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The design of two-dimensional signal constellations for the transmission of binary non-uniform memoryless sources over additive white Gaussian
noise channels is investigated. The main application of this problem is the implementation of improved constellations where transmitted data is highly
non-uniform. A simple algorithm, which optimizes a constellation by re-arranging its points in a pairwise fashion (i.e., two points are modified at a time,
with all other points remaining fixed), is presented. In general, the optimized constellations depend on both the source statistics and the signal-to-noise
ratio (SNR) in the channel. We show that constellations designed with source statistics considered can yield symbol error rate (SER) performance that is
substantially better than rectangular quadrature amplitude modulation signal sets used with either Gray mapping or more recently developed maps. SER
gains as high as 5 dB in Eb/N0 SNR are obtained for highly non-uniform sources. Symbol mappings are also developed for the new constellations using
a similar pairwise optimization method whereby we assign and compare a weighted score for each pair. These maps, when compared to the mappings used
in conjunction with the standard rectangular QAM constellation, again achieve considerable performance gains in terms of bit error rate (BER). Gains
as high as 4 dB were achieved over rectangular QAM with Gray mapping, or more than 1 dB better than previously improved mappings. Finally, the
uncoded pairwise optimized system is compared to a standard tandem (separate) source and channel coding system. Although neither system is universally
better, the uncoded system with optimized constellations outperforms the tandem coding system for low-to-mid SNRs. Performance/complexity trade-offs
between the two systems are also discussed.

I Introduction

For uniformly distributed sources, rectangular quadrature amplitude
modulation (QAM) using Gray mapping is known to perform well, and
is shown as optimal in terms of bit error rate (BER) for high enough
signal-to-noise ratios (SNR) [1]. As noted in [13], however, there
are many real-world examples of data sources which are highly non-
uniform, such as text (email and instant/short messages), medical im-
ages and encoded voice data [2]. Compression will often have residual
redundancy in the output due to non-ideal coding methods [3]. Rather
than using traditional separate source and channel coding (which may
be sensitive to noise-related errors in decoding if optimal variable-
length source coding is used, as we later illustrate in Section VI), we
can choose instead to directly exploit the non-uniformity of the source
via the modulation scheme, while gaining noise-resiliency in many
cases and significantly reducing system complexity and delay [3]. Such
an approach, which can be characterized as a joint source-channel cod-
ing approach, is quite attractive for complexity-constrained and delay-
sensitive applications such as wireless sensor networks. In these non-
uniform situations, the performance of Gray mapped M -ary rectangu-
lar QAM is sub-optimal. One simple improvement is to exploit the
knowledge of symbol probability by implementing (optimal) maxi-
mum a posteriori (MAP) decoding (instead of maximum-likelihood
decoding) at the receiver. In [13], new M1-mappings were developed
to improve performance of M -ary rectangular QAM and phase-shift
keying constellations. It is also noted in [13] that performance can be
improved by translating each mapped constellation so that it has zero
mean. Here we consider making further modifications to the constella-
tions in order to achieve lower symbol error rate (SER). In [5], such a
constellation design problem was considered for uniform sources un-
der additive white Gaussian noise (AWGN).
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In this paper, we propose a pairwise optimization (PO) method for
redesigning M-ary constellations to better exploit the non-uniformity
in the data, for large values of M , under AWGN and MAP decoding.
The method, which is simple to implement, consists of iteratively im-
proving the performance of a constellation by re-arranging its points
two at a time, while keeping the other points fixed. We verify our work
by comparing it to the known optimal constellations in [7] for M = 2,
and in [10] for M = 4, before considering larger constellations. Other
related works on constellation design include [4, 6, 12, 14].

We next introduce a similar PO method for designing good maps
for the asymmetric and irregular constellations created by the PO al-
gorithm. Performance in terms of BER is again compared to standard
modulation constellations and maps, as well as some previously im-
proved maps. Finally, trade-offs, in terms of both performance and
complexity, between our uncoded transmission scheme and a tandem
(separate) source-channel coding system are investigated.

The remainder of this paper is organized as follows. After formulat-
ing the problem in Section II, we develop our PO process for designing
constellations for non-uniform sources in Section III. Before consider-
ing larger constellations, we compare our findings to the existing liter-
ature for small constellations. From there, we evaluate the performance
of our system in terms of SER. In Sections IV and V, we describe an
iterative method for designing symbol mappings for the PO constel-
lations, and we compare the results to existing maps for conventional
constellations. In Section VI, we compare our uncoded PO system to
a coded system which employs a tandem source and channel coding
scheme (separately, but simultaneous). Finally, we draw our conclu-
sions in Section VII.

II Problem Statement

We consider a memoryless source {Xn} which generates independent
binary symbols {0, 1} non-uniformly with p = Pr{Xn = 0} > 1

2
.

We wish to transmit this data over an AWGN channel with noise vari-
ance of N0

2
per dimension. We assume that an M -ary two-dimensional

(2-D) modulation scheme is to be used, and that it is desirable to maxi-
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mize data throughput per transmission while achieving the lowest pos-
sible SER. For convenience, we assume M to be a power of two. Bi-
nary symbols are grouped into sequences of log2M bits, forming a
new symbol sequence {Yn} having M distinct values {s1, s2, ..., sM}
with probabilities {p1, p2, ..., pM}. The probabilities are defined by
the number of zeros in the bit sequence. If sequence si has ni zeros,
then pi = pni(1 − p)log2M−ni . (In the constellation diagrams that
come later, we refer to equiprobable symbols by the number of zeros,
n, they have in their corresponding binary sequence.) Each channel
symbol is then mapped to a signal point, ~si, in some initial M -ary
constellation, where ~si = (si,x, si,y). Our objective is then to change
the arrangement of the points in that constellation to achieve the lowest
SER possible at a given SNR Eb/N0, where Eb is the average energy
per bit.

