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IntroductionIn this paper, we investigate three problems inspired by the recent work of Verd�u and Hanon the general capacity formula of arbitrary single-user channels [6]. We �rst address the strongconverse condition obtained in [6] and provide examples of channels for which the strong converseholds. We next derive a general capacity formula for arbitrary single-user channels with outputfeedback. Finally, we analyze the Neyman-Pearson hypothesis testing problem based on arbitraryobservations.In [6], Verd�u and Han give a necessary and su�cient condition for the validity of the strongconverse to the channel coding theorem. They state that the strong converse holds if and only ifthe channel capacity is equal to the channel resolvability. We remark that if there exists an inputdistribution P �Xn achieving the channel capacity, then the strong converse condition is actuallyequivalent to the convergence in probability to a constant (or in distribution to a degeneraterandom variable) of the sequence of normalized information densities according to a joint input-output distribution with P �Xn as its induced marginal. We furthermore note that the expressionof the strong capacity, which will be de�ned later, is given by the channel resolvability. We alsoobtain examples of discrete channels satisfying the strong converse condition.The main tool used in [6] to derive a general expression for the (nonfeedback) channel capacityis a new approach to the (weak) converse of the coding theorem based on a simple lower boundon error probability. We utilize this result to generalize the capacity expression for channelswith feedback. Feedback capacity is shown to equal the supremum, over all feedback encodingstrategies, of the input-output inf-information rate which is de�ned as the liminf in probabilityof the normalized information density.We �nally consider the Neyman-Pearson hypothesis testing problem based on arbitrary ob-servations. We derive a general expression for the type-II error exponent subject to a �xed boundon the type-I error probability. We observe that this expression is indeed the dual of the general"-capacity formula given in [6]. 2



On the strong converse of the single-user channel1. Strong converse conditionConsider an arbitrary single-user channel with input alphabet A and output alphabet B andn-dimensional transition distribution given by W (n) = PY njXn : An ! Bn; n = 1; 2; : : :.De�nition 1 ([6]) An (n;M; �) code has blocklength n, M codewords, and (average) error prob-ability not larger than �. R � 0 is an �-achievable rate if for every  > 0 there exists, for allsu�ciently large n, (M;n; �) codes with ratelog2 Mn > R � :The maximum �-achievable rate is called the �-capacity, C�. The channel capacity, C, is de�ned asthe maximal rate that is �-achievable for all 0 < � < 1. It follows immediately from the de�nitionthat C = lim�!0 C�.De�nition 2 ([6]) A channel with capacity C is said to satisfy the strong converse if for every� > 0 and every sequence of (n;M; �n) codes with ratelog2 Mn > C + �;it holds that �n ! 1 as n!1.In [6], Verd�u and Han derive a general formula for the operational capacity of arbitrary single-user channels (not necessarily stationary, ergodic, information stable, etc.). The (nonfeedback)capacity was shown to equal the supremum, over all input processes, of the input-output inf-information rate de�ned as the liminf in probability of the normalized information density:C = supXn I (Xn;Y n); (1)where Xn = (X1; : : : ;Xn), for n = 1; 2; : : :, is the block input vector and Y n = (Y1; : : : ; Yn) is thecorresponding block output vector induced by Xn via the channel.3



The symbol I (Xn;Y n) appearing in (1) is the inf-information rate between Xn and Y nand is de�ned as the liminf in probability of the sequence of normalized information densities1n iXnY n(Xn;Y n), where iXnY n(an; bn) = log2 PY njXn(bnjan)PY n(bn) : (2)Likewise, the sup-information rate denoted as �I(Xn;Y n) is de�ned as the limsup in probability ofthe sequence of normalized information densities.The liminf in probability of a sequence [6] of random variables is de�ned as follows: If An isa sequence of random variables, its liminf in probability is the largest extended real number �such that for all � > 0, lim supn!1 Pr[An � � � �] = 0. Similarly, its limsup in probability isthe smallest extended real numbers � such that for all � > 0, lim supn!1 Pr[An � � + �] = 0.Note that these two quantities are always de�ned; if they are equal, then the sequence of randomvariables converges in probability to a constant (which is �).In Theorem 6 in [6], Verd�u and Han establish general expressions for �-capacity. They alsogive a necessary and su�cient condition for the validity of the strong converse (Theorem 7 in [6]),which states that the strong converse condition is equivalent to the conditionsupXn I(Xn;Y n) = supXn �I(Xn;Y n); (3)i.e. C = S, where S4=supXn �I(Xn;Y n) denotes the channel resolvability, which is de�ned as theminimum number of random bits required per channel use in order to generate an input thatachieves arbitrarily accurate approximation of the output statistics for any given input process[4]. Furthermore, if channel input alphabet is �nite, thenC = S = limn!1 supXn 1nI(Xn;Y n):Lemma 1 If (3) holds and there exists ~Xn such thatsupXn I(Xn;Y n) = I( ~Xn;Y n);then I( ~Xn;Y n) = �I( ~Xn;Y n):4



