its equivalent binary streamb1b2 · · · bj and define

the path metric ofx(i,j)
(0,0) as

g
(

x
(i,j)
(0,0)

)

=

j
∑

ℓ=1

(yℓ ⊕ bℓ)|φℓ| − lnPr
(

x
(i,j)
(0,0)

)

. (1)

Then, the MAP decision with knownL andN at the receiver
can be found by applying the VA over trellisTL,N with the
path metric just defined. However, as the number of nodes
in TL,N grows dramatically even with moderateL and N ,
the decoding complexity of such a straightforward design is
apparently infeasible.

A. Two-Phase MAP decoder

Inspired by the decoder algorithm proposed in [6], an
alternative two-phase decoding design is therefore proposed in
this work to search for the MAP decision over trellisTL,N . The
proposed algorithm first applies the VA in a backward fashion
on trellis TN , which has a considerably smaller number of
nodes thanTL,N , and retains the metrich(Sj) of each reverse
path ending at nodeSj . If at the end of the first phase, the
reverse path with the minimum metric containsL codewords,
then this is the final decision, and there is no need to proceed
to the second phase; otherwise, the second phase is performed.
The first phase is described as follows.

Step 1. Associate a zero path metric to nodeSN in TN ,
h(SN ) = 0.

Step 2. Apply the backward VA with path metric given by
(1) from SN on TN , and record the metric and
survivor path for each state ash(Si) and pb(Si),
respectively.

Step 3. If the number of codewords correspond topb(S0) is
equal toL, then outputpb(S0) as the MAP decision
and the algorithm stops; otherwise, go to phase 2.

In the second phase, the decoding metric for pathx
(i,j)
(0,0) in

TL,N is re-defined as

m
(

x
(i,j)
(0,0)

)

= g
(

x
(i,j)
(0,0)

)

+ h (Si,j) ,

whereh(Si,j) = h(Sj). We can then apply the algorithm of
[2] in a forward way on trellisTL,N and determine the MAP
decision. The second phase of the decoder is next described.

Step 1. Initialize the path metric ofx(0,0)
(0,0) asm(x

(0,0)
(0,0)) =

h(S0), and load it into the Open Stack.
Step 2. If the top node of the Open Stack reaches the final

stateSL,N in TL,N , then output its associated path
as the MAP decision and the algorithm stops.

Step 3. Record the state of the top node in the Close Table,
then extend the top node to all its successors and
compute their metrics. Delete the top node from the
Open Stack.

Step 4. Discard the successors that have been recorded in
the Close Table. Discard the successors for which
the number of decoded symbols exceedsL or the
number of decoded bits exceedsN .

Step 5. Insert the remaining successors into the Open Stack
and reorder the Open Stack in order of ascending
metrics. Go to Step 2.



In the second phase described above, theOpen Stack1 is a
data structure which stores all visited nodes and can easily
access the node with minimum decoding metric. Unlike the
Open Stack, theClose Table is used to record nodes that have
been extended.

B. Proof of Optimality

The proof is similar to the one given in Section III-C, except
that we need to prove that the path metric is non-decreasing
along any path on trellisTL,N .

Lemma 2: In the second phase, the decoding metric is non-
decreasing along any path on trellisTL,N , i.e.,

m
(

x
(i,j)
(0,0)

)

≤ m
(

x
(i+1,j+m)
(0,0)

)

,

if there exists a codewordc ∈ C and |c| = m.
Proof: Based on the backward VA of the first phase,

h(Sj) is the minimal metric among all paths from levelj
to the final node; i.e.,

h(Sj) = min
i:
∑

L

k=i+1
|xk|=N−j with eachxk∈C

g
(

x
(L,N)
(i,j)

)

.

When there is a codewordc ∈ C and |c| = m, then

h(Sj) ≤ g
(

x
(i+1,j+m)
(i,j)

)

+ h (Sj+m) .

Therefore,

m
(

x
(i,j)
(0,0)

)

= g
(

x
(i,j)
(0,0)

)

+ h(Sj)

≤ g
(

x
(i,j)
(0,0)

)

+ g
(

x
(i+1,j+m)
(i,j)

)

+ h (Sj+m)

= g
(

x
(i+1,j+m)
(0,0)

)

+ h(Sj+m)

= m
(

x
(i+1,j+m)
(0,0)

)

.

V. SIMULATION RESULTS OVER THEAWGN CHANNEL

In all simulations, the alphabet setS is obtained by grouping
a block of 3 information bits generated from a binary non-
uniform memoryless source with bit probabilitiesp0 and
p1 = 1− p0. In Table I, we compare the VLECs found by the
proposed method with Buttigieg’s code [1] and the code by
Wanget al. [7] for different values ofp0 andd∗free. Since our
proposed algorithm guarantees to find VLECs with minimal
average codeword length under a fixedd∗free, the resulting
VLECs have a shorter average codeword length than any other
code with identical free distance. Note that the algorithmsof
Buttigieg and Wanget al. generate identical VLEC when free
distance equal to5 and7.

