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Abstract

A new lower bound on the probability P(A1 ∪ · · · ∪ AN ) is established in terms of only the
individual event probabilities P(Ai)’s and the pairwise event probabilities P(Ai ∩ Aj)’s. This
bound is shown to be always at least as good as two similar lower bounds: one by de Caen
(1997) and the other by Dawson and Sanko� (1967). Numerical examples for the computation
of this inequality are also provided. c© 2000 Elsevier Science B.V. All rights reserved.

1. Main results

Consider a �nite family of events A1; A2; : : : ; AN in a �nite 1 probability space (
; P),
where N is a �xed positive integer. For each x ∈ 
, let p(x) , P({x}), and let the
degree of x — denoted by deg(x) — be the number of Ai’s that contain x. De�ne

Bi(k), {x ∈ Ai: deg (x) = k}
and

ai(k),P(Bi(k));

where i = 1; 2; : : : ; N and k = 1; 2; : : : ; N . We obtain the following lemma.

Lemma 1.

P

(
N⋃
i=1

Ai

)
=

N∑
i=1

N∑
k=1

ai(k)
k
:
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1 For a general probability space, the problem can be directly reduced to the �nite case since there are only
�nitely many Boolean atoms speci�ed by the Ai’s [2].
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Proof. We know from [2] that

P

(
N⋃
i=1

Ai

)
=

N∑
i=1

∑
x∈Ai

p(x)
deg(x)

:

But ∑
x∈Ai

p(x)
deg(x)

=
N∑
k=1

∑
x∈Ai :deg(x)=k

p(x)
deg(x)

=
N∑
k=1

∑
x∈Ai :deg(x)=k

p(x)
k

=
N∑
k=1

1
k

∑
x∈Bi(k)

p(x) =
N∑
k=1

ai(k)
k
:

This completes the proof.

This brings us to our main result.

Theorem 1.

P

(
N⋃
i=1

Ai

)
¿

N∑
i=1

(
�iP(Ai)2∑N

j=1 P(Ai ∩ Aj) + (1− �i)P(Ai)

+
(1− �i)P(Ai)2∑N

j=1 P(Ai ∩ Aj)− �iP(Ai)

)
; (1)

where

�i,
�i
�i

−
⌊
�i
�i

⌋
;

�i,
N∑
k=1

ai(k) = P(Ai)

and

�i,
N∑
k=1

(k − 1)ai(k) =
∑
j:j 6=i

P(Ai ∩ Aj):

Proof. From Lemma 1, we can write

P

(
N⋃
i=1

Ai

)
=

N∑
i=1

N∑
k=1

ai(k)
k

=
N∑
i=1

Vi;

where

Vi,
N∑
k=1

ai(k)
k
:
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To obtain a lower bound on P(
⋃N
i=1 Ai), we proceed by �nding (for each i) the mini-

mum of the linear expression

Vi =
N∑
k=1

ai(k)
k
; (2)

subject to the constraints:

ai(k)¿0; k = 1; : : : ; N; (3)

N∑
k=1

ai(k) = P(Ai), �i (4)

and
N∑
k=1

(k − 1)ai(k) =
∑
j:j 6=i

P(Ai ∩ Aj), �i: (5)

This constrained minimization problem is solved using the same methodology as
proposed in [1].
Step 1: For r¿2, solving (4) for ai(r − 1) gives
ai(r − 1) = �i −

∑
k:k 6=r−1

ai(k):

Substituting the above expression of ai(r − 1) in (5) yields

(r − 2)

�i − ∑

k:k 6=r−1
ai(k)


+ ∑

k:k 6=r−1
(k − 1)ai(k) = �i

or ∑
k:k 6=r−1

[k − (r − 1)]ai(k) = �i − (r − 2)�i:

Dividing by r, we get

1
r

∑
k:k 6=r−1

[k − (r − 1)]ai(k) = 1r [�i − (r − 2)�i]: (6)

Step 2: Solving (5) for ai(r) gives

ai(r) =
1

r − 1


�i − ∑

k:k 6=r
(k − 1)ai(k)


 :

Substituting the expression for ai(r) in (4) yields

1
r − 1


�i − ∑

k:k 6=r
(k − 1)ai(k)


+∑

k:k 6=r
ai(k) = �i
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or

1
r − 1

N∑
k=1

(r − k)ai(k) = �i − �i
r − 1 : (7)

Step 3: Solving (6) for ai(r) and solving (7) for ai(r − 1), respectively, yield
ai(r)
r

