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Abstract

In light of the information measures introduced in Part I, a generalized version of the Asymp-
totic Equipartition Property (AEP) is proved. General fixed-length data compaction and data
compression (source coding) theorems for arbitrary finite-alphabet sources are also established.
Finally, the general expression of the Neyman-Pearson type-II error exponent subject to upper
bounds on the type-I error probability is examined.



I. Introduction

In Part I of this paper [5], generalized versions of the inf/sup-entropy/information/divergence
rates of Han and Verdd were proposed and analyzed. Equipped with these information measures,
we herein demonstrate a generalized Asymptotic Equipartition Property (AEP) Theorem and
establish expressions for the infimum (1 — ¢)-achievable (fixed-length) coding rate of an arbitrary
finite-alphabet source X. These expressions turn out to be the counterparts of the e-capacity
formulas in [11, Theorem 6]. We also prove a general data compression theorem; this theorem
extends a recent rate-distortion theorem [9, Theorem 10(a)] by Steinberg and Verdu (cf the

remarks at the end of Sections II.1 and II.2).

The Neyman-Pearson hypothesis testing problem examined in [4] is revisited in light of the

generalized divergence measures.

Since this work is a continuation of [5], we refer the reader to [5] for the technical definitions

of the information measures used in this paper.
II. General Source Coding Theorems

The role of a source code is to represent the output of a source efficiently. This is achieved by
introducing some controlled distortion into the source, hence reducing its intrinsic information
content. There are two classes of source codes: data compaction codes and data compression
codes [2]. The objective of both types of codes is to minimize the source description rate of
the codes subject to a fidelity criterion constraint. In the case of data compaction, the fidelity
criterion consists of the probability of decoding error Pe. If Pe is made arbitrarily small, we
obtain a traditional error-free (or lossless) source coding system. Data compression codes are a
larger class of codes in the sense that the fidelity criterion used in the coding scheme is a general
distortion measure. We herein demonstrate data compaction and data compression theorems for

arbitrary (not necessarily stationary ergodic, information stable, etc.) sources.

In this section, we assume that the source alphabet X is finite !.

! Actually, the theorems in this section also apply for sources with countable alphabets. We assume finite
alphabets in order to avoid uninteresting cases (such as H.(X) = oo) that might arise with countable alphabets.



1. Data compaction coding theorem

Definition 2.1 (e.g. [2]) A block code for data compaction is a set -G, consisting of Mé|r€n|
codewords of blocklength n:

A
C,={cl,cy,...,ch},

where each n-tuple ¢} € X", 1 =1,2,..., M.

Definition 2.2 Fix 1 > ¢ > 0. R is a (1 — ¢)-achievable data compaction rate for a source X if

there exists a sequence of data compaction codes €, with
) 1
limsup — log |€,| = R,
n—oo T

and

lim sup Pe(€,) <1 —¢,

n—0o0

where Pe(fé’n)éPr (X™ ¢ ~,) is the probability of decoding error.

The infimum (1 — ¢)-achievable data compaction rate for X is denoted by 77_.(X).

For discrete memoryless sources, the data compaction theorem is proved by choosing the
codebook €, to be the (weakly) typical set [2] and applying the Asymptotic Equipartition Property
(AEP) [3][2] which states that (1/n)hx-(X™) converges to H(X) with probability one (and hence
in probability). The AEP — which implies that the probability of the typical set is close to one for
sufficiently large n — also holds for stationary ergodic sources [3]. It is however invalid for more
general sources — e.g., nonstationary, nonergodic sources. We herein demonstrate a generalized

AEP theorem.

Theorem 2.1 (Generalized AEP) Fix 1 > ¢ > 0. Given an arbitrary source X, define
A 1
T.IR 2 {x € X" : =~ log Pxn(z") < R}.
n

Then (V v > 0) the following statements hold.



liminf Pr {To[H.(X) — 1]} << (2.1)
2.
liminf Pr{7,[H.(X) +7]} > ¢ (2.2)
3. The number of elements in 7, [H.(X)], denoted by |T,[H.(X)]|, satisfies
I To[H(X) + 7] = Ta[H(X) = 7| < exp {n(H(X) +7)}. (2.3)

4. (Vv >0)(3 p=p(y) >0, Np and a subsequence {n;}7_, such that Vn; > No),
7o, [H(X) + 9] = Toy [HAX) = 4] > p() exp {m; (H(X) = )}, (2.4)

where the operation A — B between two sets A and B is defined by A — B2AN B¢, with

B¢ denoting the complement set of B.

