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I. IntroductionIn Part I of this paper [5], generalized versions of the inf/sup-entropy/information/divergencerates of Han and Verd�u were proposed and analyzed. Equipped with these information measures,we herein demonstrate a generalized Asymptotic Equipartition Property (AEP) Theorem andestablish expressions for the in�mum (1� ")-achievable (�xed-length) coding rate of an arbitrary�nite-alphabet source X. These expressions turn out to be the counterparts of the "-capacityformulas in [11, Theorem 6]. We also prove a general data compression theorem; this theoremextends a recent rate-distortion theorem [9, Theorem 10(a)] by Steinberg and Verd�u (cf theremarks at the end of Sections II.1 and II.2).The Neyman-Pearson hypothesis testing problem examined in [4] is revisited in light of thegeneralized divergence measures.Since this work is a continuation of [5], we refer the reader to [5] for the technical de�nitionsof the information measures used in this paper.II. General Source Coding TheoremsThe role of a source code is to represent the output of a source e�ciently. This is achieved byintroducing some controlled distortion into the source, hence reducing its intrinsic informationcontent. There are two classes of source codes: data compaction codes and data compressioncodes [2]. The objective of both types of codes is to minimize the source description rate ofthe codes subject to a �delity criterion constraint. In the case of data compaction, the �delitycriterion consists of the probability of decoding error Pe. If Pe is made arbitrarily small, weobtain a traditional error-free (or lossless) source coding system. Data compression codes are alarger class of codes in the sense that the �delity criterion used in the coding scheme is a generaldistortion measure. We herein demonstrate data compaction and data compression theorems forarbitrary (not necessarily stationary ergodic, information stable, etc.) sources.In this section, we assume that the source alphabet X is �nite 1.1Actually, the theorems in this section also apply for sources with countable alphabets. We assume �nitealphabets in order to avoid uninteresting cases (such as �H"(X) =1) that might arise with countable alphabets.1



1. Data compaction coding theoremDe�nition 2.1 (e.g. [2]) A block code for data compaction is a set C�n consisting of M4=j C�njcodewords of blocklength n: C�n4=fcn1 ; cn2 ; : : : ; cnMg;where each n-tuple cni 2 X n, i = 1; 2; : : : ;M .De�nition 2.2 Fix 1 � " � 0. R is a (1� ")-achievable data compaction rate for a source X ifthere exists a sequence of data compaction codes C�n withlim supn!1 1n log j C�nj = R;and lim supn!1 Pe( C�n) � 1� ";where Pe( C�n)4=Pr (Xn =2 C�n) is the probability of decoding error.The in�mum (1� ")-achievable data compaction rate for X is denoted by T1�"(X).For discrete memoryless sources, the data compaction theorem is proved by choosing thecodebook C�n to be the (weakly) typical set [2] and applying the Asymptotic Equipartition Property(AEP) [3][2] which states that (1=n)hXn(Xn) converges to H(X) with probability one (and hencein probability). The AEP { which implies that the probability of the typical set is close to one forsu�ciently large n { also holds for stationary ergodic sources [3]. It is however invalid for moregeneral sources { e.g., nonstationary, nonergodic sources. We herein demonstrate a generalizedAEP theorem.Theorem 2.1 (Generalized AEP) Fix 1 > " > 0. Given an arbitrary source X, de�neTn[R] 4= �xn 2 X n : � 1n logPXn(xn) � R� :Then (8 
 > 0) the following statements hold. 2