The search space to be considered is continuous and consists of all
collections of points {~s1, ~s2, ..., ~sM} satisfying

(i) a zero mean constraint:
PM

i=1 pi~si = 0; and

(ii) an average power constraint:
PM

i=1 pi‖~si‖2 = E,

where the average energy per symbol, E, is given. Note that E and
Eb are related by Eb = E

log2M
. Our objective function is the SER. For

M = 2, the optimal constellation was found analytically in [7], but
as the constellation size grows, this quickly becomes difficult. In [10],
the authors design optimal constellations for M = 4 by numerically
evaluating tight error bounds developed in [8]. Our goal is to design
signal point arrangements that are near-optimal for larger constellation
sizes, such as M = 16, 64, 256, under MAP decoding.

III Pairwise Optimization of M -ary Constellations

III.A PO Design

In this section, we consider a new method for developing improved
signal constellations for 2-D transmission. While the search space is
continuous, the zero mean and average power constraints may be used
to reduce the search complexity. The zero mean constraint is a neces-
sary property of any optimal (in terms of minimal SER) constellation
with constrained average energy, since SER performance under MAP
decoding is not affected by translation or rotation of the constellation;
it is only affected by changing the relative distances between points. It
is of note that for non-uniform sources, rectangular (symmetric) con-
stellations such as 16-, 64- and 256-QAM are not zero mean. It is trivial
to improve such constellations slightly by translating them to be zero
mean, and scaling them up to their original average energy (which will
increase the separation between all points).

For a given initial constellation, it is not possible to adjust the po-
sition of a single point while adhering to the above two constraints.
Taking any pair of points, however, allows us to move those points
around while still adhering to the constraints. If ~s1 and ~s2 are the se-
lected points, then the zero mean constraint implies that

p1 ~s1 + p2 ~s2 = −
MX

i=3

pi~si

so, if we let~b =
PM

i=3 pi~si, then

~s1 =
1

p1
(−~b− p2 ~s2)

or
~s1 = ~a− c~s2

where ~a = − ~b
p1

and c = p2
p1

. Thus

s1,x = ax − c · s2,x and s1,y = ay − c · s2,y. (1)

The average energy constraint implies the following:

p1‖~s1‖2 + p2‖~s2‖2 = E −
MX

i=3

pi‖~si‖2. (2)

Letting the constant d =
PM

i=3 pi‖~si‖2 and substituting (1) in (2)
yields

p1

`
(ax − c · s2,x)2 + (ay − c · s2,y)2

´
+p2(s

2
2,x + s2

2,y) = E − d. (3)

Expanding and completing the square gives us„
s2,x −

p1ax

p1 + p2

«2

+

„
s2,y −

p1ay

p1 + p2

«2

= r2 (4)

where r2 = p1(E−d)
p2(p1+p2)

− p3
1

p2(p1+p2)2

`
a2

x + a2
y

´
. Under the con-

straints, Eqn. (4) gives us a circle, centered at
“

p1ax
p1+p2

,
p1ay

p1+p2

”
with

radius r, on which ~s2 may travel, and the relationship given by
Eqn. (1) defines a corresponding circle for ~s1. With (4), for each
pair of signals (~s1, ~s2), the problem of searching over four variables
(s1,x, s1,y, s2,x, s2,y) is effectively reduced to searching over a single
variable, θ, which is the angle parametrizing this circle for ~s2, mea-
sured counterclockwise relative to the positive x-axis for the center of
the circle. For a given value of θ, ~s2 is defined, and ~s1 has a corre-
sponding position. It is over this parameter θ that each pair of points
can be optimized for performance.

With regards to the performance for a potential constellation, we
consider the union upper bound1 on the SER Ps, which is fairly tight
for medium to high SNRs:

Ps =

MX
u=1

P (ε| ~su)P ( ~su)

=

MX
u=1

P

0@[
i6=u

εiu

1AP ( ~su)

≤
MX

u=1

X
i6=u

P (εiu)P ( ~su) (5)

where

P (εiu) = Q

 
‖~si − ~su‖√

2N0

+

√
2N0ln P ( ~su)

P (~si)

2‖~si − ~su‖

!
and Q(x) = 1√

2π

R∞
x

e−y2/2dy is the Gaussian Q-function. Note that
P (εiu) is the probability that ~si has a larger MAP decoding metric
than ~su given that ~su was sent [8].

When considering only the pair of points ~s1 and ~s2, we can ignore
the terms in Eqn. (5) for u 6= 1, 2 and i 6= 1, 2 as they will remain
constant. The remaining terms we use as an upper bound are

F12 =
P

i6=1 P (εi1)P (~s1) +
P

i6=2 P (εi2)P (~s2)

+
PM

u=3 P ( ~su) (P (ε1u) + P (ε2u)) (6)

which is the objective function to be minimized for each pair.