Proof: (2.1) and (2.2) follows from the definitions. For (2.3), we have

e e Tn[He (X)) +7]—Tu[H:(X ) —7]
> > exp {—n (H.(X) +7)}

e €T [He (X )+~ T [Ho (X )]
TulHo(X) + 7] = Tu[H(X) — ]| exp {—n (H.(X) +7)} .

It remains to show (2.4). (2.2) implies that there exist p = p(y) > 0 and N; such that for all
n > Ny,

PrT.[H.(X) +7]} > £ + 2p(7).

Furthermore, (2.1) implies that for the previously chosen p(), there exist N, and a subsequence

{n;}32, such that for all n; > Ny,



Therefore, for all n; > Ny 2 max(Ny, Ny),

p(v) < PriT,[H.(X)+1] - To,[H(X) -]}

| Tos [Ho(X) + 7] = Ty [HA(X) = 3] exp {—n; (H(X) =)}

NN

NN

AR NONY
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Figure 1: Illustration of the Generalized AEP Theorem. A = T,[H.(X) — 7], B = T,[H.(X) + 7],
and B — A = dashed region.

Comment: With the illustration depicted in Figure 1, we can clearly deduce that Theorem 2.1

is indeed a generalized version of the AEP since:

e The set
B = AST[HL(X) +9) = Tl H(X) — ) = {u" € 25 |- 1og Pre(a") = H(X)| <}
is nothing but the typical set.
e (2.1) and (2.2) = that qéPT(B — A) > 0 infinitely often.

e (2.3) and (2.4) = that the number of sequences in B — A (the dashed region) is ap-
proximatively equal to exp {nI:Ig(X )}, and the probability of each sequence in B — A is
R ¢ X exp {—nHE(X)}.



e In particular, if X is a stationary ergodic source, then H,(X) is independent of £ and

H.(X)=H.(X)=HVYee€ (0,1), where H is the source entropy rate

1
H = lim —prn [— IOg PXn(Xn)] .

n—oo n,

In this case, (2.1)-(2.2) and the fact that H.(X) = H.(X) Ve imply that the probability ¢
of the typical set B — A is close to one (for n sufficiently large), and (2.3) and (2.4) imply
that there are about " typical sequences of length n, each with probability about e "#.

Hence we obtain the conventional AEP (cf [3, Theorem 3.1.2] or [2, Theorem 3.4.2]).

We now apply Theorem 2.1 to prove a general data compaction theorem for block codes.

Theorem 2.2 (General data compaction theorem) Fix 1 > ¢ > 0. For any source X,

HE* (X) S TI—E(X) S HE(X)

Note that actually 77_.(X) = H.- (X)), since T1_.(X) is left-continuous in ¢ (cf Appendix B).

Proof:

1. Forward part (achievability): We need to prove the existence of a sequence of block codes G,
with

1 ~
lim sup — log |€,| < H.(X) + 27,
n—oo T

and

limsup Pe(€,,) <1 —e¢.

n—00

Choose the code to be ¢, = T,[H.(X) +7]. Then by definition of 7,[],
€] = | Tal H.(X) + ]| < exp {n (H.(X) +7)} .

Therefore
1 _ _
limsupg log |6,| < Ho(X)+7v < Ho(X) +27.
n— o0
On the other hand,
1 — Pe(€,) = Pr{<€,} = Pr{T,[H.(X) + ]},
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which implies from (2.2) that
lim inf[1 — Pe(€,)] = lim inf Pr{T,[H.(X) + ]} > ¢.

Hence,

limsup Pe(€,) <1 —«¢.

n—o0

Accordingly, T1_. < H.(X) + 2+ for any 7 > 0. This proves the forward part.

To show the converse part, we need the following remark.

Remark: For all 2" € € and 2" ¢ €,
Pxn(z") > Pxn(2"),
where € is the optimal block code defined as follows: for any block code €, with |€,| = |€;],
Pe(€;) < Pe(€y).
This result follows directly from the definition of € and the fact that Pe(-€}) = Pxn([€}]°).

