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[15] —, “Anupper bound to the capacity of discrete time Gaussian channel  There is a curious and provocative duality between the proper-
Vl\;ith figggack—lh"lEEE Trans. Inform. Theoryol. 40, pp. 588-593,  ties of a source with a distortion measure and those of a channel.
[16] i, “An Ljpper bound to the capacity of discrete time Gaussian channel-rhls duality I$ enhan_ced i W(.e ConSIQer channels in Wh.lc.h therg IS
with feedback—Ill,"Bull. Kyushu Inst. Tech., Pure and Applied Math- & cost associated with the different input letters, and it is desired
ematics vol. 45, pp. 1-8, 1998. to find the capacity subject to the constraint that the expected cost
not exceed a certain quantity. .]. The solution of this problem
leads to a capacity cost function for the charjnel] this function
is concave downwarfl - -]. In a somewhat dual way, evaluating
the rate distortion functio®(D) for a source amounts, mathe-
matically, to minimizing a mutual informatiop. .] with a linear
The Capacity-Cost Function of Discrete Additive Noise inequality constraint . .]. The solution leads to a functidR(D)
Channels With and Without Feedback which is convex downwarfl . .]. This duality can be pursued fur-
ther and is related to a duality between past and future and the
Fady Alajaji Member, IEEEand Nicholas Whalen notions of control and knowledge. Thus we may have knowledge

of the past but cannot control it; we may control the future but not

have knowledge of it.
Abstract—We consider modulog additive noise channels, where the Equi d with Shannon's illuminating observation. we begin by inv
noise process is a stationary irreducible and aperiodic Markov chain of quippe annon's fluminating observation, we begin by Inves-

order k. We begin by investigating the capacity-cost functio C'(3)) of  tigating the capacity-cost functiofC'(3)) of mod-¢ additive-noise
such additive-noise channels without feedback. We establish a tight upper channels without feedback. We derive a tight upper bound'tg)
bound to (C(B)) which holds for general (not necessarily Markovian) which holds for all discrete channels with stationary additive noise.

stationary g-ary noise processes. This bound constitutes the counterpart +.: : e
of the Wyner-Ziv lower bound to the rate-distortion function of stationary This bound constitutes the counterpart of the Wyner—Ziv lower bound

sources with memory. We also provide two simple lower bounds te*(3) ~ t© the rate-distortion function of stationary sources. We also provide
which along with the upper bound can be easily calculated using the two simple lower bounds t6’(3) which along with the upper bound
Blahut algorithm for the computation of channel capacity. Numerical can be easily calculated using the Blahut algorithm for the computation

results indicate that these bounds form a tight envelope o(3). of channel capacity. Numerical results indicate that these bounds form
We next examine the effect of output feedback on the capacity-cost _ .. )
a tight envelope old'(3).

function of these channels and establish a lower bound to the capacity-cost . . .
function with feedback (Crn(3)). We show (both analytically and We next study the capacity-cost function of thed-¢ additive chan-
numerically) that for a particular feedback encoding strategy and a nels with feedback. We establish a lower bound to the capacity-cost

class of Markov noise sources, the lower bound t&Crr(B) is strictly  function with feedbackCrr(3)) and introduce a feedback encoding
greater than C(/3). This demonstrates that feedback can increase the gy o104y and a class of Markov noise sources for which the lower bound
capacity-cost function of discrete channels with memory. . . J ..
to Cre (/) is strictly greater thad'(/3). This is demonstrated both an-
Index Terms—Additive noise, capacity-cost function, channels with feed- alytically and numerically.
back, channels with memory, cost constraints. The rest of this correspondence is organized as follows. In Section I,
we define the capacity-cost function and present its properties. The
I. INTRODUCTION analysis of the nonfeedback and feedback capacity-cost functions of

. ) ) ] _ additive noise channels is given in Sections Ill and IV, respectively. A
In this work, we analyze the capacity of discrete (d|screte-t|rrg—hmmary is stated in Section V.

finite-alphabet) channels with memory subject to an input cost
constraint. More specifically, we consider modylaadditive noise )
channels, where the noise process is a stationary irreducible and ~ !l- PRELIMINARIES: THE CAPACITY-COST FUNCTION

aperiodic Markov chain of orde. Consider a discrete channel with finite-input alphatiét fi-

Mod-¢ additive noise channels are symmetric; by this we meaiie-output alphabey, andn-fold transition probability
that the block mutual information between input and output vectors of

such channels is maximized for equiprobable input blocks (uniform

independent and identically distributed (i.i.d.) input process). A vieX, yi€l, i=12,---,n.

closed-form solution exists for the capacity of such channels [§h general, the use of the channel is not free; we associate with

However, since additive channels with memory become nonsy@ach input letterz a nonnegative numbei(z), that we call the

metric under input constraints, a closed-form expression for thegost” of =. The functionb(:) is called the cost function. If we

capacity-cost function does not exist. This indicates the necessityutgb the channel consecutive times—i.e., we send an input vector

establish bounds to the channel capacity-cost function. 2" = (21,22, - -, 2, )—the cost associated with this input vector is
Insight into how and where to look for these bounds comes frorgdditive”:

Shannon, who first commented on the duality between a source and a

channel [17]: "

b(a") =" b(:).