III.B Algorithm

The implemented algorithm is as follows:

1To keep things simple, we herein employ the union bound which may be
inaccurate for low SNRs. However, the tight upper and lower bounds of [8] can
also be used to further improve system performance.
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1. Configure some initial constellation, ensuring it adheres to the
zero mean and average energy constraints.

2. Randomly (uniformly) select a pair of points (~s1, ~s2).
3. Calculate the constrained circles from (4) and (1).
4. Find the positions of (~s1, ~s2) by minimizing (6).
5. Go back to Step 2 and repeat until the constellation stabilizes.

The initial constellation used in Step 1 contains the source infor-
mation implicitly through the symbol probabilities. Tests using differ-
ent initial constellations (rectangular, circular, asymmetric) all yielded
similar results. In Step 4, we calculate the circle noted in Eqn. (4) and
set angle θ to be 0 relative to the x-axis, and take discrete steps coun-
terclockwise. At each step of θ, F12 is calculated using the correspond-
ing ~s1 and ~s2 on their respective circles, and the design SNR (Eb/N0),
which is set as a constant. This is a simple and brute-force approach,
but it works well enough for our needs. The complexity of the algo-
rithm can be approximated by the number of times we calculate the
Gaussian Q-function. For each pair of points being optimized, we cal-
culate F12 for 50 steps of θ, each of which requires 4M calls to Q(·) as
in (6), or 200M calls per pair. We need roughly M2 pairs before good
constellations are achieved, for a total of 200M3 calls (each call takes
approx. 3 µs on our 3.0 GHz AMD hardware). When executed, our al-
gorithm stabilizes in a matter of seconds for sizes up to M = 16, and
scales up to three or four hours for M = 256. Stabilization, as used in
Step 5, means visual inspection of the constellation at this point. When
considering the speed of convergence, it is difficult to be precise, since
we do not know what the optimal constellation looks like, or even the
final PO constellation for larger sizes. In general, the more likely sym-
bols settle quickly, but the large number of unlikely symbols in large
constellations tend to continue rearranging (with better performance at
each step) for much longer. The PO algorithm must converge on a final
constellation (possibly a local minimum) since each iteration can only
decrease the union upper bound, and SER in a non-negative quantity.
Since we have that UnionBound(i) ≥ 0 for all i and the PO algo-
rithm is such that UnionBound(i) ≥ UnionBound(i+1), we must
have the union bound converging to some stable value as the number
of iterations goes to infinity.

III.C Numerical Results and Discussion

We consider the memoryless non-uniform binary source with dis-
tribution p for transmission over an AWGN channel for M =
2, 4, 16, 64, 256 and compare the performance (in terms of SER simu-
lations) under symbol-by-symbol MAP decoding of our pairwise opti-
mized constellations (which are denoted by PO2, PO4,· · · , PO256) to
existing constellations. The exact coordinates of all PO constellations
are available in [9, Appendix A]. We use p = 0.9 in the simulations,
except for the discussion at the end of the Section III.C.2.

III.C.1 Binary and Quaternary Constellations

We begin by comparing to the known optimal constellation presented
in [7] for M = 2. Our algorithm directly arrives at the same final
constellation as the work in [7], as shown in Eqn. (3) with both ~a = ~0
and d = 0 (since we have no symbols beyond ~s1 and ~s2):

p
`
(−c · s2,x)2 + (−c · s2,y)2

´
+ (1− p)(s2

2,x + s2
2,y) = E

and we choose the point with s2,y = 0, so

p(−c · s2,x)2 + (1− p)s2
2,x = E

s2,x =

s
E

pc2 + (1− p)
=

s
E · p

(1− p)

s1,x = −c · s2,x = −

s
E · (1− p)

p

which is the result obtained in [7]. Note that for M = 2, the union
bound in (5) yields the exact SER. While the pairwise algorithm is
not limited to one dimension, the results are equivalent after rotation.
Simulation confirms an exact SER performance match, as expected.
There is no consideration of design SNR for M = 2, because the
constraints alone fix the relative positions of ~s1 and ~s2, and we have
no other points with respect to which we may optimize.

We next consider the constellations found in [10] for M = 4. When
the pairwise optimization stabilizes, the resulting constellation is very
similar to those arrived at in [10] for the given design SNR (in this case
SNR = 0 dB), up to a rotation and/or reflection. In Fig. 1, it is clear
that the pairwise optimized constellation PO4 performs identically to
the optimized M = 4 constellation of [10]. Both constellations per-
form considerably better than quaternary phase shift keying (QPSK)
for highly non-uniform sources, with nearly 5 dB gain at any SNR.
The above results indicate that the algorithm does in fact tend towards
optimal constellations, and we may proceed to apply it to larger mod-
ulation constellations, where optimal constellations are not known.

III.C.2 16-ary Constellations and Robustness

Before investigating large constellations, we will examine the perfor-
mance of the 16 point constellation. The PO constellation is shown in
Fig. 2. In Fig. 3, the M1 mapping of [13] already improves the perfor-
mance of (rectangular) 16-QAM by approximately 1 dB. We can also
remark that the pairwise optimized constellation PO16 achieves a fur-
ther improvement of 2dB over the M1 mapping, for a total gain of 3dB
over Gray mapped 16-QAM. This PO16 constellation was designed
for a noise level of SNR = 1 dB, but perhaps overall performance
across all noise levels is not as good as it could be. To examine this,
also included in Fig. 3 is the performance at each true SNR step of a
specialized constellation designed specifically for that noise level. It is
clear that this specialized configuration does not provide considerable
gains over a constellation designed at a single SNR that is carefully
selected (in this case, 1 dB) and used for transmission across all noise
levels. This shows that a constellation designed using a single appro-
priately chosen design SNR can provide robust performance vis-à-vis
changes in the true SNR, and that it is not necessary to have a set of
constellations tuned to every channel noise level.