The above remark indeed points out that the optimal code must be of the shape

1 1
{x" € X" : ——log Pxn(2") < R} C € C {x" € X" ——log Pxn(2") < R}. (2.5)
n n

2. Conwverse part: We show that for all codes with code rate
R=limsup(1/n) log |€,| < H.-(X),
n—00

limsup Pe(€,) > 1 —«.

n—0o0

By definition of H.-(X), there exists 0 < &’ < & such that R < H.(X) < H.-(X). Since

Pe(€)) < Pe(€,) for € with the same size as ,, we only need to show

limsup Pe(€;) > 1 —e¢.

n— 00

(2.5) already gives us the shape of the optimal block code. We claim that the set 7,,[H. (X)) +
7] — To[H.(X)] is not contained in  for any v > 0 infinitely often because if it were, then by
slightly modifying the proof of (2.4), it can be shown that there exists 7 > 0 such that

<,

>

Tog [Ho (X) + 7] = Ty [ B (X)]| > pl(7) exp {m; (Hor(X))}

6



for some positive p(7), subsequence {n;}32, and sufficiently large j, implying that
R > H.(X). (2.6)

This violates the code rate constraint R < H..(X). Hence, € is a subset of T,[H..(X)] for all

but finitely many n. Consequently,
liminf[l — Pe(<€;)] = lim inf Pr(-€;) < lirgglfPr{ﬁ[HE/(X)]} <& <e,
where the last inequality follows from the definition of H./(X). This immediately implies that

limsup Pe(€;) > 1 —¢.

n—0o0

This proves the converse part. O

Observations:

e For the sake of clarity, we only considered in Theorem 2.2 the case where ¢ € (0,1). We
can however easily extend the result to the cases where ¢ = 0 and ¢ = 1. By definition,
Hy-(X) = —oc and H,(X) = co. Therefore, to show that Theorem 2.2 holds for £ = 0

and € = 1, it suffices to prove that

T1(X) < Ho(X) (2.7)
and

Ty(X) > Hy- (X). (2.8)

The validity of (2.7) follows form the proof of the forward-part of Theorem 2.2 ; similarly,
(2.8) can be verified using the same arguments in the proof of the converse-part of Theorem

2.2,

e Theorem 2.2 is indeed the counterpart of the result on the channel e-capacity in [11,
Theorem 6]. It describes, in terms of the parameter e, the relationship between the code

rate and the ultimate probability of decoding error:

Pex~1—¢ and R=H, (X).



e Note that ase T 1, H.-(X) — H,-(X) = H(X). Hence, this theorem generalizes the block
source coding theorem in [8], which states that the minimum achievable fixed-length source

coding rate of any finite-alphabet source is H(X).

e Consider the special case where —(1/n)log Py« (X™) converges in probability to a constant
H; this reduces Theorem 2.1 to the conventional AEP [3]. In this case, both hx(-) and
hx (-) degenerate to a unit step function:

1, ifo>H,
“(Q_H)_{o, ifo < H,

yvielding H(X) = H.-(X) = H(X) = H for all € € (0,1), where H is the source entropy
rate. Hence, our result reduces to the conventional source coding theorem for information

stable sources [10, Theorem 1].

e More generally, if —(1/n)log Pxn(X"™) converges in probability to a random variable Z

whose cumulative distribution function (cdf) is Fy(+), we have
Pe~1-Fz(R) for R = H.-(X)=H,-(X).

Therefore, the relationship between the code rate and the ultimate optimal error probability

is also clearly defined.

Ezample: Consider a binary exchangeable (hence stationary but nonergodic in general [1])
source X. Then there exists a distribution G' concentrated on the interval (0,1) such that
the process X is a mixture of Bernoulli(f) processes where the parameter §# € © = (0,1)
and has distribution G [1, Corollary 1]. In this case, it can be shown via the ergodic
decomposition theorem that —(1/n)log Px«(X"™) converges in probability to Z = hy(6)
[1][7], where hb(:v)é — xlogy(z) — (1 — x)logy(1 — x) is the binary entropy function. We
therefore obtain that the cdf of Z is Fy(z) = P(hy(f) < z) where 6 has distribution G.

Finally, note that as € 1 1, Pe — 0 and

liTIf{l H.-(X) =inf [r:dG(h(0) <71) =1] £ esse SUp hy(6).

