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Abstract

In light of recent results by Verdu and Han on channel capacity, we examine three problems:
the strong converse condition to the channel coding theorem, the capacity of arbitrary channels
with feedback and the Neyman-Pearson hypothesis testing type-II error exponent. It is first
remarked that the strong converse condition holds if and only if the sequence of normalized channel
information densities converges in probability to a constant. Examples illustrating this condition
are also provided. A general formula for the capacity of arbitrary channels with output feedback
is then obtained. Finally, a general expression for the Neyman-Pearson type-II error exponent
based on arbitrary observations subject to a constant bound on the type-1 error probability is
derived.
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Introduction

In this paper, we investigate three problems inspired by the recent work of Verdi and Han
on the general capacity formula of arbitrary single-user channels [6]. We first address the strong
converse condition obtained in [6] and provide examples of channels for which the strong converse
holds. We next derive a general capacity formula for arbitrary single-user channels with output
feedback. Finally, we analyze the Neyman-Pearson hypothesis testing problem based on arbitrary

observations.

In [6], Verdid and Han give a necessary and sufficient condition for the validity of the strong
converse to the channel coding theorem. They state that the strong converse holds if and only if
the channel capacity is equal to the channel resolvability. We remark that if there exists an input
distribution P%, achieving the channel capacity, then the strong converse condition is actually
equivalent to the convergence in probability to a constant (or in distribution to a degenerate
random variable) of the sequence of normalized information densities according to a joint input-
output distribution with P, as its induced marginal. We furthermore note that the expression
of the strong capacity, which will be defined later, is given by the channel resolvability. We also

obtain examples of discrete channels satisfying the strong converse condition.

The main tool used in [6] to derive a general expression for the (nonfeedback) channel capacity
is a new approach to the (weak) converse of the coding theorem based on a simple lower bound
on error probability. We utilize this result to generalize the capacity expression for channels
with feedback. Feedback capacity is shown to equal the supremum, over all feedback encoding
strategies, of the input-output inf-information rate which is defined as the liminf in probability

of the normalized information density.

We finally consider the Neyman-Pearson hypothesis testing problem based on arbitrary ob-
servations. We derive a general expression for the type-II error exponent subject to a fixed bound
on the type-I error probability. We observe that this expression is indeed the dual of the general

e-capacity formula given in [6].



On the strong converse of the single-user channel

1. Strong converse condition

Consider an arbitrary single-user channel with input alphabet A and output alphabet B and

n-dimensional transition distribution given by W) = Pynjxn : A" = B n=1,2,....

Definition 1 ([6]) An (n, M, ¢€) code has blocklength n, M codewords, and (average) error prob-
ability not larger than e. R > 0 is an e-achievable rate if for every v > 0 there exists, for all

sufficiently large n, (M,n,€) codes with rate

logs M

n

> R —7.

The mazimum e-achievable rate is called the e-capacity, C.. The channel capacity, C, is defined as
the mazimal rate that s e-achievable for all 0 < e < 1. It follows immediately from the definition

that C = lim._q C..

Definition 2 ([6]) A channel with capacity C is said to satisfy the strong converse if for every

6 > 0 and every sequence of (n, M, \,) codes with rate

log, M

n

> C + 6,
it holds that A\, — 1 as n — oo.

In [6], Verdd and Han derive a general formula for the operational capacity of arbitrary single-
user channels (not necessarily stationary, ergodic, information stable, etc.). The (nonfeedback)

capacity was shown to equal the supremum, over all input processes, of the input-output inf-

information rate defined as the liminf in probability of the normalized information density:

C=sup [ (X"Y"), (1)
Xn

where X" = (X3,...,X,,), for n = 1,2,..., is the block input vector and Y = (¥7,...,Y,) is the

corresponding block output vector induced by X" via the channel.



The symbol I (X";Y™) appearing in (1) is the inf-information rate between X" and Y™
and is defined as the liminf in probability of the sequence of normalized information densities
L ixnyn(X";Y™), where

Pyopen (b]a")

anYn(an; bn) = 10g2 PYn(bn) . (2)

Likewise, the sup-information rate denoted as I(X™;Y") is defined as the limsup in probability of

the sequence of normalized information densities.