Fig. 4 indicates that gains over Gray-mapped 16-QAM are also
achieved by PO16 for smaller values of p. For p = 0.5, the gain
achieved was negligible, as expected. With p = 0.6, the gain is about
0.25 dB. For p = 0.7 and p = 0.8, more significant gains of 0.5 dB
and 1.5 dB are achieved, respectively.

At design SNR = −10 dB, Fig. 5 shows that the resulting con-
stellation is now quite different than the PO16 constellation of Fig. 2.
The less likely point clustered at the center is effectively coincident to
the most likely symbol. As such, it will never be decoded. We also see
that there is clustering among the less likely symbols farther from the
center. Instead of being more evenly spread out, they are gathered into
small groups that are farther apart. As [14] notes, and we are inclined
to agree, this allows the errors between groups to be greatly reduced at
the expense of more likely errors within a cluster. Since we are dealing
with a highly non-uniform source, we have the advantage of being able
to err on the safe side with MAP decoding, and will simply decode the
most likely symbol of a given cluster.

When designing constellations for higher SNR, the PO algorithm
creates constellations similar to the one shown in Fig. 2 for mid to high
SNR values. As we move up to quite high SNR, however, the result-
ing configuration tends to rely less and less on the source distribution,
since all points are very likely to be decoded correctly, regardless of
placement. This situation essentially turns into maximum likelihood
decoding (since the probabilities do not significantly affect the MAP
metric for very small noise), and the resulting constellation reflects
this by having points placed equidistant from one another. For design
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at 10 dB, the constellation is shown in Fig. 6; it and is nearly identical
to the constellation in Fig. 6(d) of [5].

We close this subsection with some practical considerations that
need to be addressed when designing constellations for a range of both
p and SNR values. Since we have shown the PO constellations to be
robust over a reasonable range of true SNRs using only a single design
SNR, we could arguably provide constellations suited to large steps in
noise power. Both the transmitter and receiver would need to know the
constellations in advance, and be capable of measuring noise power
in the channel (e.g., using a pilot tone) and signaling when a constel-
lation switch should happen. This can be accomplished with a very
small overhead scheme which transmits the constellation to be used
after every several thousand transmissions, using only a few bits each
time (i.e., a single transmission) to do so. Similarly, we can implement
multiple constellations to address a range of source distributions for
reasonable steps in p. We would thus arrive at a set of constellations
for each of a small number of SNRs and perhaps five to ten different p-
values. This array of solutions would allow the best performance gains
possible for the current source and channel characteristics, using only
a small transmission over head to signal the switches. This switching
scheme has not been implemented in this work, but is a viable option
for real-world implementations.

III.C.3 64-ary and 256-ary Constellations

The result of pairwise optimization of a 64 point constellation using
design SNR = 2dB is shown in Fig. 7. Again we remark the tendency
of more likely points to lay closer to the origin. This keeps the average
energy low, allowing less likely points to sit farther away, thus creat-
ing more distance between points overall. In Fig. 8, we compare the
performance of this constellation to 64-QAM with the M1 and Gray
mappings. The M1 64-QAM mapping developed in [13] already out-
performs Gray mapped 64-QAM by approximately 3.5 dB for any
given SER. The pairwise optimized constellation we develop here,
PO64, outperforms 64-QAM with M1 mapping by another 1.5 dB
at a given SER, for a total improvement of about 5 dB over 64-QAM
with Gray mapping. It is interesting to note that for medium and high
SNRs (above 4 dB), the PO64 constellation achieves better SER than
the BER of binary phase shift keying (BPSK). It is likely that the BER
of PO16 will be lower than that of BPSK for sufficiently high val-
ues of p. The performance of the pairwise optimized constellation for
M = 256 (PO256 in Fig. 9) is better than 64-QAM with Gray map by
approximately 2 dB for any SER. Note that PO256 has both a higher
data rate and a lower SER than Gray mapped rectangular 64-QAM at
all SNRs, thus improving both system performance and throughput.

IV Designing Maps for PO Constellations

In the previous section, we developed a method for designing improved
modulation constellations for non-uniform sources, based on the SER
performance of those constellations. But, in order to be able to use
these constellations in any real systems involving binary streams of
data, we must have a direct mapping for each possible log2M -bit sym-
bol. In this section we wish to design maps for the PO constellation we
have designed in order to assign a specific bit pattern to each point in
the constellation.

IV.A Initialization and Probability Constraint

By the nature of the PO algorithm, the mapping can be initiated and
modified under a fairly strong (and helpful) constraint. For a given
symbol, we know from its source probability that we can immediately
reduce the possible mappings for that symbol to a subset of the points

found in the PO constellation – those corresponding to the same source
probability.