The above equation is indeed the minimum achievable (i.e., with Pe — 0) fixed-length

source coding rate for stationary nonergodic sources [6].
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Remark: In this work, the definition that we adopt for the (1 — ¢)-achievable data compaction
rate, is slightly different from the one used in [8, Definition 8]. As a result, our 7}_.(X) is
right-continuous with respect to (1 — ¢), and is equal to H,- (X) for ¢ € (0,1] and 0 for ¢ = 0
(cf Appendix B); In fact, the definition in [8] also yields the same result, which was separately
proved by Steinberg and Verdu as a direct consequence of Theorem 10(a) [9] (cf Corollary 3 in
[9]). To be precise, their 71_.(X), denoted by T,.(1 — ¢, X) in [9], is shown for 0 < ¢ < 1 to be

equal to

T.(1—¢,X) = R,(2(1 —¢)), (cf Definition 17 in [9))

1
= inf{ﬁ : lim sup Pxn» [—ﬁlogPXn(X”) > 9] <1- 5}

n— 00

n—o0

= inf{@ :lim inf Pxn {—l log Pxn (X") < 9} > 5}
n

= inf{0:h(0) > ¢c}

= sup{f:hn(f) <e}

= . (X).

Note that Theorem 10(a) in [9] is a data compression theorem for arbitrary sources which the
authors show as a by-product of their results on finite-precision resolvability theory [9]. Here,
we establish Theorem 2.2 in a different and more direct way; it is proven using the generalized
entropy measure introduced in [5] and the Generalized AEP (Theorem 2.1 ). In the next section,

we generalize Theorem 10(a) of [9].

2. Data compression coding theorem

Definition 2.3 (e.g. [2]) Given a source alphabet X" and a reproduction alphabet ), a block
code for data compression of blocklength n and size M is a mapping f,,(-) : X™ — V" that results

in || .|| = M codewords of length n, where each codeword is a sequence of n reproduction letters.

Definition 2.4 A distortion measure p,(-,-) is a mapping

=]

pn i X" X V' = RTYE[0, 00).



We can view the distortion measure as the cost of representing a source n-tuple X™ by a repro-

duction n-tuple f,(X™).

In Theorem 10.(a) of [9], Steinberg and Verdiu provide a data compression theorem for arbitrary
sources under the restriction that the probability of excessive distortion due to the achievable
data compression codes is equal to zero (cf Definitions 30 and 31 in [9]). We herein provide a

generalization of their result by relaxing the restriction on the probability of excessive distortion.

Definition 2.5 (Distortion inf-spectrum and e-sup-distortion rate) Let X and {p,(-, ") }n>1
be given. Let f(X) £ {fn(X™)}22, denote a sequence of data compression codes for X. The

distortion inf-spectrum X\ x f x(0) for f(X) is defined by

AL 1 n N
A(X“/-'(X))(O):hmmfPr{Epn(X  fn (X)) §9}.

n—oo

For any 1 > ¢ > 0, the e-sup-distortion rate A.(X, f(X)) is defined by
A(X, F(X)Esuplt: A x £x))(0) <},
which is exactly the quantile of AX fx) @)

Definition 2.6 Fix D > 0 and 1 > ¢ > 0. R is a (1 — ¢)-achievable data compression rate at

distortion D for a source X if there exists a sequence of data compression codes f,(-) with
) 1
limsup —log || f»|| = R,
n—oo Tl
and (1 — e)-sup-distortion rate less than or equal to D:
Ale(Xa f(X)) S D.

Note that stating that the code has (1 —¢)-sup-distortion rate less than or equal to D is equivalent
to stating that the limsup of the probability of excessive distortion (i.e., distortion larger than

1
D) is smaller than e: limsup,_,,, Pr {—pn(X”, fn(X™) > D} <e.
n

The infimum (1 — ¢)-achievable data compression rate at distortion D for X is denoted by

T, .(D,X).

10



Theorem 2.3 (General data compression theorem) Fix D > 0 and 1 > ¢ > 0. Let X

and {p, (-, ") }n>1 be given. Then
Ra_o- (D) <T1_.(D,X) < Ri_.(D),

where

Ri_.(D)2 ~inf I(X;Y),
{Py)x : Mi-o(X,Y) < D}

and Py x = {Py~x»}52; denotes a sequence of conditional distributions satisfying the constraint

Alfs(Xa Y)) S D.

In other words, 77 (D, X) = Ry (D), except possibly at the points of discontinuities of
Ry_.(D) (which are countable).

Proof:

1. Forward part (achievability): Choose v > 0. We will prove the existence of a sequence of block
codes with

limsup(1/n)log|€,| < Ry (D) + 27,

and

Mi—o(X; (X)) <D 4.

step 1: Let Py y be the distribution achieving Ry (D), and let Py be the Y-marginal of
Px Py x-

step 2: Let Rsatisfy Ry_.(D)+2y > R > R;_.(D)+7. Choose M = " n-blocks independently

according to Py, and denote the resulting random set by C,,.

step 3: For a given C,, we denote by A(C,,) the set of sequences 2" € X™ such that there exists
y" € C, with

1

11



step 4: Claim:
lim sup Ey [Pxn (A°(Cn))] <e.

n—oo

The proof of this claim is provided in Appendix A.