=1

Q(n)(ill-,yzv"’?/n |'T’.1-,'T’.2-, v Tn)
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Definition 1: An n-dimensional input random vectak™ = From the definition offmin above, we can see th&tE[b(X")] >
(X1, Xo,---, X,,) that satisfies (min; therefore C(3) is defined only for3 > Bmin. Furthermore, by
1 n ) the additivity of the cost function and the stationarity of the capacity-
ﬁE[b(X < achieving input distribution, we have that,.. = lim,,— ﬁgla)x.
is called a-admissibleinput vector. We denote the set ofdimen-

. L SR Remark: For a discrete channel witlhod-¢ additive noise{ 7,
sional 3-admissibleinput distributions byr,, (3) oed el Zn}

and linear cost constraints on the input—hér) = x—we get that
() = {Pxn«c") : %E[b(X"n < 3} in = 0. Bl = A = (4 = 1)/2, C(Brmin) = 0
/ Co(Bih) = Cr = logy g = (1/m)H(Z")
The capacity-cost function of discrete statiodarghannels with and

memory is defined by [13] C(Bus) = C = logy q — H(Z-0)
)= Sup Cu(B) = lim Cn(5) () whereH(7..) is the noise entropy rate.
whereC,.(3) is thenth capacity-cost fulnctiogiven by - Lemma 1[13]: Thenth capacjty-/cost f/unctio@’fl ) g(lxt)an by(2)
S, g T S mron s ) < AL

whereI(X™;Y™) is the block mutual information between the input
vectorX"™ and the output vectdr™.

The capacity-cost functiofi(3) has aroperationalsignificance for
channels satisfying certain regularity conditions (e.g., a stationary erLemma 2: The capacity-cost functiofi(3) given by (1) isconcave
godic channel, a discrete channel with stationary and ergodic additaedstrictly increasingin 3 for Smin < 8 < Bmax, and is equal ta”
noise, or an information-stable channel [8], [18]). More specificallypr 5 > Fmax.

C'(3) represents the supremum of all rafé$or which there exist se-

quences ofj-admissible block codéswith vanishing probability of . ADDITIVE-NOISE CHANNELS WITHOUT FEEDBACK

error asn. grows to infinity. In other words('(3) is the maximum ) .

amount of information that can be transmitted reliably over the channt, An Upper Bound to the Capacity-Cost Function

if the channel must be used in such a way that the average cost does nwe consider a discrete channel with memory, with common input,
exceeds. If b(xz) = 0 for every letterz € A, thenC(4) is just the noise, and output-ary alphabett =Y =2Z=A4,=1{0,1,---,q—1}

From the above lemma, the fact that the limit of a concave function
is concave, and the definition of..., we deduce the following result.

channelcapacityC' as we know it. and described by, = X,, & Z,,forn =1,2,3,--- where
C= Sup Cn = lim Gy, (3) * & represents the addition operation modgio
where « the random variable¥’,,, Z,,, andY,, are, respectively, the input,
noise, and output of the channel;
c, 2 Pm%x ) lI(X”;Y"). 4) « {X.} 1L {Z.},i.e., the input and noise sequences are indepen-
xn(xz™) N

dent of each other;
In this work, we exclusively consider discrete channels with sta- * the noise procesgZ, },~; is stationary.

Fionary ergodimnod-g gdd?tive noi_se. Since these channels have NRe now turn to the analysis of the capacity-cost functiéi) of this
input memory or anticipation [1], it follows from [8, Lemma 12'4'3]Channel. Since the input achievirg(3) is nonsymmetric ford <

that, without loss of generality, we can restrict the maximizations in (%) the formula ofC'(3) given by (L) will not have a closed-form
and (4) over the set af-dimensional distributions of stationary ergOdiCexfp‘re,ssion. We will then try to derive an upper bound{e?).

input processes. With this fact in mind, we next state the properties o In [21], Wyner and Ziv derived a lower bound to the rate-distortion
C'(p3) for the class of discrete channels with stationary ergodic additiyen ction (R(D)) of stationary sources

noise. We first define, respectivelymin , B4, andBumax by
" R(D) > Ri(D) —
Bmin = minb(x),
z€EX where
A 2 hin 1e [b(X™)] : EI(JYn;Yn) —-c, * Ri(D) is the rate-distortion function of an “associated” memo-
n n ryless source with distribution equal to the marginal distribution
PW (. of the stationary source;

and . .
LTS £ H(X:)— H(X.),isthe amount of memory in the source.