1. lim infn!1 Pr nTn[ �H"(X)� 
]o � " (2.1)2. lim infn!1 Pr nTn[ �H"(X) + 
]o > " (2.2)3. The number of elements in Tn[ �H"(X)], denoted by ���Tn[ �H"(X)]���, satis�es���Tn[ �H"(X) + 
]� Tn[ �H"(X)� 
]��� � exp nn( �H"(X) + 
)o : (2.3)4. (8 
 > 0)(9 � = �(
) > 0; N0 and a subsequence fnjgnj=1 such that 8nj > N0),���Tnj [ �H"(X) + 
]� Tnj [ �H"(X)� 
]��� > �(
) exp nnj( �H"(X)� 
)o ; (2.4)where the operation A � B between two sets A and B is de�ned by A � B4=A \ Bc, withBc denoting the complement set of B.Proof : (2.1) and (2.2) follows from the de�nitions. For (2.3), we have1 � Xxn2Tn[ �H"(X)+
]�Tn[ �H"(X)�
]PXn(xn)� Xxn2Tn[ �H"(X)+
]�Tn[ �H"(X)�
] exp n�n ( �H"(X) + 
)o= ���Tn[ �H"(X) + 
]� Tn[ �H"(X)� 
]��� exp n�n ( �H"(X) + 
)o :It remains to show (2.4). (2.2) implies that there exist � = �(
) > 0 and N1 such that for alln > N1, Pr nTn[ �H"(X) + 
]o > "+ 2�(
):Furthermore, (2.1) implies that for the previously chosen �(
), there exist N2 and a subsequencefnjg1j=1 such that for all nj > N2,Pr nTnj [ �H"(X)� 
]o < "+ �(
):
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Therefore, for all nj > N0 4= max(N1; N2),�(
) < Pr nTnj [ �H"(X) + 
]� Tnj [ �H"(X)� 
]o< ���Tnj [ �H"(X) + 
]� Tnj [ �H"(X)� 
]��� exp n�nj ( �H"(X)� 
)o : 2

B

A

Figure 1: Illustration of the Generalized AEP Theorem. A = Tn[ �H"(X)� 
], B = Tn[ �H"(X)+ 
],and B � A = dashed region.Comment: With the illustration depicted in Figure 1, we can clearly deduce that Theorem 2.1is indeed a generalized version of the AEP since:� The setB � A4=Tn[ �H"(X) + 
]� Tn[ �H"(X)� 
] = �xn 2 X n : ����� 1n logPXn(xn)� �H"(X)���� � 
�is nothing but the typical set.� (2.1) and (2.2) ) that q4=Pr(B � A) > 0 in�nitely often.� (2.3) and (2.4) ) that the number of sequences in B � A (the dashed region) is ap-proximatively equal to exp nn �H"(X)o, and the probability of each sequence in B � A is� q � exp n�n �H"(X)o.
4



� In particular, if X is a stationary ergodic source, then �H"(X) is independent of " and�H"(X) = H"(X) = H 8 " 2 (0; 1), where H is the source entropy rateH = limn!1 1nEPXn [� logPXn(Xn)] :In this case, (2.1)-(2.2) and the fact that �H"(X) = H"(X) 8" imply that the probability qof the typical set B � A is close to one (for n su�ciently large), and (2.3) and (2.4) implythat there are about enH typical sequences of length n, each with probability about e�nH .Hence we obtain the conventional AEP (cf [3, Theorem 3.1.2] or [2, Theorem 3.4.2]).We now apply Theorem 2.1 to prove a general data compaction theorem for block codes.Theorem 2.2 (General data compaction theorem) Fix 1 > " > 0. For any source X,�H"�(X) � T1�"(X) � �H"(X):Note that actually T1�"(X) = �H"�(X), since T1�"(X) is left-continuous in " (cf Appendix B).Proof :1. Forward part (achievability): We need to prove the existence of a sequence of block codes C�nwith lim supn!1 1n log j C�nj < �H"(X) + 2
;and lim supn!1 Pe( C�n) � 1� ":Choose the code to be C�n = Tn[ �H"(X) + 
]. Then by de�nition of Tn[�],j C�nj = ���Tn[ �H"(X) + 
]��� � exp nn ( �H"(X) + 
)o :Therefore lim supn!1 1n log j C�nj � �H"(X) + 
 < �H"(X) + 2
:On the other hand, 1� Pe( C�n) = Prf C�ng = PrfTn[ �H"(X) + 
]g;5