Proof : We know thatI( ~Xn;Y n) = supXn I(Xn;Y n) = supXn �I(Xn;Y n) � �I( ~Xn;Y n):But I(Xn;Y n) � �I( ~Xn;Y n), for all ~Xn. HenceI( ~Xn;Y n) = �I( ~Xn;Y n): 2Remark: The above lemma states that if (3) holds and there exists an input distribution thatachieves the channel capacity, then it also achieves the channel resolvability. However, the con-verse is not true in general; i.e., if (3) holds and there exists an input distribution that achievesthe channel resolvability, then it does not necessarily achieve the channel capacity.Observation 1 If we assume that there exists an input distribution P �Xn that achieves the channelcapacity, then the following two conditions are equivalent:1. supXn I(Xn;Y n) = supXn �I(Xn;Y n).2. 1niXnWn(Xn;Y n) converges to a constant (which is the capacity C) in probability accordingto the joint input-output distribution PXnY n, such that its induced marginal is P �Xn and theinduced conditional distribution PY njXn is given by the channel transition distribution.We will hereafter use the condition stated in the above observation to verify the validity ofthe strong converse. But �rst, we note the following result.De�ne the strong converse capacity (or strong capacity) CSC as the in�mum of the rates Rsuch that for all block codes with rate R and blocklength n,lim infn!1 P (n)e = 1;where P (n)e is probability of decoding error. It follows from the de�nition thatCSC = lim"!1C":5



Lemma 2 CSC = supXn �I(Xn;Y n):Proof :1. CSC � supXn �I(Xn;Y n): From the de�nition of the strong converse capacity, we onlyneed to show that if the probability of decoding error of a (sequence of) block code satis�eslim infn!1 P (n)e = 1, its rate must be greater than supXn �I(Xn;Y n).Let fXn be the input distribution satisfying �I(fXn;Y n) > supXn �I(Xn;Y n)�", and letM = enR.Also let P (n)e satisfy lim infn!1 P (n)e = 1.From Theorem 1 in [6] (also from Feinsteins's lemma), there exists an (n;M;P (n)e ) code thatsatis�es P (n)e � P �1ni eXnWn(fXn;Y n) � 1n logM + �+ exp f�ng ;for any  > 01, which implies(8  > 0) lim infn!1 P �1ni eXnWn(fXn;Y n) � R + � = 1:The above result is identical to(8  > 0) lim supn!1 P � 1ni eXnWn(fXn;Y n) > R + � = 0:Finally, by the de�nition of sup-information rate,Rmust be greater than �I(fXn;Y n) > supXn �I(Xn;Y n)�". Since " can be made arbitrarily small, we have the desired result.2. CSC = supXn �I(Xn;Y n): If CSC > supXn �I(Xn;Y n), then there exists a code with rateCSC > R = 1n logM > supXn �I(Xn;Y n) + " such thatlim infn!1 P (n)e < 1; (4)1To make it clear, we re-phrase Theorem 1 in [6] as follows.Fix n and 0 < P (n)e < 1, and also �x the input distribution PeXn on An. Then for every  > 0, there exists an(n;M;P (n)e ) code for the given transition probability Wn that satis�esP (n)e � P � 1nieXnWn ( eXn;Y n) � 1n logM + � + exp f�ng :6