Therefore there exists (a sequence of) C such that

lim sup Py« (A°(C})) < e.

n—0o0

step 5: Define a sequence of codes {f,} by
£ (o) = { arg min p(2",y"), if @ € A(Cy);
0, otherwise,

where 0 is a fixed default n-tuple in Y".
Then

{om e am: Zpua™, ful™) < D49} 5 4,
since (V 2" € A(C})) there exists y" € C such that (1/n)p,(z",y") < D + v, which by
definition of f,, implies that (1/n)p, (2", fu(z™)) < D + 7.

step 6: Consequently,

. " n 1 n "
AX px)yD+7) = ll%f_l}(l)glfpxn {x e X" ﬁpn(x ,f2™) < D+7}
= 1—limsup Px=(A%(C}))
n—00

> 1—e.

Hence,

Alfa(Xaf(X)) <D +77

where the last step is clearly depicted in Figure 2.

This proves the forward part.

2. Conwverse part: We show that for any sequence of encoders {f,(-)}52,, if

A(l—s)—(Xa f(X)) < D7

12



AX f XD +7) [ .

Alfa(Xaf(X)) D+’7
Figure 2: A(X,f(X)) (D + ’}/) >1—¢= Al_E(X, f(X)) <D+n.
then
) 1
lim sup — log ||fn|| > R(lfs)_ (D)
n—oo T

Let

PY"IX”(y [+")= { 0, otherwise.
Then to evaluate the statistical properties of the random variable (1/n)p, (X", f,(X™)) under dis-
tribution Py is equivalent to evaluating the random variable (1/n)p, (X", Y™) under distribution

Pyyv. Therefore

Ri_-(D) = _inf I(X;Y)
{PY‘X . A(lfs)* (X,Y) < D}
< I(X;Y)
< H(Y)-H(Y|X)
< H(Y)
1
< limsup —log || f.|l,
n—oo N

where the second inequality follows from [5, Lemma 3.2] (cf (3.12) with vy = 1~ and 6 = 0), and
the third inequality follows from the fact that H(Y'|X) > 0.

13



Observations:

1. Comparison with Steinberg and Verdd’s result [9]. If € | 0, then

inf I(X;Y).
Py x5 - X, Y)<p

>

lea (D) T Rl* (D)

Remark that R;- (D) is nothing but the sup rate-distortion function R(D) described in
Definition 14 of [9]. Therefore, this theorem reduces to Theorem 10.(a) of [9] when ¢ | 0.
Note that according to the terminology of [9, Definition 14], R; .(D) may be called the

(1 — e)-sup rate-distortion function.

2. Comparison with the data compaction theorem. For the probability-of-error distortion

measure p, : X" — X" namely,

0, otherwise,

we define a data compression code f, : X" — X™ based on a chosen data compaction code

book G, C X™:
o [at, ifa™ e Gy
Jula™) = {Q, if 2™ & G,

where 0 is some default element in X™. Then (1/n)p, (2", f.(2™")) is either 1 or 0 which
results in a cumulative distribution function as shown in Figure 3. Consequently, for any
§€10,1),

Pr{p (X", fu(X7) <8} = Prix" = [,(X")}.

In other words, the condition

AI—E(XJ .f(X)) S 5

is equivalent to

liminf Pr{X" = f,(X")} > 1 —¢,

which is exactly the same as lim sup,,_,, Pr{X" # f,(X™)} <e.

14



o 1

PrX" = f, (X7}

Figure 3: The CDF of (1/n)p,(X™, f,(X™)) for the probability-
of-error distortion measure.

By comparing the source compaction and compression theorems, we remark that H; .(X)
is indeed the counterpart of R;_.(J) for the probability-of-error distortion measure and

d € [0,1). In particular, in the extreme case where £ goes to zero,

H(X)= inf ) I[(X; X),
{Ps % : limsup Pr(X"™ # X") =0}

which follows from the fact that (cf (3.12) and (3.14) in [5, Lemma 3.2])
H(X) - H(X|X) < I(X; X) < H(X) - H(X|X),

and H(X|X) = H(X|X) = 0. Therefore, in this case, the data compression theorem

reduces (as expected) to the data compaction theorem (Theorem 2.2 ).