which implies from (2.2) thatlim infn!1 [1� Pe( C�n)] = lim infn!1 PrfTn[ �H"(X) + 
]g > ":Hence, lim supn!1 Pe( C�n) < 1� ":Accordingly, T1�" < �H"(X) + 2
 for any 
 > 0. This proves the forward part.To show the converse part, we need the following remark.Remark: For all xn 2 C� �n and x̂n 62 C� �n,PXn(xn) � PXn(x̂n);where C� �n is the optimal block code de�ned as follows: for any block code C�n with j C�nj = j C� �nj,Pe( C� �n) � Pe( C�n).This result follows directly from the de�nition of C� �n and the fact that Pe( C� �n) = PXn([ C� �n ]c).The above remark indeed points out that the optimal code must be of the shape�xn 2 X n : � 1n logPXn(xn) < R� � C� �n � �xn 2 X n : � 1n logPXn(xn) � R� : (2.5)2. Converse part: We show that for all codes with code rateR4= lim supn!1 (1=n) log j C�nj < �H"�(X);lim supn!1 Pe( C�n) > 1� ":By de�nition of �H"�(X), there exists 0 < "0 < " such that R < �H"0(X) � �H"�(X). SincePe( C� �n) � Pe( C�n) for C� �n with the same size as C�n, we only need to showlim supn!1 Pe( C� �n) > 1� ":(2.5) already gives us the shape of the optimal block code. We claim that the set Tn[ �H"0(X)+
]� Tn[ �H"0(X)] is not contained in C� �n for any 
 > 0 in�nitely often because if it were, then byslightly modifying the proof of (2.4), it can be shown that there exists 
 > 0 such that��� C��nj ��� > ���Tnj [ �H"0(X) + 
]� Tnj [ �H"0(X)]��� > �(
) exp nnj ( �H"0(X))o6



for some positive �(
), subsequence fnjg1j=1 and su�ciently large j, implying thatR � �H"0(X): (2.6)This violates the code rate constraint R < �H"0(X). Hence, C� �n is a subset of Tn[ �H"0(X)] for allbut �nitely many n. Consequently,lim infn!1 [1� Pe( C� �n)] = lim infn!1 Pr( C� �n) � lim infn!1 PrfTn[ �H"0(X)]g � "0 < ";where the last inequality follows from the de�nition of �H"0(X). This immediately implies thatlim supn!1 Pe( C� �n) > 1� ":This proves the converse part. 2Observations:� For the sake of clarity, we only considered in Theorem 2.2 the case where " 2 (0; 1). Wecan however easily extend the result to the cases where " = 0 and " = 1. By de�nition,�H0�(X) = �1 and �H1(X) = 1. Therefore, to show that Theorem 2.2 holds for " = 0and " = 1, it su�ces to prove that T1(X) � �H0(X) (2.7)and T0(X) � �H1�(X): (2.8)The validity of (2.7) follows form the proof of the forward-part of Theorem 2.2 ; similarly,(2.8) can be veri�ed using the same arguments in the proof of the converse-part of Theorem2.2 .� Theorem 2.2 is indeed the counterpart of the result on the channel "-capacity in [11,Theorem 6]. It describes, in terms of the parameter ", the relationship between the coderate and the ultimate probability of decoding error:Pe � 1� " and R = �H"�(X):7



� Note that as " " 1, �H"�(X)! �H1�(X) = �H(X). Hence, this theorem generalizes the blocksource coding theorem in [8], which states that the minimum achievable �xed-length sourcecoding rate of any �nite-alphabet source is �H(X).� Consider the special case where �(1=n) logPXn(Xn) converges in probability to a constantH; this reduces Theorem 2.1 to the conventional AEP [3]. In this case, both hX (�) and�hX (�) degenerate to a unit step function:u(� �H) = � 1; if � � H;0; if � < H,yielding H(X) = �H"�(X) = �H(X) = H for all " 2 (0; 1), where H is the source entropyrate. Hence, our result reduces to the conventional source coding theorem for informationstable sources [10, Theorem 1].� More generally, if �(1=n) logPXn(Xn) converges in probability to a random variable Zwhose cumulative distribution function (cdf) is FZ(�), we havePe � 1� FZ(R) for R = �H"�(X) = H"�(X):Therefore, the relationship between the code rate and the ultimate optimal error probabilityis also clearly de�ned.Example: Consider a binary exchangeable (hence stationary but nonergodic in general [1])source X. Then there exists a distribution G concentrated on the interval (0; 1) such thatthe process X is a mixture of Bernoulli(�) processes where the parameter � 2 � = (0; 1)and has distribution G [1, Corollary 1]. In this case, it can be shown via the ergodicdecomposition theorem that �(1=n) logPXn(Xn) converges in probability to Z = hb(�)[1][7], where hb(x)4= � x log2(x) � (1 � x) log2(1 � x) is the binary entropy function. Wetherefore obtain that the cdf of Z is FZ(z) = P (hb(�) � z) where � has distribution G.Finally, note that as � " 1, Pe! 0 andlim�"1 �H"�(X) = inf [r : dG(hb(�) � r) = 1] 4= ess� sup hb(�):The above equation is indeed the minimum achievable (i.e., with Pe ! 0) �xed-lengthsource coding rate for stationary nonergodic sources [6].8