For each constellation treated, the map is initialized arbitrarily, but
such that it conforms to the probability constraint. We define a layer
as a set of binary symbols taken together with a set of constellation
points which are equiprobable. For our binary non-uniform source with
source distribution Pr{Xn = 0} = p, and an M -ary constellation,
the symbols (bit patterns) in layer l will each have l zeros in their
binary sequences. Layer l will also have exactly

`
m
l

´
symbols, each

with probability pl(1 − p)m−l, where m = log2M is the number of
bits in each symbol. During the initialization of the map optimization
procedure (described later), the symbols and points within each layer
are assigned randomly.

IV.B Objectives

Our guiding objective is to minimize the BER of the constellation and
mapping pair. We aim to achieve a BER much lower than the SER
by trying to minimize the number of bit errors that occur, even in the
presence of noise which causes a symbol error. We can achieve this by
minimizing the Hamming distance of each symbol to its neighbours.
For a uniform source, using rectangular QAM, this can be achieved us-
ing Gray mapping (e.g., cf. Fig. [13, Fig. 8]). This mapping is arranged
such that the Hamming distance of any symbol to any of its neigh-
bours is always one. To exploit the source statistic of the non-uniform
source, improved mappings were developed in [13] without modifying
the geometry of the underlying constellation. The challenge we face
when dealing with the non-uniform source and our PO constellations
is that we have neither equiprobable nor equidistant (in terms of the
Euclidean distance) neighbours. We still wish to create a “Gray-like”
mapping, but it is not so simple as the rectangular QAM case. If not
all nearby points are equidistant (Euclidean distance-wise), how do we
choose which points we will consider as neighbours? Since, however
we select them, those neighbours will not necessarily be equiprobable,
we must consider how to measure the Hamming distance to the entire
neighbourhood.

IV.B.1 Defining the Neighbourhood and Weighted Hamming Score

We must first decide and define what symbols we will consider as
neighbours. We initially considered setting the neighbourhood of a
point ~su to be all points which lay inside a circle of radius r (i.e., all
points ~si such that ‖ ~su − ~si‖ ≤ r). But how do we choose an appro-
priate r? Should it change depending on the probability of the symbol
being considered? Without a way to determine what r should be, we
moved on to the idea of selecting some k points which lay closest
(in terms of Euclidean distance) to ~su (i.e., the k nearest neighbours).
This method provided a natural solution to the flexible radius problem,
as we would always include the closest k points, despite those points
laying farther away for the less likely symbols towards the outside of
the constellation. Looking at the PO constellations we had obtained
so far, we selected k =

√
M as the neighbourhood size. This value

provided a good balance between limiting the neighbourhood to those
points which would most likely be decoded in error, but which also
would include enough points to ensure we indeed had an appropriate
neighbourhood “around” the symbol in question.

Now we must define the Weighted Hamming Score we will use when
considering the suitability of a given symbol for its neighbourhood. To
do this, we disregard the Euclidean distance between the symbol and
each of its neighbours, and instead consider the Hamming distance
and probability of each other point. For symbol ~su and its k nearest
neighbours (indexed by {n1, ..., nk}), the Weighted Hamming Score,
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WHS(·), is then defined as:

WHS( ~su) =

kX
i=1

pnid(bni , bu) (7)

where pni is the probability of ~sni , d(·, ·) is Hamming distance and
bni is the binary sequence (symbol) currently assigned to ~sni .

V Map Improvement Algorithm

The Map Improvement algorithm is implemented as follows:

1. Configure some initial mapping (as described above).
2. Loop through set of all layers several times.

(a) Loop through each layer individually, proceeding out-
wards.

i. For current layer, generate many pairs of symbols.
A. For each pair of symbols, determine both neigh-

bourhoods.
B. Compare total Weighted Hamming Score with

and without switching the symbol assignment,
using (8).

C. If switching the symbol assignment decreases
WHS, then switch the mapping of binary se-
quences to selected points.

As described above, the initial mapping of Step 1 is arbitrary aside
from conforming to the probability requirements. For Steps 2 through
to 2(a)i, we adjusted the number of times to repeat each loop to achieve
what appeared to be the best results. The values used in our code were
as follows:
We looped through the set of all layers 4m times for Step 2, where
m = log2M is the number of bits in each sequence (and is also the
number of layers). When stepping through each individual layer in
Step 2a, we start with the center and proceed outwards. We only “loop”
each layer once per overall loop, since repeating a single layer imme-
diately would be equivalent to simply generating more pairs. Finally,
for Step 2(a)i, we achieved favourable results when considering 2L2

pairs, where L =
`

m
l

´
is the number of symbols in layer l (members

of which have l zeros in their binary sequences).

When checking each pair of symbols in Step 2(a)iB to determine
whether they should be switched, we calculate the sum of the WHD
for each symbol in both neighbourhoods ((nu,1, ..., nu,k) is the neigh-
bourhood of ~su, and (nv,1, ..., nv,k) is the neighbourhood of ~sv). We
want to know if

kX
i=1

`
pnu,id(bnu,i , bu) + pnv,id(bnv,i , bv)

´
>

kX
i=1

`
pnu,id(bnu,i , bv) + pnv,id(bnv,i , bu)

´
(8)

and, if so, we switch the mappings bu and bv for ~su and ~sv .

V.A Results and Performance

The results of this procedure are now considered. For small constel-
lation sizes, the mapping is not particularly important. For M = 2,
there is no map to be considered at all – the symbols are exactly deter-
mined by the constellation. For M = 4, the only consideration is the
placement of the mapping 01 versus 10. Indeed these are different, but
the resulting BER is identical, since each configuration has identical
Hamming distance to its neighbours. As such, we immediately move
to considering 16-ary constellations and larger.