=
�i
r
− (r − 2)�i

r
−
∑
k:k 6=r

k − (r − 1)
r

ai(k)

and

ai(r − 1)
r − 1 = �i − �i

r − 1 −
∑

k:k 6=r−1

r − k
r − 1ai(k):

Substituting the above two expressions in (2) yields

Vi − �i
r
+
r − 2
r
�i +

∑
k:k 6=r

k − (r − 1)
r

ai(k)− �i + �i
r − 1 +

∑
k:k 6=r−1

r − k
r − 1ai(k)

=
∑

k:k 6=r−1;r

ai(k)
k

or

Vi − 2
r
�i +

1
r(r − 1)�i =

N∑
k=1

(r − k)(r − k − 1)
r(r − 1)

ai(k)
k
¿0;

where r¿2.
Step 4: De�ne

fi(r),
2
r
�i − �i

r(r − 1) : (8)

We thus get that

Vi¿fi(r) (9)

where r¿2.
We want to maximize fi(r) over r¿2 in order to render (9) as tight as possible.

Setting

fi(r)− fi(r − 1)¿0;
fi(r)− fi(r + 1)¿0;

we get

1 +
�i
�i
6r62 +

�i
�i
:

Since r is an integer, we obtain

1 +
⌊
�i
�i

⌋
6r62 +

⌊
�i
�i

⌋
:
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Let r′1, 1 + b�i=�ic, r′2, 2 + b�i=�ic and �i = �i=�i − b�i=�ic. So

fi(r′1) =
(1 + �i)�2i

�i + (1− �i)�i −
�i�2i

�i − �i�i ;

fi(r′2) =
�i�2i

�i + (2− �i)�i +
(1− �i)�2i

�i + (1− �i)�i :

If r′1 is valid — i.e., if r′1¿2 — it is easy to prove that fi(r′1)6fi(r
′
2): This is veri�ed

as follows:

fi(r′2)− fi(r′1) =
�i�2i

�i + (2− �i)�i +
(1− �i)�2i

�i + (1− �i)�i

− (1 + �i)�2i
�i + (1− �i)�i +

�i�2i
�i − �i�i

=
2�i(�i)4

[�i + (2− �i)�i][�i + (1− �i)�i][�i − �i�i]
¿ 0:

Substituting fi(r′2) into (9) and summing over i yields (1).

2. Comparison with de Caen’s bound

In a recent work [2], de Caen also presented a lower bound on P(
⋃N
i=1 Ai) in terms

of the P(Ai)’s and the P(Ai ∩ Aj)’s.

Lemma 2 (de Caen [2]). Let A1; A2; : : : ; AN be any �nite family of events in a
probability space (
; P). Then

P

(
N⋃
i=1

Ai

)
¿

N∑
i=1

P(Ai)2∑N
j=1 P(Ai ∩ Aj)

: (10)

We next demonstrate that our new bound is always at least as good as de Caen’s
bound. More speci�cally, we prove the following.

Lemma 3. Let A1; A2; : : : ; AN be any �nite family of events in a probability space
(
; P). Then

N∑
i=1

(
�iP(Ai)2∑N

j=1 P(Ai ∩ Aj) + (1− �i)P(Ai)
+

(1− �i)P(Ai)2∑N
j=1 P(Ai ∩ Aj)− �iP(Ai)

)

¿
N∑
i=1

P(Ai)2∑N
j=1 P(Ai ∩ Aj)

;
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where

�i,
�i
�i

−
⌊
�i
�i

⌋
:

In order to prove Lemma 3, we need the following fact.

Lemma 4. Suppose a¿ 0; b¿0; and 06x61; then

xa2

b+ (2− x)a +
(1− x)a2
b+ (1− x)a¿

a2

b+ a
:

Proof. Let

f(x) =
a2x

b+ (2− x)a +
a2(1− x)
b+ (1− x)a :

• For b= 0,

f(x) =
a2x

(2− x)a + a¿
a2

b+ a
= a:

We are done.
• For b¿ 0; f(x) is continuous for all x ∈ [0; 1].

f′(x) =
a2b+ 2a3

[b+ (2− x)a]2 −
a2b

[b+ (1− x)a]2 :

Let x0 ∈ [0; 1] such that f′(x0) = 0. Then we get a unique solution

x0 =
2a+ b−√

2ab+ b2

2a
∈ [0; 1]

and

f(x0) =
x0a2

b+ (2− x0)a +
(1− x0)a2
b+ (1− x0)a

= 2a+ 2b− 2
√
2ab+ b2:

It is easy to prove that

2a+ 2b− 2
√
2ab+ b2¿

a2

b+ a
:

Therefore

min
x∈[0;1]

f(x) =min{f(0); f(1); f(x0)}

=min
{

a2

b+ a
; 2a+ 2b− 2

√
2ab+ b2

}
=

a2

a+ b
;
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thus,

xa2

b+ (2− x)a +
(1− x)a2
b+ (1− x)a¿

a2

b+ a

for all x ∈ [0; 1].