Remark: In this work, the de�nition that we adopt for the (1� ")-achievable data compactionrate, is slightly di�erent from the one used in [8, De�nition 8]. As a result, our T1�"(X) isright-continuous with respect to (1 � "), and is equal to �H"�(X) for " 2 (0; 1] and 0 for " = 0(cf Appendix B); In fact, the de�nition in [8] also yields the same result, which was separatelyproved by Steinberg and Verd�u as a direct consequence of Theorem 10(a) [9] (cf Corollary 3 in[9]). To be precise, their T1�"(X), denoted by Te(1� ";X) in [9], is shown for 0 < " < 1 to beequal to Te(1� ";X) = �Rv(2(1� ")); (cf De�nition 17 in [9])= inf �� : lim supn!1 PXn �� 1n logPXn(Xn) > �� � 1� "�= inf �� : lim infn!1 PXn �� 1n logPXn(Xn) � �� � "�= inff� : h(�) � "g= supf� : h(�) < "g= �H"�(X):Note that Theorem 10(a) in [9] is a data compression theorem for arbitrary sources which theauthors show as a by-product of their results on �nite-precision resolvability theory [9]. Here,we establish Theorem 2.2 in a di�erent and more direct way; it is proven using the generalizedentropy measure introduced in [5] and the Generalized AEP (Theorem 2.1 ). In the next section,we generalize Theorem 10(a) of [9].2. Data compression coding theoremDe�nition 2.3 (e.g. [2]) Given a source alphabet X and a reproduction alphabet Y, a blockcode for data compression of blocklength n and size M is a mapping fn(�) : X n ! Yn that resultsin kfnk =M codewords of length n, where each codeword is a sequence of n reproduction letters.De�nition 2.4 A distortion measure �n(�; �) is a mapping�n : X n � Yn ! <+4=[0;1):9



We can view the distortion measure as the cost of representing a source n-tuple Xn by a repro-duction n-tuple fn(Xn).In Theorem 10.(a) of [9], Steinberg and Verd�u provide a data compression theorem for arbitrarysources under the restriction that the probability of excessive distortion due to the achievabledata compression codes is equal to zero (cf De�nitions 30 and 31 in [9]). We herein provide ageneralization of their result by relaxing the restriction on the probability of excessive distortion.De�nition 2.5 (Distortion inf-spectrum and "-sup-distortion rate) LetX and f�n(�; �)gn�1be given. Let f(X) 4= ffn(Xn)g1n=1 denote a sequence of data compression codes for X. Thedistortion inf-spectrum �(X;f (X))(�) for f(X) is de�ned by�(X;f (X))(�)4= lim infn!1 Pr� 1n�n(Xn; fn(Xn)) � �� :For any 1 > " > 0, the "-sup-distortion rate ��"(X;f(X)) is de�ned by��"(X ;f (X))4=supf� : �(X;f (X))(�) � "g;which is exactly the quantile of �(X;f (X))(�).De�nition 2.6 Fix D > 0 and 1 > " > 0. R is a (1 � ")-achievable data compression rate atdistortion D for a source X if there exists a sequence of data compression codes fn(�) withlim supn!1 1n log kfnk = R;and (1� ")-sup-distortion rate less than or equal to D:��1�"(X;f(X)) � D:Note that stating that the code has (1�")-sup-distortion rate less than or equal to D is equivalentto stating that the limsup of the probability of excessive distortion (i.e., distortion larger thanD) is smaller than ": lim supn!1 Pr� 1n�n(Xn; fn(Xn)) > D� < ":The in�mum (1 � ")-achievable data compression rate at distortion D for X is denoted byT1�"(D;X). 10