The liminf in probability of a sequence [6] of random variables is defined as follows: If A, is
a sequence of random variables, its liminf in probability is the largest extended real number «
such that for all ¢ > 0, limsup,_,, Pr(A, < a —¢] = 0. Similarly, its limsup in probability is
the smallest extended real numbers 8 such that for all ¢ > 0, limsup, . Pr[A, > g+ £ = 0.
Note that these two quantities are always defined; if they are equal, then the sequence of random

variables converges in probability to a constant (which is «).

In Theorem 6 in [6], Verdu and Han establish general expressions for e-capacity. They also
give a necessary and sufficient condition for the validity of the strong converse (Theorem 7 in [6]),

which states that the strong converse condition is equivalent to the condition

sup I(X"; V™) :supj(X”;Y”), (3)
xn xn

ie. C =95, where S2 supy» [(X™;Y™) denotes the channel resolvability, which is defined as the
minimum number of random bits required per channel use in order to generate an input that
achieves arbitrarily accurate approximation of the output statistics for any given input process

[4]. Furthermore, if channel input alphabet is finite, then

C' =5 = lim sup l](X”;Y”).

n—00 yn 1

Lemma 1 If (3) holds and there exists X" such that
sup [(X™; V™) = [(X™ Y™,
Xn
then
I(X™ Y™y =I(X™Y™).

e



Proof: We know that
L(X™5Y") = sup [(X":¥7) = sup [(X";Y7) = (X7 Y7),
But I(X™;Y") < I(X™;Y™"), for all X”. Hence
L(X™Y") = [(X%5Y"),
O

Remark: The above lemma states that if (3) holds and there exists an input distribution that
achieves the channel capacity, then it also achieves the channel resolvability. However, the con-
verse is not true in general; i.e., if (3) holds and there exists an input distribution that achieves

the channel resolvability, then it does not necessarily achieve the channel capacity.

Observation 1 [f we assume that there exvists an input distribution P%. that achieves the channel

capacity, then the following two conditions are equivalent:

1o supyn L(X™ Y") = supyn [(X"; Y7™).

2. Lixnwn (X" Y™) converges to a constant (which is the capacity C') in probability according
to the joint input-output distribution Pxnyn, such that its induced marginal is Pyn and the

induced conditional distribution Pyn xn is given by the channel transition distribution.

We will hereafter use the condition stated in the above observation to verify the validity of

the strong converse. But first, we note the following result.

Define the strong converse capacity (or strong capacity) Csc as the infimum of the rates R
such that for all block codes with rate R and blocklength n,
liminf P =1,

where P(") is probability of decoding error. It follows from the definition that

Cso = lirrllcs.



Lemma 2

Cs¢c = sup j(X”; Y.
Xn

Proof:

1. Csc > supyn I(X";Y"™): From the definition of the strong converse capacity, we only
need to show that if the probability of decoding error of a (sequence of) block code satisfies

liminf, ., P =1, its rate must be greater than supy. I(X";Y™).

Let X™ be the input distribution satisfying j()?”, Y™) > supyn [(X™;Y")—¢, and let M = ¢"F,
Also let Pe(”) satisfy liminf, Pm =1,

€

From Theorem 1 in [6] (also from Feinsteins’s lemma), there exists an (n, M, PU) code that

satisfies

1 — 1
P <p [—i;?nwn(X”;Y”) < —10gM+7] +exp {—yn},
n n

for any v > 0%, which implies

(V~v>0) liminfP

S (X YY) <R ]:1.
n—00 [nZX"W"( ’ ) — + v

The above result is identical to

(V~v>0) limsupP

n—oo

[—i;?nwn()?”; Y >R+ 7] = 0.
n

Finally, by the definition of sup-information rate, £ must be greater than j()?”, Y7™) > supyn [(X™;Y™)—

€. Since ¢ can be made arbitrarily small, we have the desired result.