We next investigate the error performance2 of different
VLECs and coding schemes for a BPSK-modulated AWGN
channel with average energy per information bitEb and noise

1In our simulations, theOpen Stack is implemented via the date structure
HEAP [11]. One important property ofHEAP is that it can access the node
with minimal metric within aO(log(n)) complexity, wheren denotes the
HEAP’s number of nodes.

2The error performance in terms of the information bit error rate (BER) is
measured via the Levenshtein distance.

TABLE I
AVERAGE CODEWORD LENGTH PER INFORMATION BIT OF A

8-ARY ALPHABET GENERATED FROM A BINARY NON-UNIFORM
(p0) MEMORYLESS SOURCE

Algorithm Buttigieg’s [1] Wang’s [7] Proposed

p0 0.7 0.8 0.7 0.8 0.7 0.8

d∗free = 3 1.66 1.39 1.52 1.36 1.49 1.33
d∗free = 5 2.15 1.97 2.15 1.97 2.11 1.86
d∗free = 7 2.78 2.62 2.78 2.62 2.67 2.41

varianceN0/2. In all simulations, at least 100 block errors
were counted to ensure the accuracy of the results.

In Fig. 3, 30 information bits (i.e.,10 grouped symbols)
are encoded by the VLECs withd∗free = 7 of Table I. The
dotted lines show the performance of the MAP decoder under
the assumption that the receiver only knows the number of
transmitted bits,N . The solid line portrays the MAP decoder’s
performance under the assumption that receiver knows both
number of symbols,L, and transmitted bits,N . We clearly
observe that VLECs found by the proposed method outperform
the other VLECs; furthermore, about0.5 dB in coding gain is
realized by knowingL (in addition toN ).

Fig. 4 presents the performance of VLECs found by the
proposed method withd∗free = 7 for different values ofp0
andL. The figure indicates that the VLECs are better when
the source distribution is more biased and the block length is
shorter.

In Fig. 5, we compare the VLECs found by the proposed
method withd∗free = 7 with a traditional tandem (separate)
source-channel coding scheme. The information bits are gen-
erated usingp0 = 0.8, and ten3-bit symbols (L = 10) are
encoded and transmitted. The tandem system is a concatena-
tion of Huffman code and a(2, 1, 4) tail-biting convolutional
code (TBCC) with generator polynomial[27, 31] (in octal) and
d∗free = 7. The tandem system performs only about0.3 dB
better than the VLEC code at a BER of10−5. For signal-to-
noise ratios (SNRs)Eb/N0 ≤ 3 dB, the VLEC has a better
BER performance than the tandem system.

Finally, Table II compares the decoding complexity of
different schemes forp0 = 0.8 andL = 10. From the table, we
remark that the two-phase MAP decoder has similar decoding
complexity as VA-MAP onTN while achieving about0.5
dB coding gain in error performance. For identical error
performance, the two-phase decoding algorithm spends almost
4 times less in branch computations than VA-MAP onTL,N .
In comparison with the tandem scheme mentioned above, the
two-phase MAP decoder requires less decoding complexity
than the decoding of the(2, 1, 4) TBCC component code by
a PFSA decoder [6].

VI. CONCLUSION

In this work, an optimal search algorithm for prefix-free
VLECs and an efficient MAP decoder are proposed. The
resulting (optimal) VLECs outperform all existing VLECs
with identical free distance and are comparable to a tandem
scheme that concatenates a Huffman code with a tail-biting
convolutional code. One advantage of the VLEC approach
(as opposed to tandem coding) is that only one encoder and



TABLE II
AVERAGE (AVG) AND MAXIMUM (MAX ) NUMBERS OF BRANCH COMPUTATIONS

Eb/N0 1 dB 2 dB 3 dB 4 dB 5 dB

scheme avg max avg max avg max avg max avg max
code decoder

our VLEC VA-MAP on TN 459 768 459 768 459 768 459 768 459 768
with VA-MAP on TL,N 1651 2600 1651 2600 1651 2600 1651 2600 1651 2600

d∗free = 7 2-phase MAP onTL,N 461 3047 460 1780 459 956 459 768 459 768

(2, 1, 4) TBCC PFSA in [6] 730 2189 704 1668 700 1408 699 1408 699 1408
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MAP on TN for Buttigieg’s (Wang’s) Code

MAP on TN for Our Code

MAP on TL,N for Buttigieg’s (Wang’s) Code
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Fig. 3. BER for MAP decoding VLECs withd∗free = 7. The block length
L = 10 and the number of information bits is30.
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p0 = 0.7, L = 100
p0 = 0.8, L = 100
p0 = 0.7, L = 10
p0 = 0.8, L = 10

Fig. 4. BER for MAP decoding onTL,N the VLECs found by the proposed
method withd∗free = 7 for different values ofp0 and block lengthL.

decoder are needed. It is known that the VLECs’ free distance
only affects their BER performance for high SNRs. Optimizing
VLECs in terms of other parameters such as the number of
codewords of weight equal to the free distance to further
improve BER performance in the medium-to-low SNR range
is an interesting future work.
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