Proof of Lemma 3. Letting

a= P(Ai); b=
∑
j:j 6=i

P(Ai ∩ Aj); x = �i =
b
a
−
⌊
b
a

⌋

in Lemma 4 gives

�iP(Ai)2∑
j:j 6=i P(Ai ∩ Aj) + (2− �i)P(Ai)

+
(1− �i)P(Ai)2∑

j:j 6=i P(Ai ∩ Aj) + (1− �i)P(Ai)

¿
P(Ai)2∑

j:j 6=i P(Ai ∩ Aj) + P(Ai)
=

P(Ai)2∑N
j=1 P(Ai ∩ Aj)

:

Therefore, (1) is always stronger than (10); i.e.,

N∑
i=1

(
�iP(Ai)2∑N

j=1 P(Ai ∩ Aj) + (1− �i)P(Ai)
+

(1− �i)P(Ai)2∑N
j=1 P(Ai ∩ Aj)− �iP(Ai)

)

¿
N∑
i=1

P(Ai)2∑
j:j 6=i P(Ai ∩ Aj) + P(Ai)

:

Note: de Caen’s bound is tight (i.e. (10) is an equality) if and only if the degrees
deg(x) are constant on each Ai [2]. Since (1) is stronger than (10), we conclude that
the above condition is only a su�cient (but not necessary, cf. Example 1 in Section 4)
condition for the tightness of (1).

Observation 1. If �i = 0 ∀i, then our bound reduces to de Caen’s lower bound. This
leads us to also conclude that de Caen’s bound is a special case of our bound.

3. Comparison with the Dawson–Sanko� bound

We next prove that our bound is also always at least as good as the Dawson–Sanko�
bound [1,3].

Lemma 5 (Dawson–Sanko� [1]). Let A1; A2; : : : ; AN be any �nite family of events in
a probability space (
; P). Then

P

(
N⋃
i=1

Ai

)
¿

�S21
(2− �)S1 + 2S2 +

(1− �)S21
(1− �)S1 + 2S2 ; (11)
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where

S1,
N∑
i=1

P(Ai);

S2,
N∑
i=1

i−1∑
j=1

P(Ai ∩ Aj);

and

�,
2S2
S1

−
⌊
2S2
S1

⌋
:

Lemma 6. Let A1; A2; : : : ; AN be any �nite family of events in a probability space
(
; P). Then (1) is always sharper than (11); i.e.;

N∑
i=1

(
�iP(Ai)2∑N

j=1 P(Ai ∩ Aj) + (1− �i)P(Ai)
+

(1− �i)P(Ai)2∑N
j=1 P(Ai ∩ Aj)− �iP(Ai)

)

¿
�S21

(2− �)S1 + 2S2 +
(1− �)S21

(1− �)S1 + 2S2 :

Proof. From the proof of Theorem 1, we know that

fi

(
2 +

⌊
�i
�i

⌋ )
¿fi(r); ∀r¿2;

where the function fi(·) is described in (8). In particular, we have that

fi

(
2 +

⌊
�i
�i

⌋ )
¿fi

(
2 +

⌊
�
S1

⌋ )
;

where

�,
N∑
i=1

∑
j:j 6=i

P(Ai ∩ Aj) =
N∑
i=1

�i

and

S1,
N∑
i=1

�i:

It can be easily veri�ed that � = 2S2, where S2 is de�ned in Lemma 5.
Noting that

∑
i fi(2 + b�i=�ic) yields our bound (the right-hand side of (1)), and

letting s= 2 + b�=S1c we get
N∑
i=1

fi

(
2 +

⌊
�i
�i

⌋ )
¿

N∑
i=1

fi

(
2 +

⌊
�
S1

⌋ )

=
2
s

N∑
i=1

�i − 1
s(s− 1)

N∑
i=1

�i
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=
2S1
s

− 1
s(s− 1)�

=
2S1
s

− 2S2
s(s− 1) : (12)

The proof is completed by observing that the right-hand side of (12) is indeed equal
to the Dawson–Sanko� bound given in (11).

Observation 2. If �i=�i = C ∀i; where C is a constant, then �i = � ∀i and our lower
bound reduces to the Dawson–Sanko� lower bound. Thus, Dawson–Sanko�’s lower
bound is a special case of our bound.