2. Cso = supy [(X™Y"): If Cse > supyn [(X™;Y"), then there exists a code with rate
Csc > R = tlog M > supy» I(X™;Y™) + ¢ such that

liminf P < 1, (4)

n—oo

'To make it clear, we re-phrase Theorem 1 in [6] as follows.

Fix n and 0 < Pe(n) < 1, and also fix the input distribution P, on A", Then for every v > 0, there exists an

n, M, Pe(n) code for the given transition probability W that satisfies
g
1
(n) — .~
P < nlxn

- 1
wa (X Y7) < —log M+ | +exp {—yn}.



for some € > 0. From [6,Theorem 4], every (n, M) code satisfies,
1. 1 €
P > P | —ixapn(X™"Y") < —log M — 5] —exp{—en/2},
n n

where X™ places probability mass 1/M on each codeword. Hence,

lim inf P -%anWn(X”;Y”) < %logM — %] —exp {—en/2}
= liminf P %@'ann(xn; Yy < R— g] —exp {—en/2)
> liminf P %@'Wn(xn;yn) < I(X™Y™) +5/2] —exp {—en/2)
— 1, -
which implies liminf, ., P = 1, and contradicts (4). O

It can be easily shown that for any input distribution X",
I(X™ Y™ <sup{R: Fx(R) <e} < I(X™Y™),

where

1
Fx(R) £ limsup P i (XY < R

n—oo

Hence, from Theorem 6 in [6], if we assume that supy. sup{R : Fx(R) < ¢} is continuous in ¢,

we obtain that

C <(C.<Cse.

The above equation leads to the following result.
Corollary 1 C =5 =Cgsc iff C. = C for all e € (0,1).

2. Examples of channels satisfying the strong converse

A. Additive noise channel

Consider the channel with common input, noise, and output alphabet, 4 = {0,1,...,¢9 — 1},
described by
Yn - Xn S%; Zn7
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where @ denotes addition modulo ¢ and X,,, Z, and Y,, are respectively the input, noise, and
output symbols of the channel at time n, n = 1,2,.... We assume that the input and noise
sequences are independent of each other. We also assume that the noise process is stationary and

ergodic.

Since the channel is symmetric, the input process that achieves (3) is uniform i.i.d. , which
yields a uniform i.i.d. output process. It follows from the Shannon-McMillian theorem that the
information spectrum converges to C' where C' =log ¢ — H(Z.,). Here, H(Z.,) denotes the noise

entropy rate. Therefore, the strong converse holds, and C. = Cgc = C for all € € (0, 1).

Observation 2 [f the noise process is only stationary, then the strong converse does not hold in
general. Indeed, by the ergodic decomposition theorem [2], we can show thatl the additive noise
channel is an averaged channel whose components are g-ary channels with stationary ergodic
additive noise. In this case, we obtain using Theorem 6 in [6], a general e-capacity formula for

this channel:

C. = logq — F7'(1 - 2),

where U is a random variable with cumulative distribution function Fyy(-)* such that the sequence
—Llog P(Z™) converges to U in probability. Furthermore, it is known that U = Hy(Zs) where
Hy(Z..) is the entropy rate of the ergodic components 8 defined on the space (0,0(0),G)?. The
distribution of U can hence be derived using the mizing distribution G of the average channel.

Finally, we remark that
lim%C6 =logq— F;'(1) = log q — esse sup Hy(Zo) = C,

as expected.

?We assume the CDF Fy(-) admits an inverse. Otherwise, we can replace F[jl() by

Fi (2)2 sup{y : Fu(y) < ).

3We assume that the probability space (0, 0(0), (i) satisfies certain regularity conditions [2].



B. Additive noise channel with input cost constraints

In general, the use of the channel is not free; we associate with each input letter + a nonnegative
number b(z), that we call the “cost” of x. The function b(-) is called the cost function. If we
use the channel n consecutive times, i.e., we send an input vector ™ = (w1, xg,...,2,), the cost

associated with this input vector is “additive”; i.e.,

For an input process {X;}22, with block input distribution P™ (X" = 2") the average cost for
sending X" is defined by

B = PO ba) = 3 E[(X)].
We assume that the cost function is “bounded”; i.e., there exists a finite byay such that b(x) < byayx

for all  in the set {0,...,¢—1}.