Theorem 2.3 (General data compression theorem) Fix D > 0 and 1 > " > 0. Let Xand f�n(�; �)gn�1 be given. ThenR(1�")�(D) � T1�"(D;X) � R1�"(D);where R1�"(D)4= inffPY jX : ��1�"(X;Y ) � Dg �I(X;Y );and PY jX = fPY njXng1n=1 denotes a sequence of conditional distributions satisfying the constraint��1�"(X;Y )) � D.In other words, T1�"(D;X) = R1�"(D), except possibly at the points of discontinuities ofR1�"(D) (which are countable).Proof :1. Forward part (achievability): Choose 
 > 0. We will prove the existence of a sequence of blockcodes with lim sup(1=n) log j C�nj < R1�"(D) + 2
;and ��1�"(X; f(X)) < D + 
:step 1: Let P ~Y jX be the distribution achieving R1�"(D), and let P ~Y be the Y -marginal ofPXP ~Y jX .step 2: Let R satisfy R1�"(D)+2
 > R > R1�"(D)+
. ChooseM = enR n-blocks independentlyaccording to P ~Y , and denote the resulting random set by Cn.step 3: For a given Cn, we denote by A(Cn) the set of sequences xn 2 X n such that there existsyn 2 Cn with 1n�n(xn; yn) � D + 
:
11



step 4: Claim: lim supn!1 E ~Y [PXn(Ac(Cn))] < ":The proof of this claim is provided in Appendix A.Therefore there exists (a sequence of) C�n such thatlim supn!1 PXn(Ac(C�n)) < ":step 5: De�ne a sequence of codes ffng byfn(xn) = 8<: arg minyn2C�n �n(xn; yn); if xn 2 A(C�n);0; otherwise;where 0 is a �xed default n-tuple in Yn.Then �xn 2 X n : 1n�n(xn; fn(xn)) � D + 
� � A(C�n);since (8 xn 2 A(C�n)) there exists yn 2 C�n such that (1=n)�n(xn; yn) � D + 
, which byde�nition of fn implies that (1=n)�n(xn; fn(xn)) � D + 
.step 6: Consequently,�(X;f(X))(D + 
) = lim infn!1 PXn �xn 2 X n : 1n�n(xn; f(xn)) � D + 
�� lim infn!1 PXn(A(C�n))= 1� lim supn!1 PXn(Ac(C�n))> 1� ":Hence, ��1�"(X ; f(X)) < D + 
;where the last step is clearly depicted in Figure 2.This proves the forward part.2. Converse part: We show that for any sequence of encoders ffn(�)g1n=1, if��(1�")�(X;f(X)) � D;12
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�(X;f (X))(D + 
) �(X;f (X))(t)

t��1�"(X;f(X))
1� "

Figure 2: �(X;f(X))(D + 
) > 1� " ) ��1�"(X; f(X)) < D + 
:then lim supn!1 1n log kfnk � R(1�")�(D):Let PŶ njXn(ynjxn)4=( 1; if yn = fn(xn);0; otherwise:Then to evaluate the statistical properties of the random variable (1=n)�n(Xn; fn(Xn)) under dis-tribution PXn is equivalent to evaluating the random variable (1=n)�n(Xn; Ŷ n) under distributionPXnŶ n. Therefore R(1�")�(D) 4= inffPY jX : ��(1�")�(X;Y ) � Dg �I(X ;Y )� �I(X; Ŷ )� �H(Ŷ )�H(Ŷ jX)� �H(Ŷ )� lim supn!1 1n log kfnk;where the second inequality follows from [5, Lemma 3.2] (cf (3.12) with 
 = 1� and � = 0), andthe third inequality follows from the fact that H(Ŷ jX) � 0.13