V.A.1 16-ary Constellations

We present the result of the mapping improvement algorithm in Fig. 10
for the PO constellation we developed in the previous section. We im-
mediately note that the Hamming distance between many close neigh-
bours is 2, where the Gray had put all distances to just 1. By the design
of the PO constellations, we cannot achieve distances as small as those
of the Gray map. This is because we force symbols of equal proba-
bility to be near one another. For instance, consider the layer l = 3
in Fig. 10. All symbols in this layer have exactly three zeros in their
binary sequences (there are four of these symbols). Since they must be
a neighbour to at least one other point in their own layer, and we do
not have any repeated symbols, the Hamming distance of these close
neighbours must be 2. However, you will also find that this mapping
also has a maximum Hamming distance of 2, aside from the distance
involving the symbol 1111 to layer l = 3 (which cannot be avoided,
again by the design of the PO constellation). Despite having greater
Hamming distance between some neighbours, the PO constellation
with the associated map performs very well.

Inspecting Fig. 11, the performance improvement on the PO con-
stellation with its designed map is clear. There are considerable gains
over the standard rectangular QAM constellation with both maps con-
sidered. While the optimized M1 maps of [13] achieve approximately
1dB gain of the Gray map, the PO constellation and map makes a fur-
ther improvement of more than 2dB over the M1, where the difference
is greatest. This best improvement occurs at mid-range SNRs of 2 to
5 dB, and is approximately in line with the gains we saw when con-
sidering SER performance. It is also interesting to note that the SER
performance of PO16 is in fact superior to the BER performance of
both rectangular 16-QAM maps for mid-high SNRs, so even without
the map improvement procedure, the BER of PO16 would be consid-
erably better than the standard constellations.

We also note that the performance difference between the BER and
SER of PO16 shrinks as SNR increase to high levels. This is to be
expected, as when the noise is very small compared to the signal, we
will make very few errors on the most likely symbols, and this is where
reducing bit errors has the greatest impact.

V.A.2 64-ary and 256-ary Constellations

We display the resulting map for the PO64 constellation in Figs. 12.
The map for the PO256 constellation can be found in [9, Fig. 4.6].
Examining first at Fig. 12, again we see Hamming distances of close
neighbours larger than those seen in a Gray map (as we saw for the
PO16 constellation). But we also see again that most symbols (espe-
cially the group of more likely symbols near the center) are assigned so
that they are quite similar to their neighbours. Many of the most likely
symbols have a Hamming distance of only 1 or 2 to their neighbours,
but we also have the Hamming distance between any neighbours be-
ing at most 3. For the 256-ary PO constellation and mapping (cf. [9,
Fig. 4.6]), we observe the same situation in general. There are some
neighbours with greater Hamming distances, but most are kept quite
low (2 or 3), especially when compared to the longer sequence length
(8 bits) of symbols in this constellation. The BER performance of the
64- and 256-ary PO constellations is shown in Fig. 13. We remark
that the 64-QAM M1-map of [13] provides gains of approximately
3 dB over Gray mapped 64-QAM, and even 0.25 dB over BPSK. The
PO64 constellation with the improved map further provides more than
1 dB over the BER performance of the M1-mapped QAM. Again, we
find that this is approximately in line with the gains observed when
examining SER performance. Interestingly, we notice that the PO256
constellation and map has better BER performance than Gray mapped
64-QAM, despite the constellation density and the larger Hamming
distances observed in PO256. As was the case with SER performance,
PO256 also simultaneously achieves superior BER performance and
higher data throughput.
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VI Comparison to Tandem Source and Channel Coding

Thus far we have only compared our PO system to similar transmission
schemes: mainly BPSK and rectangular QAM. We have been consid-
ering only the case of transmitting directly the modulated source sym-
bols, without trying to compress the source, or protect the message
with parity.

We will now consider another possible transmission scheme: using
in tandem both source and channel coding on the data (separate source
and channel coding) to first compress the message, and then protect it
during transmission. Using this tandem scheme has a trade-off relative
to our uncoded system, and different performance profiles. We will
explore these differences in this section.

VI.A Tandem Coding System

We begin by describing the tandem coding scheme to which we will
compare the PO system. The goal is to compare to a system that is rea-
sonably representative of real world systems employing such tandem
coding schemes.

As in all of the test cases, we generate bits according to the source
distribution. For each of T trials, we generate messages in blocks of
N bits at a time to be processed. The message will first be compressed
(losslessly) using a fourth-order Huffman code. This means we will
look at four bit symbols from our non-uniform binary source, and de-
sign a Huffman code for them. For p = 0.9, the resulting Huffman
code has an average code rate of 0.49 bits/source symbol. This code
rate is close to the entropy of our binary source, which is 0.46, so we
know this code is appropriate. Given this code rate close to 0.5, the
compressed message will be approximately N

2
bits long.

The channel code we will be using is a convolutional code with con-
straint length k = 3 and rate r = 1/2. The generator functions used
for the convolutional code are G0 = 101 and G1 = 111, in binary
representation form [11, pp 470-477]. This leads the output to follow
the state machine described in Fig. 14. The states represent the two
previous input bits, Xn−1Xn−2, and the transition labels indicate the
current input bit and the two channel coded parity bits which will be
transmitted, Xn/g0g1. To allow us to know how the transmission be-
gins, we always reset the initial state to 00 at the beginning of each
message block, and record the transitions from there forward. Hence
for each compressed message bit to be sent, two coded parity bits are
sent representing the state change. The channel coded bits are trans-
mitted using BPSK with AWGN, and the receiver collects the observed
voltages in the channel.