Definition 3 An n-dimensional input random vector X™ = (X1, Xy, ..., X,,) that satisfies
1 n

is called a B-admaissible input vector. We denote the set of n-dimensional f-admissible input
distributions by 7,(/):
1
m(8) = { PO B (X)) < B}

Recall that a channel is said to be stationary if for every stationary input, the joint input-
output process is stationary. Furthermore, a channel is said to be ergodic if for every ergodic
input process, the joint input-output process is ergodic. It is known that a channel with stationary

mixing additive noise is ergodic [2,5].
Lemma 3 If the noise process is stationary and mizing, then the strong converse holds:

C=(8) = C(p) = lim C.(B),

n—oo



where C,(3) is the n'th capacity-cost function given by

1
C.(3)2 — (X" Y™,
g S )

Proof: Since the channel is a causal, historyless* and stationary ergodic channel, and the cost
function is additive and bounded, then there exists a stationary ergodic input process that achieves
C(/3). This follows from the dual result on the distortion rate function D(R) of stationary ergodic
sources, which states that for a stationary ergodic source with additive and bounded distortion
measure, there exists a stationary ergodic input-output process Pxnyn that achieves D(R) such

that the induced marginal Pxn is the source distribution [2,3].

00
n=1

Therefore, if we form the joint input-output process {(X,,, ¥,,)}°2, using the stationary ergodic

input process that achieves C'(3), we obtain that {(X,,Y,)}:2, is stationary ergodic. Hence,
Lixnyn(X";Y™) converges to C'(3) in probability. O

General capacity formula with feedback

Consider a discrete channel with output feedback. By this we mean that there exists a
“return channel” from the receiver to the transmitter; we assume this return channel is noiseless,
delayless, and has large capacity. The receiver uses the return channel to inform the transmitter
what letters were actually received; these letters are received at the transmitter before the next

letter is transmitted, and therefore can be used in choosing the next transmitted letter.

A feedback code with blocklength n and rate R consists of sequence of encoders
fi{1,2,...,2" "y x B - A
fore=1,2,...,n, along with a decoding function

g: B" —{1,2,..., 2"},

4Recall that a channel is said to be causal (with no anticipation) if for a given input and a given input-output
history, its current output is independent of future inputs. Furthermore, a channel is said to be historyless (with
no input memory) if its current output is independent of previous inputs. Refer to [2] for more rigorous definitions
of causal and historyless channels.

10



where A and B are the input and output alphabets, respectively. The interpretation is simple:
If the user wishes to convey message V € {1,2,...,2"} then the first code symbol transmit-
ted is X7 = fi(V); the second code symbol transmitted is Xy = f2(V,Y]1), where Y] is the
channel’s output due to X;. The third code symbol transmitted is X3 = f3(V,Y1,Y3), where
Y, is the channel’s output due to X;. This process is continued until the encoder transmits
X, = fu(V,Y1,Ys, ... Y1), At this point the decoder estimates the message to be g(Y™), where
Y"=[Y, Y, ..., ).

We assume that V'is uniformly distributed over {1,2,...,2"%}. The probability of decoding

error is thus given by:

2nR

n 1 n n
P = g 2 Prie™) # VIV = k) = Prig(Y") # V).
We say that a rate R is achievable (admissible) if there exists a sequence of codes with blocklength
n and rate R such that

lim P™ =0,

n—oo €

We will denote the capacity of the channel with feedback by Crg. As before, Crp is the

supremum of all admissible feedback code rates.

Lemma 4 The general capacity formula of an arbitrary channel with feedback is
Crp =sup L(V;Y7),
Xn

where the supremum is taken over all possible feedback encoding schemes.”

Proof:

.....

We first state the following result.