2Observations:1. Comparison with Steinberg and Verd�u's result [9]. If " # 0, thenR1�"(D) " R1�(D)4= infPY jX :��1� (X ;Y )�D �I(X;Y ):Remark that R1�(D) is nothing but the sup rate-distortion function �R(D) described inDe�nition 14 of [9]. Therefore, this theorem reduces to Theorem 10.(a) of [9] when " # 0.Note that according to the terminology of [9, De�nition 14], R1�"(D) may be called the(1� ")-sup rate-distortion function.2. Comparison with the data compaction theorem. For the probability-of-error distortionmeasure �n : X n ! X n, namely,�n(xn; x̂n) = ( n; if xn 6= x̂n;0; otherwise;we de�ne a data compression code fn : X n ! X n based on a chosen data compaction codebook C�n � X n: fn(xn) = � xn; if xn 2 C�n;0; if xn 62 C�n,where 0 is some default element in X n. Then (1=n)�n(xn; fn(xn)) is either 1 or 0 whichresults in a cumulative distribution function as shown in Figure 3. Consequently, for any� 2 [0; 1), Pr � 1n�n(Xn; fn(Xn)) � �� = Pr fXn = fn(Xn)g :In other words, the condition ��1�"(X;f(X)) � �is equivalent to lim infn!1 PrfXn = fn(Xn)g > 1� ";which is exactly the same as lim supn!1 PrfXn 6= fn(Xn)g < ".14
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1PrfXn = fn(Xn)g
Figure 3: The CDF of (1=n)�n(Xn; fn(Xn)) for the probability-of-error distortion measure.By comparing the source compaction and compression theorems, we remark that �H1�"(X)is indeed the counterpart of R1�"(�) for the probability-of-error distortion measure and� 2 [0; 1). In particular, in the extreme case where " goes to zero,�H(X) = inffPX̂jX : lim supn!1 Pr(Xn 6= X̂n) = 0g �I(X; X̂);which follows from the fact that (cf (3.12) and (3.14) in [5, Lemma 3.2])�H(X)� �H(XjX̂) � �I(X; X̂) � �H(X)�H(XjX̂);and �H(XjX̂) = H(XjX̂) = 0: Therefore, in this case, the data compression theoremreduces (as expected) to the data compaction theorem (Theorem 2.2 ).III. Neyman-Pearson Hypothesis TestingIn Neyman-Pearson hypothesis testing, the objective is to decide between two di�erent explana-tions for the observed data. More speci�cally, given a sequence of observations with unknownunderlying distribution Q, we consider two hypotheses:� H0 : Q = PX (null hypothesis).� H1 : Q = PX̂ (alternative hypothesis). 15



If we accept hypothesis H1 when H0 is actually true, we obtain what is known as a type-I error,and the probability of this event is denoted by � [2]. Accepting hypothesis H0 when H1 isactually true results in what we call a type-II error; the probability of this event is denoted by�. In general, the goal is to minimize both error probabilities; but there is a tradeo� since if � isreduced beyond a certain threshold then � increases (and vice-versa). Hence, we minimize one ofthe error probabilities subject to a constraint on the other error probability.In the case of an arbitrary sequence of observations, the general expression of the Neyman-Pearson type-II error exponent subject to a constant bound on the type-I error has been provedin [4, Theorem 1]. We re-formulate the expression in terms of the "-inf/sup-divergence rates inthe next theorem.Theorem 3.4 (Neyman-Pearson type-II error exponent for a �xed test level)Consider a sequence of random observations which is assumed to have a probability distributiongoverned by either PX (null hypothesis) or PX̂ (alternative hypothesis). Then, the type-II errorexponent satis�es �D"�(XkX̂) � lim supn!1 � 1n log��n(") � �D"(XkX̂)D"�(XkX̂) � lim infn!1 � 1n log ��n(") � D"(XkX̂)where ��n(") represents the minimum type-II error probability subject to a �xed type-I error bound" 2 [0; 1).The general formula for Neyman-Pearson type-II error exponent subject to an exponentialtest level is also proved in [4, Theorem 3]. We, herein provide an extension of this result andexpress it in terms of the "-inf/sup-divergence rates.Theorem 3.5 (Neyman-Pearson type-II error exponent for an exponential test level)Fix s 2 (0; 1) and " 2 [0; 1). It is possible to choose decision regions for a binary hypothesistesting problem with arbitrary datawords of blocklength n, (which are governed by either the null16



hypothesis distribution PX or the alternative hypothesis distribution PX̂ ), such thatlim infn!1 � 1n log�n � �D"(X̂(s)kX̂) and lim supn!1 � 1n log�n � D(1�")(X̂(s)kX); (3.9)or lim infn!1 � 1n log �n � D"(X̂(s)kX̂) and lim supn!1 � 1n log�n � �D(1�")(X̂(s)kX); (3.10)where X̂(s) exhibits the tilted distributions fP (s)X̂ng1n=1 de�ned bydP (s)X̂n(xn) 4= 1
n(s) exp(s log dPXndPX̂n (xn)) dPX̂n(xn);and 
n(s) 4= ZXn exp(s log dPXndPX̂n (xn)) dPX̂n(xn):Here, �n and �n are the type-I and type-II error probabilities respectively.Proof : For ease of notation, we use ~X to represent X̂(s). We only prove (3.9); (3.10) canbe similarly demonstrated.By de�nition of dP (s)X̂n(�), we have1s � 1nd eXn(fXnkX̂n)�+ 11� s � 1nd eXn(fXnkXn)� = � 1s(1� s) � 1n log
n(s)� : (3.11)Let �
4= lim supn!1(1=n) log
n(s). Then, for any 
 > 0, 9N0 such that 8 n > N0,(1=n) log
n(s) < �
 + 
:From (3.11),d eXnkX̂n(�) 4= lim infn!1 Pr � 1nd eXn(fXnkX̂n) � ��= lim infn!1 Pr(� 11� s �1nd eXn(fXnkXn)�� 1s(1� s) �1n log
n(s)� � �s)= lim infn!1 Pr � 1nd eXn(fXnkXn) � �1� ss � � 1s � 1n log
n(s)��� lim infn!1 Pr � 1nd eXn(fXnkXn) > �1� ss � � 1s �
� 
s�= 1� lim supn!1 Pr � 1nd eXn(fXnkXn) � �1� ss � � 1s �
� 
s�= 1� �d eXnkXn ��1� ss � � 1s �
� 
s� :17