Once the entire block (approximately N bits) has been received,
the observed voltages are passed to a soft Viterbi decoder to recover
the transmitted message. The output of the Viterbi algorithm is a best
guess of the bit sequence (by minimizing the sequence error proba-
bility) which comprises the encoded message (approximately N

2
bits).

This binary sequence is then passed to the Huffman decoder to be con-
verted back into the original message (N bits long). Note that the over-
all rate of this tandem coding system is 1 source bit per channel use.

VI.B Performance Comparison

We will now examine the performance of this tandem coding scheme
in comparison to our uncoded PO system. To test the tandem coded
system, messages of N source bits were generated and passed through
the system described in Section VI.A. Tests were conducted for a range
of values of N , as the performance of the Viterbi decoder does indeed
depend heavily on the length of the blocks received. Other values were
tested, but the values we have selected for interesting performance

comparison to the PO systems are N = 12, 100, 200, 800, 5000. For
smaller values of N , more trials (T ) were performed to simulate ap-
proximately ten to twenty million bits2 total for each SNR.

Examining the data presented in Fig. 15, we first notice that per-
formance of the tandem system is quite poor at low SNR for all
block sizes, but is slightly worse for larger N . For small block length
(N = 12) we note that the tandem scheme does not outperform PO2
and PO4 even at relatively high SNR, and in fact only beats out PO16 at
a mid-high SNR of 5 dB. Keep in mind that at that level of noise, PO16
is communicating four times as much data as the tandem scheme. Step-
ping the block size up to N = 100, we start to get performance ap-
proaching PO2 and PO4 for mid-high SNRs. In fact, at 3 dB, the tan-
dem scheme with N = 100 matches the performance of PO4 (which
is already slightly better than PO2), but then fails to overtake it. To
beat out PO4 completely, we must further increase block size.

Once we move up to N = 800, we note that it is possible to beat the
performance of PO4. Here the tandem scheme surpasses the BER per-
formance of PO4 at slightly above 3 dB, and remains superior from
then on. Considering N = 5000, we detect the tandem scheme sur-
passing the performance of PO4 just beyond 4 dB, and subsequently
surpassing the tandem scheme for N = 800 at approximately 4.5 dB.

These results indicate that PO4 is clearly superior in performance
for low and mid-range SNRs. At mid-high SNRs and beyond, it is
possible for the tandem scheme to surpass the performance of PO4 for
sufficiently long block sizes. It should be noted, however, that the gains
over PO4 are less than 1 dB at SNR around 5 dB, even for a very large
block size, and that PO4 is achieving twice as much data throughput
for its performance.

There are some additional trade-offs to be considered here. The rel-
ative complexity will be discussed in the next section, but there are
performance trade-offs to be considered, as well. For instance, the
long block length necessary to beat the performance of PO4 entails
a considerable amount of decoder delay. The receiver must wait for
the entire block to be transmitted before passing the observations to
the Viterbi decoder, which then must process the data. The long block
length, while resulting in better BER performance overall, is suscep-
tible to long runs of corrupted data in individual messages. That is,
when the Viterbi decoder outputs an incorrect bit, the message from
that point onward (the tail) is heavily corrupted (high concentration of
bit errors) due to desynchronization of the Huffman decoder.

The average corruption run lengths measured during simulation (at
the Viterbi decoder output) are shown in Table 1. The average lengths
presented are over the number of transmissions where an extended data
corruption has occurred (rather than average over all trials). The rate
of the appearance of these types of errors is given by the occurrence
rate. Thus for N = 800, in 0.5% of trials, there were long runs of
corrupted data which had an average length of 184 bits. For N =
5000, the average corrupted run length was 1285 bits, occurring in
0.2% of trials. While this is a rare occurrences in both cases, it is a
considerable portion of the message when it does happen – over 20%
of the message (the tail end) is corrupted on average. While the PO
constellation has a higher BER at high SNRs, it does not suffer from
these long runs of corrupted data, and instead has its bit errors spread
more evenly throughout the messages. Whether this concentration of
errors is important depends entirely on the specific application, and the
tolerance or sensitivity towards different types of failures.

The careful reader will note that manipulation of the average cor-
ruption run length and occurrence rate in Table 1 does not yield the
same average bit error rate as the data presented in Fig. 15. This is
not a data discrepancy, but rather one of presentation. For Table 1, we
have a view inside the machine, and are able to check when the Viterbi

2For N = 5000, the total number of bits simulated was considerably higher
(approx. 100M rather than 20M), since the results produced were inconsistent
using only a few thousand trials.
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decoder has made a bit error in the sequence it returns, and consider
the message bits decoded from that point onward to be corrupted (high
probability of error). The actual result of such a bit error has two pos-
sible manifestations. The less likely case is that the error causes the
Huffman decoder to decode an incorrect codeword of the same length
as the intended codeword. It will then continue to decode the rest of the
message correctly as if there were no error. The more likely scenario is
that the Viterbi bit error will cause the Huffman decoder to decode an
incorrect codeword of a different length than the intended codeword.
This causes the Huffman decoder to become out of synchronization
with the true data, but continues to decode incorrect codewords until
near the end of the message, when it may find a non-existent codeword.
It is likely, given the source distribution under consideration, that the
corrupted output will still have many of the bits of the original message
correct (the zeros). Since this is essentially the decoder getting lucky
with its mistakes, we have considered the entire tail of the message to
be corrupted when such a Viterbi bit error occurs, as the decoded mes-
sage is unreliable and contains a higher-than-normal concentration of
bit errors, but the measurement of BER for Fig. 15 considers only the
individual bits (the lucky bits are counted as correct data).