III. Neyman-Pearson Hypothesis Testing

In Neyman-Pearson hypothesis testing, the objective is to decide between two different explana-

tions for the observed data. More specifically, given a sequence of observations with unknown

underlying distribution (), we consider two hypotheses:

e Hy: Q= Px (null hypothesis).

e Hi: Q= PX (alternative hypothesis).

15



If we accept hypothesis H; when Hj is actually true, we obtain what is known as a type-I error,
and the probability of this event is denoted by « [2]. Accepting hypothesis Hy when H; is
actually true results in what we call a type-II error; the probability of this event is denoted by
B. In general, the goal is to minimize both error probabilities; but there is a tradeoff since if « is
reduced beyond a certain threshold then (3 increases (and vice-versa). Hence, we minimize one of

the error probabilities subject to a constraint on the other error probability.

In the case of an arbitrary sequence of observations, the general expression of the Neyman-
Pearson type-II error exponent subject to a constant bound on the type-I error has been proved
in [4, Theorem 1]. We re-formulate the expression in terms of the e-inf/sup-divergence rates in

the next theorem.

Theorem 3.4 (Neyman-Pearson type-II error exponent for a fixed test level)

Consider a sequence of random observations which is assumed to have a probability distribution
governed by either Py (null hypothesis) or PX (alternative hypothesis). Then, the type-II error
exponent satisfies

_ ~ 1 _ ~
D.-(X||X) < limsup——1logf:(e) < D.(X||X)
n

n—0o0

N 1 N
D.-(X|X) < liminf——logf;(c) < D.(X[X)
n—00 n

where % (¢) represents the minimum type-II error probability subject to a fixed type-I error bound

e€l0,1).

The general formula for Neyman-Pearson type-II error exponent subject to an exponential
test level is also proved in [4, Theorem 3]. We, herein provide an extension of this result and

express it in terms of the e-inf/sup-divergence rates.

Theorem 3.5 (Neyman-Pearson type-II error exponent for an exponential test level)
Fix s € (0,1) and ¢ € [0,1). It is possible to choose decision regions for a binary hypothesis

testing problem with arbitrary datawords of blocklength n, (which are governed by either the null

16



hypothesis distribution Py or the alternative hypothesis distribution PX)’ such that

n— 00

1 ~ (s
l1m1nf——logﬂn > D(X”|X) and limsup——loga, > Du_o(X7|X),  (3.9)
n—00 n
or

1 < (s), < 1 _ o (s
hmlnf——logﬁn > D (X (>||X) and limsup ——loga,, > D(I_E)(X()HX), (3.10)

n—00 n—00 n

where X exhibits the tilted distributions {P }n , defined by

1 dPxn
1 ) S dPe. (27,
o (s G bap

dPY) (z7) £

and

n

dP
Q,.(s) = /Xn exp {slog dP)f (x”)} APy, (z").
Xn

Here, «,, and [, are the type-I and type-II error probabilities respectively.

Proof: For ease of notation, we use X to represent X" we only prove (3.9); (3.10) can

be similarly demonstrated.

By definition of dP)(;Z(-), we have

171 ~ 1 1
S de, XX+ —— |2
S nX”( I )]+1—5 n

— 1 1
de, (X"|X")| = ———— |—log 2, . 11
(XX =~ o] (31)
Let Q2 lim SUpP,,_,0(1/n)log Qy,(s). Then, for any v > 0, AN, such that V n > Ny,

(1/n)log Q,(s) < Q+ 7.

From (3.11),

1>

dgo 5 () £ liminfPri—dg (X7|£") < 9}

. 1, = 1-s 171
= limjinf Pr{—dg, (X" X") > - 9——[—1og§zn(s)”

( S S Ln
(

< l1m 1nf Pr

{

= P [ (R0 - S [ioen )] <2
{

s

~ 1— 1.
(XX > =S - o - 1}
S

1 -~ 1-— 1_
:1—l1msupPr{ o (XX < — 89——9—1}

n—00 S S S

_ 1—s _
= 1 dzuy (— 0— 1o S).