for some " > 0. From [6,Theorem 4], every (n;M) code satis�es,P (n)e � P � 1niXnWn(Xn;Y n) � 1n logM � "2�� exp f�"n=2g ;where Xn places probability mass 1=M on each codeword. Hence,lim infn!1 P � 1niXnWn(Xn;Y n) � 1n logM � "2�� exp f�"n=2g= lim infn!1 P � 1niXnWn(Xn;Y n) � R � "2�� exp f�"n=2g� lim infn!1 P � 1niXnWn(Xn;Y n) � �I(Xn;Y n) + "=2� � exp f�"n=2g= 1;which implies lim infn!1 P (n)e = 1, and contradicts (4). 2It can be easily shown that for any input distribution Xn,I(Xn;Y n) � supfR : FX(R) � "g � �I(Xn;Y n);where FX(R) 4= lim supn!1 P �1niXnWn(Xn;Y n) � R� :Hence, from Theorem 6 in [6], if we assume that supXn supfR : FX(R) � "g is continuous in ",we obtain that C � C" � CSC :The above equation leads to the following result.Corollary 1 C = S = CSC i� C" = C for all " 2 (0; 1).2. Examples of channels satisfying the strong converseA. Additive noise channelConsider the channel with common input, noise, and output alphabet, A = f0; 1; : : : ; q � 1g,described by Yn = Xn � Zn;7



where � denotes addition modulo q and Xn, Zn and Yn are respectively the input, noise, andoutput symbols of the channel at time n, n = 1; 2; : : :. We assume that the input and noisesequences are independent of each other. We also assume that the noise process is stationary andergodic.Since the channel is symmetric, the input process that achieves (3) is uniform i.i.d. , whichyields a uniform i.i.d. output process. It follows from the Shannon-McMillian theorem that theinformation spectrum converges to C where C = log q�H(Z1). Here, H(Z1) denotes the noiseentropy rate. Therefore, the strong converse holds, and C" = CSC = C for all " 2 (0; 1).Observation 2 If the noise process is only stationary, then the strong converse does not hold ingeneral. Indeed, by the ergodic decomposition theorem [2], we can show that the additive noisechannel is an averaged channel whose components are q-ary channels with stationary ergodicadditive noise. In this case, we obtain using Theorem 6 in [6], a general �-capacity formula forthis channel: C" = log q � F�1U (1 � ");where U is a random variable with cumulative distribution function FU(�)2 such that the sequence� 1n logP (Zn) converges to U in probability. Furthermore, it is known that U = H�(Z1) whereH�(Z1) is the entropy rate of the ergodic components � de�ned on the space (�; �(�); G)3. Thedistribution of U can hence be derived using the mixing distribution G of the average channel.Finally, we remark thatlim�!0C" = log q � F�1U (1) = log q � ess� supH�(Z1) = C;as expected.2We assume the CDF FU(�) admits an inverse. Otherwise, we can replace F�1U (�) byF�1U (x)4= supfy : FU (y) < xg:3We assume that the probability space (�; �(�); G) satis�es certain regularity conditions [2].8



B. Additive noise channel with input cost constraintsIn general, the use of the channel is not free; we associate with each input letter x a nonnegativenumber b(x), that we call the \cost" of x. The function b(�) is called the cost function. If weuse the channel n consecutive times, i.e., we send an input vector xn = (x1; x2; : : : ; xn), the costassociated with this input vector is \additive"; i.e.,b(xn) = nXi=1 b(xi):For an input process fXig1i=1 with block input distribution P (n)(Xn = xn) the average cost forsending Xn is de�ned byE [b(Xn)] =Xxn P (n)(xn) b(xn) = nXi=1E [b(Xi)] :We assume that the cost function is \bounded"; i.e., there exists a �nite bmax such that b(x) � bmaxfor all x in the set f0; : : : ; q � 1g.De�nition 3 An n-dimensional input random vector Xn = (X1;X2; : : : ;Xn) that satis�es1nE [b(Xn)] � �;is called a �-admissible input vector. We denote the set of n-dimensional �-admissible inputdistributions by �n(�): �n(�) = �P (n)(Xn) : 1nE [b(Xn)] � �� :Recall that a channel is said to be stationary if for every stationary input, the joint input-output process is stationary. Furthermore, a channel is said to be ergodic if for every ergodicinput process, the joint input-output process is ergodic. It is known that a channel with stationarymixing additive noise is ergodic [2,5].Lemma 3 If the noise process is stationary and mixing, then the strong converse holds:C"(�) = C(�) = limn!1 Cn(�);9