5

sup I(V; V") = sup I(V;Y™)y= sup I(V;Y").
Xn Xo=(f1(V),f2(V,Y1),.., fu (VY= 1)) (f1,f2,- - fn)

11



Proposition 1 For a feedback code of blocklength n and size M, the probability of error satisfies
1
P > p —wyn (W3 Y") < —logM —~| —exp{—7n},
n n

for every v > 0, where Py (W = w) =1/M for all w.

The proof of the proposition is as follows. Let 3 = exp {—yn}. Define

c 2 {(w,b”) €{1,2,..., M} x V" : Pypn(w]d") < 5}
= {(w7bn)e{1727"'7M}Xyn : lZWY"(U);bn) S l10g]\4—")/}
n n

= Uwle{w} x B,

where B, 2 {0 € V' : Pwyn(w|b®) < B}. By defining D,, € V" be the decoding set

corresponding to w, we obtain

Pwyn(L) = Y Pwy-({w} x B,)

w=1
M M
= S Arrs({w} x (Bu N D) + 3 P ({w} x (B ND.))
w=1 w=1
M 1 M
= Z MPYn“/V(Bw N D, |w) + Z Pwyn({w} x (By NDy))
w=1 w=1
Mo
< X 7P (D) + BV, D),
w=1
because D,, are pair—wise disjoint.
< PM 4B,

Based on this proposition, we can show that

Crp < sup I(V;Y™")
(fl ~~~~~ fn)

using proof-by-contradiction [6].

.....

This follows directly using Feinstein’s lemma as in [6]. O

12



General formula for the Neyman-Pearson hypothesis
testing error exponent

In this section, we consider a Neyman-Pearson hypothesis testing problem for testing a null
hypothesis Hy : Pxn against an alternative hypothesis H; : () x» based on a sequence of random
observations X" = (Xy,...,X,), which is supposed to exhibit a probability distribution of either
Pxn or ) xn». Upon receipt of the n observations, a final decision about the nature of the random
observations is made so that the type-II error probability j3,, subject to a fized upper bound ¢
on the type-1 error probability «,, is minimized. The type-I error probability is defined as the
probability of accepting hypothesis H; when actually Hy is true; while the type-II error probability

is defined as the probability of accepting hypothesis Hy when actually H; is true [1].

For arbitrary observations (not necessarily stationary, ergodic), we derive a general formula
for the type-1I error exponent subject to a constant upper bound ¢ on the type-I error probability.

This is given in the following lemma.

Lemma 5 Given a sequence of random observations X" = (Xi,...,X,) which is assumed to

have a probability distribution either Pxn or (Qxn, the type-1I error exponent satisfies

sup{D : F(D)<e} < liﬂgp—%log Br(e) < sup{D: F(D)<e}, (5)
sup{D : F(D) < e} < hg(i)glf—%log Br(e) < sup{D: F(D)<e}, (6)

where

LX)
Q(X™)

1
F(D) 2 liminf P ~log

n—oo

P(X" _ 1
(X*") <D}, and F(D) 2 limsup P |—log
n

QX™) n—oco =7

Y

and 37(e) represents the minimum type-1I error probability subject to a fixed type-1 error bound
€ (0,1).

Proof: We first prove the lower bound of limsup,_., —(1/n)log 8%(¢). For any D satisfying
F(D) < e, there exists ¢ > 0 such that F(D) < e — 26; and hence, by the definition of £(D), (3

13



a subsequence {n;} and N) such that for j > N,

Pl

— log < e—06 < e

n; CQ(Xm) T

Fe) < Q [;log

IA
~
=

g

Therefore,

1 1
limsup—glogﬂfb(e) > limsup—flogﬂzj(e) > D,

n—o0 j—00 n]
for any D with F(D) < e.
For the proof of the upper bound of limsup,_ . —(1/n)log 8%(¢), let U, be the optimal ac-

ceptance region for alternative hypothesis under likelihood ratio partition, which is defined as

R R ot T S

for some 7, and possible randomization factor 5, € [0,1). Then P(U,) = «.

follows.