S S

17



Thus,

>

D.(X || X)

Y

{0 g (6) < )
1-—s 1
sup {9 1-— dX"||X” <— ; 6 — ;(Q-l—v)) < 6}

1 = S -
= sup{—:(ﬁ—i—’y) — :0, : di"HX"(g,) >1 —8}

1 - 5 . 7

= 1) - g {0 dgy (0) > 1 -2}
1 s ;

= T O sl g () < 1 -
1

_ S ~
= 1 S(Q"‘V) - :21—5(X||X)-

Finally, choose the acceptance region for null hypothesis as

{2 1og 2= (x7) > D.(X %) .

Therefore
1 dPe o I
b = P { g S8 (07 2 DUXIX) | < e D (X110},
and
1 dPs
= Pxn{—1 X" D.(X|X
o = Poe {hog S8 (07 < DX}
1 dPg 1 s -
< Pxn<—1 ~ (X" Q — X|| X
< P {og G0 < - (@) - 2 p (X))
-1 1 dP 1 1
= Pxn —1 X (XM — [—l Q, }
X {l—sln OgdPXn( )] s(1—s) nooo (s)
Q+7 1

- b o)

APz, ~ 1 v
= Py« {—logdPXn(X ) > Dy (X||X) + {Q—ﬁloan(s)]ﬂLg}.
Then, for n > Ny,

dPz, -
Qp S P IOg (Xn) > QI—E(XHX)
dPXn
< exp {—nQI_E<X||X>} :
Consequently,

1 — o)) < 1 o (s
hmmf——logﬂn > DE(X()HX) and limsup——loga,, > Q(1_5>(X()||X).
n—00 n

n—0o0
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IV. Conclusions

In light of the new information quantiles introduced in [5], a generalized version of the Asymp-
totic Equipartition Property (AEP) is proved. General data compaction and compression (source
coding) theorems for block codes and general expressions for the Neyman-Pearson hypothesis

testing type-II error exponent are also derived.

Finally, it is demonstrated that by using these new quantities, Shannon’s coding theorems can
be reformulated in their most general form and the error probability of an arbitrary stochastic

communication system can be determined.
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Appendix A

Claim (c¢f Proof of Theorem 2.3)

Proof:

step 1: Define

nyy

and

we have

lim sup Ey, [Px« (A°(C))] <e.

n—oo

e) & n o, n 1 n o, n A \/ L. n o, n T \/
A()Z{(x W) =l ") < M (X Y) 4, —ixnyn (27 y )SI(X;Y)Jrv}-

n—o0

1 - - .
lim inf Pr <Dé {—pn(X”, V") <AL (X, Y) + ’y}) >1—¢,
n

n— 00

1 R
lim inf Pr (Eé {—ixnw(xn; ") < I(X;Y) + 7}) —1,
n

lim inf Pr(A 5)7) = liminf Pr(DNE)

n—00 n, N—00

> liminf Pr(D) + lim inf Pr(E) — 1

n—0o0

> (l—-¢g)+1-1=1-c¢.

step 2: Let K (2", y") be the indicator function of A{):

no,n\ _ 1, if (xn,yn) EA%E%;
K(a"y") = { 0, otherwise.

step 3: By following a similar argument in [9, equations (9)-(12)], we obtain,

[Pxn (A°(Co))]

; Ppa(Ch) 3. Pxn(a")

" gA(Cr)

> Pxe(a™) X PG

gnexn CrangA(Cr)

20



- Y Pl (1— > P~n(yn>K(x“,y”>)

TneEX™ yreyn
M
: Z Pye(a") | 1= e IE0) Z Py xn (" 2" K (2", y")
wrear yreyn
< 1- Z Z PXn (:c”)me‘Xn (x", yn)K(xn, yn) + exp {—e”(R*Rl—E(D)*V)} '

ZEXT yreYn

Therefore

lim sup Ey.[Pxn(A™(C?))] < 1—liminf Pr(A®))

n—00 n—00 &

< 1-(1—-¢g)=ce.

Appendix B

Claim: Fix ¢ € [0,1). 7.(X) is right-continuous in €.
Proof:
Suppose T.(X) is not right-continuous for some ¢ € [0,1). Then there exists v > 0 such that
Tei5(X) <T.(X) 4+ 3y for every 1 —e > § > 0,
which guarantees the existence of R satisfying
T.5(X) <R—7 < R<T(X)

for every 1 —e > § > 0. Hence, R — v is (¢ + d)-achievable for every 1 —s > ¢ > 0, and R is not

g-achievable.