VI.C Complexity Issues

The most fundamental difference between the two systems is one of
hardware complexity versus software complexity. The PO system re-
quires more complicated hardware design (in the transmitter), whereas
the tandem source and channel coding needs a processor capable of
the calculations required to run the system.

The PO constellation might increase the hardware requirements in
terms of needing strongly linear power amplifiers, since the constel-
lation points can be quite far apart (in a constellation designed for
a highly non-uniform source) and can thus result in a high peak-to-
average power ratio for signals sent over successive modulation in-
tervals. The tandem scheme is simplified in hardware as it employs
conventional BPSK.

The tandem scheme is relatively quite complicated in software im-
plementation. The PO system requires only simple instructions to
translate the source data to a constellation point, and a fairly straight-
forward system for MAP demodulation at the receiver. The tandem
scheme requires considerable processing, particularly the receiver for
performing the Viterbi calculations to detect the encoded message se-
quence. This processing could be quite taxing for a small wireless node
running off limited battery power, such and those found in a wireless
sensor network.

VII Conclusions

It is clear that the pairwise optimized constellations offer significant
gains over traditional (rectangular QAM) modulation constellations
for highly non-uniform sources. This is especially true for high rate
constellations where a great deal of energy is “wasted” by placing
likely symbols far from the origin. We recognize that asymmetric non-
rectangular constellations introduce additional complexity both in the
hardware of the transmitter (for modulation) and in the calculations
required for demodulation. Smaller improvements can be easily ob-
tained by re-centering the traditional rectangular constellations to be
zero mean, and scaling them up to their original average energy.

The gains achieved when considering SER were not only sustained,
but improved, as good maps were designed for the PO constellation
and BER performance was measured. Despite higher Hamming dis-
tances between neighbouring symbols, the BER performance of the
PO constellation was significantly better than standard Gray-mapped
rectangular QAM.

When comparing the uncoded PO system to a tandem source and
channel coded system, neither was universally superior. PO was gen-
eral better at low SNR, while the tandem scheme (for large enough
block size) was superior at high SNRs. Where the BER performance
of the two systems matched, it is notable that the PO constellations
transmitted at a higher rate. Each system had its advantages and dis-
advantages, and making a choice between them for implementation
would depend entirely on the application.
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Figure 1: Performance of M = 4 constellations for p = 0.9. Optimized from [10] and
PO4 are both designed for SNR = 0 dB.

Figure 2: Pairwise optimized constellation for M = 16, p = 0.9 and design SNR =

1 dB.

Figure 3: Performance of M = 16 constellations for p = 0.9 and design SNR =

1 dB. Performance of a specialized constellation (i.e., with design SNR identical to true
SNR) also shown.

Figure 4: Performance of M = 16 constellations for varying values of p and design
SNR = 1 dB.
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Figure 5: Pairwise optimized constellation for M = 16, p = 0.9 and design SNR =

−10 dB.

Figure 6: Pairwise optimized constellation for M = 16, p = 0.9 and design SNR =

10 dB.

Table 1
Tandem Code Errors

Block Size, N Crossover SNR ACL (bits) Freq.
12 5 dB 4 0.02%
100 3 dB 9 0.35%
800 3 dB 184 0.50%
5000 4 dB 1285 0.205%

Table 1: Average corruption length (ACL) of tail in bits and frequency of occurrence
(within the Viterbi decoder) for various message block sizes. Results shown only at
Crossover SNR (the point at which the tandem scheme overall BER performance matches
that of PO4). The tandem scheme does not outperform PO4 for block size 12, so this
Crossover SNR is where it surpasses PO16.

Figure 7: Pairwise optimized constellation for M = 64, p = 0.9 and design SNR =

2 dB.

Figure 8: Performance of constellations for M = 64, p = 0.9 and design SNR =

2dB and the pairwise optimized constellation for M = 256 with design SNR = 4dB.
BPSK also shown as reference point.
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Figure 9: Pairwise optimized constellation for M = 256, p = 0.9 and design SNR =

4 dB.

Figure 10: PO constellation for M = 16 with improved mapping.

Figure 11: BER Performance of 16-ary constellations. PO constellation simulated with
mapping seen in Fig. 10.

Figure 12: PO constellation for M = 64 with improved mapping.
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Figure 13: BER Performance of 64-ary constellations and PO256. PO constellations sim-
ulated with mappings given in Fig. 12 and [9], Fig.4.6.

Figure 14: State machine representing the convolutional channel code with constraint
length k = 3 and rate r = 1/2.

Figure 15: Performance of tandem source and channel coding scheme for various block
lengths. Selected PO constellation performance shown for reference.

Can. J. Elect. Comput. Eng., Vol. 34, No. 4, Fall 2009, Published October 2010