where Cn(�) is the n'th capacity-cost function given byCn(�)4= maxP (n)(Xn)2�n(�) 1n I(Xn;Y n):Proof : Since the channel is a causal, historyless4 and stationary ergodic channel, and the costfunction is additive and bounded, then there exists a stationary ergodic input process that achievesC(�). This follows from the dual result on the distortion rate function D(R) of stationary ergodicsources, which states that for a stationary ergodic source with additive and bounded distortionmeasure, there exists a stationary ergodic input-output process PXnY n that achieves D(R) suchthat the induced marginal PXn is the source distribution [2,3].Therefore, if we form the joint input-output process f(Xn; Yn)g1n=1 using the stationary ergodicinput process that achieves C(�), we obtain that f(Xn; Yn)g1n=1 is stationary ergodic. Hence,1niXnY n(Xn;Y n) converges to C(�) in probability. 2General capacity formula with feedbackConsider a discrete channel with output feedback. By this we mean that there exists a\return channel" from the receiver to the transmitter; we assume this return channel is noiseless,delayless, and has large capacity. The receiver uses the return channel to inform the transmitterwhat letters were actually received; these letters are received at the transmitter before the nextletter is transmitted, and therefore can be used in choosing the next transmitted letter.A feedback code with blocklength n and rate R consists of sequence of encodersfi : f1; 2; : : : ; 2nRg � Bi�1 ! Afor i = 1; 2; : : : ; n, along with a decoding functiong : Bn ! f1; 2; : : : ; 2nRg;4Recall that a channel is said to be causal (with no anticipation) if for a given input and a given input-outputhistory, its current output is independent of future inputs. Furthermore, a channel is said to be historyless (withno input memory) if its current output is independent of previous inputs. Refer to [2] for more rigorous de�nitionsof causal and historyless channels. 10



where A and B are the input and output alphabets, respectively. The interpretation is simple:If the user wishes to convey message V 2 f1; 2; : : : ; 2nRg then the �rst code symbol transmit-ted is X1 = f1(V ); the second code symbol transmitted is X2 = f2(V; Y1), where Y1 is thechannel's output due to X1. The third code symbol transmitted is X3 = f3(V; Y1; Y2), whereY2 is the channel's output due to X2. This process is continued until the encoder transmitsXn = fn(V; Y1; Y2; : : : ; Yn�1). At this point the decoder estimates the message to be g(Y n), whereY n = [Y1; Y2; : : : ; Yn].We assume that V is uniformly distributed over f1; 2; : : : ; 2nRg. The probability of decodingerror is thus given by:P (n)e = 12nR 2nRXk=1 Prfg(Y n) 6= V jV = kg = Prfg(Y n) 6= V g:We say that a rate R is achievable (admissible) if there exists a sequence of codes with blocklengthn and rate R such that limn!1 P (n)e = 0:We will denote the capacity of the channel with feedback by CFB. As before, CFB is thesupremum of all admissible feedback code rates.Lemma 4 The general capacity formula of an arbitrary channel with feedback isCFB = supXn I(V ;Y n);where the supremum is taken over all possible feedback encoding schemes.5Proof :1. CFB � sup(f1;:::;fn) I(V ;Y n).We �rst state the following result.5 supXn I(V ;Y n) = supXn=(f1(V );f2(V;Y1);:::;fn(V;Yn�1)) I(V ;Y n) = sup(f1 ;f2;:::;fn) I(V ;Y n):11



Proposition 1 For a feedback code of blocklength n and size M , the probability of error satis�esP (n)e � P �1n{WY n(W ;Y n) � 1n logM � �� exp f�ng ;for every  > 0, where PW (W = w) = 1=M for all w.The proof of the proposition is as follows. Let � = exp f�ng. De�neL 4= n(w; bn) 2 f1; 2; : : : ;Mg � Yn : PW jY n(wjbn) � �o= �(w; bn) 2 f1; 2; : : : ;Mg � Yn : 1n{WY n(w; bn) � 1n logM � �= [Mw=1fwg � Bw;where Bw 4= fbn 2 Yn : PW jY n(wjbn) � �g. By de�ning Dw 2 Yn be the decoding setcorresponding to w, we obtainPWY n(L) = MXw=1PWY n(fwg � Bw)= MXw=1PWY n(fwg � (Bw \ Dcw)) + MXw=1PWY n(fwg � (Bw \ Dw))= MXw=1 1MPY njW (Bw \ Dcwjw) + MXw=1PWY n(fwg � (Bw \ Dw))� MXw=1 1MPY njW (Dcwjw) + �PY n([Mw=1Dw);because Dw are pair�wise disjoint:� P (n)e + �:Based on this proposition, we can show thatCFB � sup(f1;:::;fn) I(V ;Y n)using proof-by-contradiction [6].2. CFB � sup(f1;:::;fn) I(V ;Y n).This follows directly using Feinstein's lemma as in [6]. 212