4. Numerical examples

Example 1. We �rst give an example in which our proposed bound is tight. Let 3|n
(n is a multiple of 3) and

Ai =

{ { 3i−12 ; 3i+12 } if i is odd;

{ 3i2 − 1; 3i2 } if i is even;

where 16i62n=3. Then Ai ∩ Aj 6= ∅ if and only if di=2e = dj=2e. If the points are
uniformly distributed with probability 1=n, then

P(Ai) =
2
n
;

∑
j:j 6=i

P(Ai ∩ Aj) =
∑

j 6=i:di=2e=dj=2e
P(Ai ∩ Aj) = 1n

and

�i = 1
2 :

Clearly

P

( 2n=3⋃
i=1

Ai

)
= 1:

(1) gives

2n=3∑
i=1

(
1
2 (2=n)

2

3=n+ 1
22=n

+
1
2(2=n)

2

3=n− 1
22=n

)
=

2n=3∑
i=1

3
2n
= 1:

However (10) gives

2n=3∑
i=1

(2=n)2

3=n
=

2n=3∑
i=1

4
3n
=
8
9
:

Thus, in this case, (1) is stronger than (10).
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Table 1
Description of System I with N =6 and |

⋃N
i=1

Ai|=15. (×) in the (i; j)th entry indicates
that outcome xi ∈ Aj
Outcomes x p(x) A1 A2 A3 A4 A5 A6

x0 0.012 × × ×
x1 0.022 × × ×
x2 0.023 × × ×
x3 0.033 ×
x4 0.034 × × ×
x5 0.044 × × ×
x6 0.045 × × ×
x7 0.055 × × × ×
x8 0.056 × ×
x9 0.066 × ×
x10 0.067 × × ×
x11 0.077 × ×
x12 0.078 × × ×
x13 0.088 ×
x14 0.089 × × × ×

Table 2
Description of System II with N =6 and |

⋃N
i=1
Ai|=15. (×) in the (i; j)th entry indicates

that outcome xi ∈ Aj
Outcomes x p(x) A1 A2 A3 A4 A5 A6

x0 0.023 × × ×
x1 0.034 × ×
x2 0.045 × × ×
x3 0.056 ×
x4 0.067 × × ×
x5 0.078 × × ×
x6 0.067 × × ×
x7 0.056 × × ×
x8 0.045 × ×
x9 0.038 × ×
x10 0.011 × × ×
x11 0.022 ×
x12 0.033 × × ×
x13 0.044 ×
x14 0.055 × × × ×

Example 2. We next consider several systems and compare our bound to the de Caen
and Dawson–Sanko� bounds. The di�erent systems are described in Tables 1–4. The
lower bounds for each system are computed in Table 5.
It can be clearly observed from the above table that the new bound is sharper than

the de Caen and the Dawson–Sanko� bounds.
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Table 3
Description of System III with N=6 and |

⋃N
i=1
Ai|=15. (×) in the (i; j)th entry indicates

that outcome xi ∈ Aj
Outcomes x p(x) A1 A2 A3 A4 A5 A6

x0 0.012 × × ×
x1 0.022 × ×
x2 0.023 × × ×
x3 0.033 ×
x4 0.034 × × ×
x5 0.044 × × ×
x6 0.045 × × ×
x7 0.055 × × ×
x8 0.056 × ×
x9 0.066 × ×
x10 0.067 × × ×
x11 0.077 ×
x12 0.078 × × ×
x13 0.088 ×
x14 0.089 × × × ×

Table 4
Description of System IV with N=7 and |

⋃N
i=1
Ai|=15. (×) in the (i; j)th entry indicates

that outcome xi ∈ Aj
Outcomes x p(x) A1 A2 A3 A4 A5 A6 A7

x0 0.0329 ×
x1 0.1076 × × × ×
x2 0.0599 ×
x3 0.1108 × ×
x4 0.0420 ×
x5 0.0055 × × ×
x6 0.0508 × × ×
x7 0.1142 × ×
x8 0.0480 × ×
x9 0.0235 × ×
x10 0.0676 × × ×
x11 0.0295 × ×
x12 0.0441 × × ×
x13 0.1265 × × ×
x14 0.1058 × × ×

Table 5

System P(∪iAi) de Caen (10) Dawson (11) New bound (1)

I 0.7890 0.7087 0.7007 0.7247
II 0.6740 0.6154 0.6150 0.6227
III 0.7890 0.7048 0.6933 0.7222
IV 0.9689 0.8759 0.8881 0.8911
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