By definition of (e + d)-achievability, there exists a code D,,(J) such that

limsup(1/n)log|D,(6)| = R — v and limsup Pe(D,(d)) <& +4.
n—00

n—0o0

Therefore, there exists M (d) such that for n > M (0),

(1/n)log |D,(6)] < R and Pe(D,(5)) < & + 2.
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Observe that if we increase the code size of D,,(J) to obtain a new code D}, (6) with (1/n)log|D;, ()| =

R for n > M(J), then the error probability will not increase, i.e.,

P.(D'(6)) < & + 26,

Now define a new code FE,, as follows:

E, = D, (6) for M(0) <n < max{M(5),M(6/2)}
= D) (6/2) for max{M(8),M(6/2)} <n < max{M(5),M(6/2),M(6/3)}

E, = D.(6/3) for max{M(6), M(6/2), M(6/3)} < n < max{M (), M(5/2), M(6/3), M(5/4)}

Then for n > M(0), (1/n)log|E,| = R but limsup,_,., Pe(E,) < ¢, contradicting the fact that

R is not e-achievable. O
Claim: 71_.(X) = H,. (X) for e € (0,1] and T;(X) = 0.

Proof: The first result is an immediate consequence of the right-continuity of 77 _.(X)
w.r.t. (1 —¢) €[0,1). T1(X), by definition, is the infimum of the 1-achievable data compaction

rate which requires the existence of codes €, with

1
limsup — log |€,| = R,
n—oo T

and
lim sup Pe(<€,) < 1.
n—00
We can then choose an empty code set, and obtain 7;(X) = 0. O

Acknowledgment

The authors would like to thank Prof. S. Verdu for his valuable advice and constructive criticism

which helped improve the paper.

22



—_

10.

11.

References

F. Alajaji and T. Fuja. “A communication channel modeled on contagion,” IEEE Trans.

Info. Theory, I'T-40(6):2035-2041, November (1994).

R. E. Blahut, Principles and Practice of Information Theory, Addison Wesley, Massachusetts
(1988).

. T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley, New York (1991).

P.-N. Chen, “General formulas for the Neyman-Pearson type-II error exponent subject to
fixed and exponential type-I error bounds,” IEEE Trans. Info. Theory, 1T-42(1):316-323,
January (1996).

P.-N. Chen and F. Alajaji, “Generalized source coding theorems and hypothesis testing:
Part I — Information measures,” Journal of the Chinese Institute of Engineers, to appear,

May (1998).

. L. Csiszar, “Information theory and ergodic theory,” Problems of Control and Inform. Theory,

16(1):3-27 (1987).

R. M. Gray, Entropy and Information Theory. Springer-Verlag, New York (1990).

. T. S. Han and S. Verdu, “Approximation theory of output statistics,” IEEE Trans. Info.

Theory, IT-39(3):752-772, May (1993).

. Y. Steinberg and S. Verdd, “Simulation of random processes and rate-distortion theory,”

IEEE Trans. Info. Theory, IT-42(1):63-86, Jan. (1996).

S. Vembu, S. Verdu and Y. Steinberg, “The source-channel separation theorem revisited,”

IEEE Trans. Info. Theory, IT-41(1):44-54, Jan. (1995).

S. Verdi and T. S. Han, “A general formula for channel capacity,” IEEE Trans. Info. Theory,
IT-40(4):1147-1157, Jul. (1994).

23



Nomenclature

(1 — e)-achievable data compaction rate T .(X)

(1 — e)-achievable data compression rate T (D, X)
at distortion D

d-inf-divergence rate Ds(X||X)
d-inf-entropy rate Hy(X)
d-inf-information rate 1;(X;Y)
d-sup-divergence rate Ds(X || X)
J-sup-entropy rate Hj;(X)
d-sup-information rate Ii(X;Y)
e-sup-distortion rate A(X,)Y)
e-capacity Ce

channel capacity C

channel transition distribution Pyn = Pynxn
distortion inf-spectrum AX 5 X))
divergence inf-spectrum d X| %<
divergence sup-spectrum d X| X(H)
entropy density hxn(X™)
entropy inf-Spectrum hx (6)
entropy sup-Spectrum hx (6)
inf-divergence rate D(X||X)
inf-entropy rate H(X)
inf-information rate I[(X;Y)
information density ixnpwn (2™ y™)
information inf-spectrum ixy)®)
information sup-spectrum ixy)®)
input alphabet A

input distributions Pxn
log-likelihood ratio dxn (X™||X7)
output alphabet B
sup-divergence rate D(X||X)
sup-entropy rate H(X)
sup-information rate I(X;Y)
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