General formula for the Neyman-Pearson hypothesistesting error exponentIn this section, we consider a Neyman-Pearson hypothesis testing problem for testing a nullhypothesis H0 : PXn against an alternative hypothesis H1 : QXn based on a sequence of randomobservations Xn = (X1; : : : ;Xn), which is supposed to exhibit a probability distribution of eitherPXn or QXn. Upon receipt of the n observations, a �nal decision about the nature of the randomobservations is made so that the type-II error probability �n, subject to a �xed upper bound "on the type-I error probability �n, is minimized. The type-I error probability is de�ned as theprobability of accepting hypothesisH1 when actuallyH0 is true; while the type-II error probabilityis de�ned as the probability of accepting hypothesis H0 when actually H1 is true [1].For arbitrary observations (not necessarily stationary, ergodic), we derive a general formulafor the type-II error exponent subject to a constant upper bound " on the type-I error probability.This is given in the following lemma.Lemma 5 Given a sequence of random observations Xn = (X1; : : : ;Xn) which is assumed tohave a probability distribution either PXn or QXn, the type-II error exponent satis�essupfD : F (D) < "g � lim supn!1 �1n log ��n(") � supfD : F (D) � "g; (5)supfD : �F (D) < "g � lim infn!1 �1n log ��n(") � supfD : �F (D) � "g; (6)whereF (D) 4= lim infn!1 P "1n log P (Xn)Q(Xn) � D# ; and �F (D) 4= lim supn!1 P " 1n log P (Xn)Q(Xn) � D# ;and ��n(") represents the minimum type-II error probability subject to a �xed type-I error bound" 2 (0; 1).Proof :We �rst prove the lower bound of lim supn!1�(1=n) log ��n("). For any D satisfyingF (D) < ", there exists � > 0 such that F (D) < "� 2�; and hence, by the de�nition of F (D), (913



a subsequence fnjg and N) such that for j > N ,P " 1nj log P (Xnj )Q(Xnj ) � D# � "� � < ":::: ��nj (") � Q " 1nj log P (Xnj )Q(Xnj ) > D#� P " 1nj log P (Xnj )Q(Xnj ) > D# � exp f�njDg� exp f�njDg : (7)Therefore, lim supn!1 �1n log ��n(") � lim supj!1 � 1nj log ��nj(") � D;for any D with F (D) < ".For the proof of the upper bound of lim supn!1 �(1=n) log ��n("), let Un be the optimal ac-ceptance region for alternative hypothesis under likelihood ratio partition, which is de�ned asfollows. Un 4= ( 1n log P (Xn)Q(Xn) < �n)+ �n ( 1n log P (Xn)Q(Xn) = �n) ; (8)for some �n and possible randomization factor �n 2 [0; 1). Then P (Un) = ".Let D = supfD : F (D) � "g. Then F (D + �) > " for any � > 0. Hence, (9  = (�) > 0),F (D + �) > "+ :By the de�nition of F (D + �), (9 N)(8 n > N)P "1n log P (Xn)Q(Xn) � D + �# > "+ 2 :Therefore,��n(") = Q " 1n log P (Xn)Q(Xn) > �n#+ (1 � �n) �Q "1n log P (Xn)Q(Xn) = �n#� Q "D + � � 1n log P (Xn)Q(Xn) > �n#+ (1� �n) �Q "1n log P (Xn)Q(Xn) = �n#�  P "D + � � 1n log P (Xn)Q(Xn) > �n#+ (1 � �n) � P "1n log P (Xn)Q(Xn) = �n#!� exp f�n(D + �)g14