Thus, �D"( ~XkX̂) 4= supf� : d eXnkX̂n(�) � "g� sup�� : 1� �d eXnkX̂n ��1� ss � � 1s (�
 + 
)� < "�= sup�� 11� s(�
 + 
)� s1� s�0 : �d eXnkXn(�0) > 1� "�= � 11� s(�
 + 
)� s1� s inff�0 : �d eXnkXn(�0) > 1� "g= � 11� s(�
 + 
)� s1� s supf�0 : �d eXnkXn(�0) � 1� "g= � 11� s(�
 + 
)� s1� sD1�"( ~XkX):Finally, choose the acceptance region for null hypothesis as( 1n log dP eXndPX̂n (Xn) � �D"( ~XkX̂)) :Therefore �n = PX̂n ( 1n log dP eXndPX̂n (Xn) � �D"( ~XkX̂)) � exp n�n �D"( ~XkX̂)o ;and �n = PXn (1n log dP eXndPX̂n (Xn) < �D"( ~XkX̂))� PXn (1n log dP eXndPX̂n (Xn) < � 11� s(�
 + 
)� s1� sD1�"( ~XkX))= PXn ( �11� s " 1n log dP eXndPXn (Xn)#� 1s(1� s) � 1n log
n(s)�< � �
 + 
s(1� s) � 11� sD1�"( ~XkX))= PXn (1n log dP eXndPXn (Xn) > D1�"( ~XkX) + 1s ��
� 1n log
n(s)�+ 
s) :Then, for n > N0, �n � PXn ( 1n log dP eXndPXn (Xn) > D1�"( ~XkX))� exp n�nD1�"( ~XkX)o :Consequently,lim infn!1 � 1n log �n � �D"(X̂(s)kX̂) and lim supn!1 � 1n log�n � D(1�")(X̂(s)kX):18



2IV. ConclusionsIn light of the new information quantiles introduced in [5], a generalized version of the Asymp-totic Equipartition Property (AEP) is proved. General data compaction and compression (sourcecoding) theorems for block codes and general expressions for the Neyman-Pearson hypothesistesting type-II error exponent are also derived.Finally, it is demonstrated that by using these new quantities, Shannon's coding theorems canbe reformulated in their most general form and the error probability of an arbitrary stochasticcommunication system can be determined.

19



Appendix AClaim (cf Proof of Theorem 2.3 ) lim supn!1 E ~Y [PXn(Ac(C�n))] < ":Proof :step 1: De�neA(")n;
4=�(xn; yn) : 1n�n(xn; yn) � ��1�"(X; ~Y ) + 
; 1niXnY n(xn; yn) � �I(X; ~Y ) + 
� :Since lim infn!1 Pr �D4=� 1n�n(Xn; ~Y n) � ��1�"(X; ~Y ) + 
�� > 1� ";and lim infn!1 Pr �E4=�1niXn ~Y n(Xn; ~Y n) � �I(X ; ~Y ) + 
�� = 1;we have lim infn!1 Pr(A(")n;
) = lim infn!1 Pr(D \ E)� lim infn!1 Pr(D) + lim infn!1 Pr(E)� 1> (1� ") + 1� 1 = 1� ":step 2: Let K(xn; yn) be the indicator function of A(")n;
:K(xn; yn) = ( 1; if (xn; yn) 2 A(")n;
;0; otherwise:step 3: By following a similar argument in [9, equations (9)-(12)], we obtain,E ~Y [PXn(Ac(C�n))]= XC�n P ~Y n(C�n) Xxn 62A(C�n)PXn(xn)= Xxn2Xn PXn(xn) XC�n:xn 62A(C�n)P ~Y n(C�n)20