Let D = sup{D : F(D) < e}. Then F(D + 6) > ¢ for any 6 > 0. Hence, (I v = ~v(é) > 0),
F(D+6)>¢e+7.

By the definition of F(D + ¢), (3 N)(V n > N)

1 P(X™) ~
Therefore,
: Mo 2090 ) 1o 2 )

I o
LP(XT) TD
noCQ(X)

QLX)
> (plovestmgi
X exp {—n(D + 6)}

> T

14



_ @ﬂ%bgpwm)SQﬁﬁ]—Pl%bgggZ;<m
P(X™)

Q@Xw::“4)><@®{—nu2+5n

> (af—l—%—e)exp{—n(g—l—(S)}, for n > N

- %exp{—n(g—l— 8)}, forn> N. (9)

1
limsup—glog prle) < D+6.

Since 6 can be made arbitrarily small,

1
lim sup - log 37(e) < D.

n—oo

Similarly, to prove the lower bound of liminf,_.. —(1/n)log 3:(¢), we first note that for any
D satisfying F'(D) < e, (36 > 0) such that F(D) < & — 26; and hence, by the definition of F(D),

(IN)Vn>N),
1 P(X™)
P 510gQ(X”)§D < e—06 < e

By following the same procedure of (7), we have for n > N,

Bule) < exp{-nDj},

Therefore,
1
liminf ——log B2(c) > D,
n

n—oo

for any D with F(D) < e.

Then for the proof of the upper bound of liminf, ., —(1/n)log 8:(g), let D = sup{D :
F(D) <e&}. Then F(D + §) > ¢ for any § > 0. Hence, (3 v =~(8) > 0), F(D+8) >e+1.

By the definition of FI(D + §), (3 a subsequence {n;} and N) such that for j > N,

1 P(X"

n; Q(X7™)

Therefore, by following the same procedure as (9), we have for j > N,

<D+5¢

7
>

() > Jexp{—ny(D+4)}

15



1 1
liminf ——log 35 (c) < liminf——Ilog g (¢) < D +6.
n—00 n 7J—00 : J

U3

Since 6 can be made arbitrarily small,

1 _
liminf ——log 37 (c) < D.
n

n—oo

Remarks:

e Both F(D) and F(D) are non-decreasing; hence, the number of discontinuous points for

both functions is countable.

o When the normalized log-likelihood ratio converges in probability to a constant D. under
null distribution which is the case for most detection problems of interest, the type-II error
exponent is that constant D., and is independent of the type-I error bound e. For exam-
ple, in a special case of i.i.d. data source with |Ep [log P(X)/Q(X)]| < oo, both functions

degenerate to the form

F(D)=FD)=1 if D> D,

F(D)=E(D)=0 it D <D,
where D, 2 Epllog P(X)/Q(X)]. As a result, for ¢ € (0,1),

1 1
lim sup—glog Bre) = 1igr_l>;1>£lf—g10g Bale) = De.

n—oo

o The significance of the general type-1I error exponent formula of fixed level becomes trans-
parent when the spectrum (the cumulative distribution function) of the normalized log-
likelihood ratio converges in probability under P (which is weaker than convergence in
mean) to a random variable Z with invertible cumulative distribution function F'(-). In this

case, the type-1I error exponent can be explicitly written as

lim — - log #(e) = F1(e),

n—oo n

16



for e € (0,1). A more extreme case is that 7 is almost surely a constant which is

o1
lim =D (Py[|Qx0)

n—oo n

if the limit exists, where D(-||-) is the Kullback-Leibler divergence of two probability mea-
sures. This result coincides with that obtained from Stein’s Lemma. This is also the
counterpart result of the strong converse condition (i.e., the e-capacity is independent of )

for discrete memoryless channels (DMC) [6].
Summary

In this paper, we considered three different problems related to the work of Verdi and Han
on channel capacity [6]. Pertinent observations concerning the validity of the strong converse
to the channel coding theorem, as well as examples of channels for which the strong converse
holds, were provided. General expressions for the feedback capacity of arbitrary channels and the

Neyman-Pearson type-II error exponent of constant test level were also derived.
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