=  P "1n log P (Xn)Q(Xn) � D + �#� P "1n log P (Xn)Q(Xn) < �n#��nP " 1n log P (Xn)Q(Xn) = �n#!� exp f�n(D + �)g� �"+ 2 � "� exp f�n(D + �)g ; for n > N= 2 expf�n(D + �)g ; for n > N: (9)::: lim supn!1 �1n log ��n(") � D + �:Since � can be made arbitrarily small,lim supn!1 �1n log ��n(") � D:Similarly, to prove the lower bound of lim infn!1�(1=n) log ��n("), we �rst note that for anyD satisfying �F (D) < ", (9 � > 0) such that �F (D) < "� 2�; and hence, by the de�nition of �F (D),(9 N)(8 n > N), P " 1n log P (Xn)Q(Xn) � D# � "� � < ":By following the same procedure of (7), we have for n > N ,��n(") � expf�nDg ;Therefore, lim infn!1 �1n log ��n(") � D;for any D with �F (D) < ".Then for the proof of the upper bound of lim infn!1�(1=n) log ��n("), let �D = supfD :�F (D) � "g. Then �F ( �D + �) > " for any � > 0. Hence, (9  = (�) > 0), �F ( �D + �) > "+ :By the de�nition of �F ( �D + �), (9 a subsequence fnjg and N) such that for j > N ,P " 1nj log P (Xnj )Q(Xnj ) � �D + �# > "+ 2 :Therefore, by following the same procedure as (9), we have for j > N ,��nj(") � 2 expn�nj( �D + �)o15



::: lim infn!1 �1n log ��n(") � lim infj!1 � 1nj log ��nj(") � �D + �:Since � can be made arbitrarily small,lim infn!1 �1n log ��n(") � �D: 2Remarks:� Both �F (D) and F (D) are non-decreasing; hence, the number of discontinuous points forboth functions is countable.� When the normalized log-likelihood ratio converges in probability to a constant Dc undernull distribution which is the case for most detection problems of interest, the type-II errorexponent is that constant Dc, and is independent of the type-I error bound ". For exam-ple, in a special case of i.i.d. data source with jEP [logP (X)=Q(X)]j <1, both functionsdegenerate to the form �F (D) = F (D) = 1 if D > Dc�F (D) = F (D) = 0 if D < Dc;where Dc 4= EP [log P (X)=Q(X)]. As a result, for " 2 (0; 1),lim supn!1 �1n log ��n(") = lim infn!1 �1n log ��n(") = Dc:� The signi�cance of the general type-II error exponent formula of �xed level becomes trans-parent when the spectrum (the cumulative distribution function) of the normalized log-likelihood ratio converges in probability under P (which is weaker than convergence inmean) to a random variable Z with invertible cumulative distribution function F (�). In thiscase, the type-II error exponent can be explicitly written aslimn!1�1n log ��n(") = F�1(");16



for " 2 (0; 1). A more extreme case is that Z is almost surely a constant which islimn!1 1nD (PXnkQXn) ;if the limit exists, where D(�k�) is the Kullback-Leibler divergence of two probability mea-sures. This result coincides with that obtained from Stein's Lemma. This is also thecounterpart result of the strong converse condition (i.e., the "-capacity is independent of ")for discrete memoryless channels (DMC) [6].SummaryIn this paper, we considered three di�erent problems related to the work of Verd�u and Hanon channel capacity [6]. Pertinent observations concerning the validity of the strong converseto the channel coding theorem, as well as examples of channels for which the strong converseholds, were provided. General expressions for the feedback capacity of arbitrary channels and theNeyman-Pearson type-II error exponent of constant test level were also derived.References1. R. E. Blahut, Principles and Practice of Information Theory, Addison Wesley, New York(1987).2. R. M. Gray, Entropy and Information Theory, Springer-Verlag New York Inc. (1990).3. R. M. Gray, Source Coding Theory, Kluwer Academic Publishers, Norwell, MA (1990).4. T. S. Han and S. Verd�u, \Approximation Theory of Output Statistics", IEEE Transactionson Information Theory, Vol. 39, No. 3, pp. 752-772 (1993).5. M. S. Pinsker, Information and Information Stability of Random Variables and Processes,Holden-Day, San Francisco (1964).6. S. Verd�u and T. S. Han, \A General Formula for Channel Capacity", IEEE Transactions onInformation Theory, vol. 40, pp. 1147-1157, July 1994.17