= Xxn2Xn PXn(xn)0@1� Xyn2Yn P ~Y n(yn)K(xn; yn)1AM� Xxn2Xn PXn(xn)0@1� e�n(�I(X ; ~Y )+
) � Xyn2Yn P ~Y njXn(ynjxn)K(xn; yn)1AM� 1� Xxn2Xn Xyn2Yn PXn(xn)P ~Y njXn(xn; yn)K(xn; yn) + exp n�en(R�R1�"(D)�
)o :Therefore lim supn!1 E ~Y n [PXn(An(C�n))] � 1� lim infn!1 Pr(A(")n;
)< 1� (1� ") = ": 2Appendix BClaim: Fix " 2 [0; 1). T"(X) is right-continuous in ".Proof :Suppose T"(X) is not right-continuous for some " 2 [0; 1). Then there exists 
 > 0 such thatT"+�(X) < T"(X) + 3
 for every 1� " > � > 0;which guarantees the existence of R satisfyingT"+�(X) < R� 
 < R < T"(X)for every 1� " > � > 0. Hence, R� 
 is ("+ �)-achievable for every 1� " > � > 0, and R is not"-achievable.By de�nition of ("+ �)-achievability, there exists a code Dn(�) such thatlim supn!1 (1=n) log jDn(�)j = R� 
 and lim supn!1 Pe(Dn(�)) � "+ �:Therefore, there exists M(�) such that for n > M(�),(1=n) log jDn(�)j < R and Pe(Dn(�)) < "+ 2�:21



Observe that if we increase the code size ofDn(�) to obtain a new codeD0n(�) with (1=n) log jD0n(�)j =R for n > M(�), then the error probability will not increase, i.e.,Pe(D0n(�)) < "+ 2�:Now de�ne a new code En as follows:En = D0n(�) for M(�) < n � maxfM(�);M(�=2)gEn = D0n(�=2) for maxfM(�);M(�=2)g < n � maxfM(�);M(�=2);M(�=3)gEn = D0n(�=3) for maxfM(�);M(�=2);M(�=3)g < n � maxfM(�);M(�=2);M(�=3);M(�=4)g...Then for n > M(�), (1=n) log jEnj = R but lim supn!1 Pe(En) � ", contradicting the fact thatR is not "-achievable. 2Claim: T1�"(X) = �H"�(X) for " 2 (0; 1] and T1(X) = 0.Proof : The �rst result is an immediate consequence of the right-continuity of T1�"(X)w.r.t. (1� ") 2 [0; 1). T1(X), by de�nition, is the in�mum of the 1-achievable data compactionrate which requires the existence of codes C�n withlim supn!1 1n log j C�nj = R;and lim supn!1 Pe( C�n) � 1:We can then choose an empty code set, and obtain T1(X) = 0. 2AcknowledgmentThe authors would like to thank Prof. S. Verd�u for his valuable advice and constructive criticismwhich helped improve the paper.
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Nomenclature(1� ")-achievable data compaction rate T1�"(X)(1� ")-achievable data compression rate T1�"(D;X)at distortion D�-inf-divergence rate D�(XkX̂)�-inf-entropy rate H�(X)�-inf-information rate I�(X;Y )�-sup-divergence rate �D�(XkX̂)�-sup-entropy rate �H�(X)�-sup-information rate �I�(X;Y )"-sup-distortion rate ��"(X;Y )�-capacity C�channel capacity Cchannel transition distribution PWn = PY njXndistortion inf-spectrum �(X;f(X))(�)divergence inf-spectrum dXkX̂ (�)divergence sup-spectrum �dXkX̂ (�)entropy density hXn(Xn)entropy inf-Spectrum hX (�)entropy sup-Spectrum �hX (�)inf-divergence rate D(XkX̂)inf-entropy rate H(X)inf-information rate I(X;Y )information density iXnWn(xn; yn)information inf-spectrum i(X;Y )(�)information sup-spectrum �i(X;Y )(�)input alphabet Ainput distributions PXnlog-likelihood ratio dXn(XnkX̂n)output alphabet Bsup-divergence rate �D(XkX̂)sup-entropy rate �H(X)sup-information rate �I(X;Y )
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