Brmax 2 min { lim lE [BX™)]: lim ;I(X'L; Y") = C} . H(X,) is the entropy of the associated memoryless source with
e nTee distribution (") (+), andH (X . ) is the entropy rate of the orig-

. ) ) i ) ) ) inal stationary source.
1A discrete channel is said to be stationary if for every stationary input

process, the joint input-output process is stationary. This lower bound was later tightened by Berger [2]
2A (nonfeedback) channel block code of lengtlover X is a subset
5 R(D)> R.(D)—ptn > Ri(D) — p 5
C = ey c@n e (D) 2 Bn(D) = pin 2 R1(D) = p1a 5)

of A" where eachr;) is ann-tuple. The rate of the code B = > log,|C|.  whereR,, (D) is thenth rate-distortion function of the sourci; (D)
The code is¥-admissible itb(c-’(@.)) <mnpfori=1,2,---,[C|. If the encoder g 55 defined above and, = (1/n)H(X") — H(X~).

wants o transmit messagie wherelV’ is uniform ove 1, 2, - - -, |C|}, it sends In light of the striking duality that exists betwedt( D) andC'(3),
the codeword .y ). Atthe channel output, the decoder receesand chooses . . ;

as estimate of the messalié = ¢(Y™), whereg(-) is a decoding rule. The W€ Prove an_e_qunval_ent upper bound to the capacity-cost function of a
(average) probability of decoding error is thBfr) = Pr{g(Y™) # W}. discrete additive-noise channel.
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Theorem 1: Consider a discrete channel with additive stationary We now proceed to prove (6). L&t ~ (") € 7 (3) wherery (3)
noise{Z,}. Let QU (.) denote the:-fold probability distribution of is described in Definition 1. For this input distribution, we denote
the noise process. Then f6f = kn wherek,n = 1,2,---, we have 3, 2 %E[b(Xg))] fori =1,2,---.k; thusf Zle 8; < 3. By (7),
we obtain with thisPx+ (™) that

CJ\’(d) < Chn (,3) + Ann < Ch (/j) + Ay (6)
k
where SIYYY) < 23T (X Y) + Au,
» (,(8) is then-fold capacity-cost function of the channel as de- . i
fined in (2); But %I(X(”;);Y(’,?)) < Cn(B;)fori=1,2,--- k;thus

* (1(8) is the capacity-cost function of the associated discrete
memoryless channel (DMC) with i.i.d. additive noise process
whose distribution is equal to the marginal distributi@f® (-)

]‘,V
1 NN 1 ) ,
FIEHYY) < - ch(,s,;) + Ann.
of the stationary noise process; =

. By concavity ofC,, (-), we have
k k
A - ) ; 1 . 1
Ann 2 (In)H(Z") - (1/N)H(ZV) T ;Cn(‘i‘) <G <Z Z@)
with Z* = (Z\,Zs,---,Z;),i =n,0orN,and and since’', (+) is strictly increasing we have that
k
Ain = H(Zy) — (1/NYH(ZN) C, <; Zﬁ,;) < CL(B).
V=1

whereH (Z,) is the entropy of the i.i.d. noise process of the Sty erefore

sociated DMC. '

Proof: The proof employs a dual generalization of Wyner and 1 N oON )
Ziv's proof of the lower bound to the rate-distortion function. We first NI(X ;Y 7)< Cn(B)+ Aun
need to use the expression

or
k
7 1 N N ;
NV.y N (7Y NA. ~ a —I( XY )=Cn(B) <Ch(p AnnN.
I(xX™y )g;I(A(Z),Y(lJ)+_\A,m @) oo (XN ( )=Cn(8) < CalB)+ Ann
Thus the firstinequality in (6) is proved. To prove the second inequality
where in (6), we need to show that, (3) < Ci(3) + A, or Cr(3) <
XN = (X{y. Xy X C1(8)+ Aq. This is shown using the first inequality in (6) and letting

N sn Fn n n=1. O
Y :(}(1),1(2)7 (k))

X0 = (X1 (s Xayre e X i) Using (6) and (1), we obtain the following tight upper bound on

c(8).
and
n - . Corollary 1: Consider the channel described in Theorem 1. Then
e = Yy Yo,y Yo () y ;
C(3) < Ch(B)+ M, <Ci(B)+ My (8)
with X; ;) andY; (;) denoting theth component of the vectors }, h
andY(?), respectively. Proving the above inequality goes as follows:; VNere
* C,(B)andC,(3) are as defined in Theorem 1;
k 7 7 JAN T JAN
ZI (X0 Y + NAun — (XN v o M, = Apoo = (1/n)H(Z") — H(Zs), andM, = A, =
= H(Z,) — H(Z.) denotes the amount of memory in the noise
k N process.
= Z [H (Yﬁi)) -H (5’,(?) '(ni>)] + ;H(Zn) The bound given above is asymptotically tight witlsince as: — oo,
=1 N N N N ju’n — 0.
—H(Z")-HY ")+ HY" | X")
& Observation: We remark that the above bound given by (8) holds
- Z [H (Y(’})) _H (Z(",))] +kH(Z™) also for real-valued additive noise channels (i.e.¥op)/, andZ being
o1 ' subsets of the real line) with the modulo addition operation replaced by
— H(ZN) — H(yf\") + H(ZN) regular addition and entropy replaced by differential entropy.
k k
rn N n
= ZH ( (1>) —HY")= ZH (Y(ii)) B. Existing Lower Bounds to the Capacity-Cost Function
=1 =1
k Lower bounds on the capacity-cost function can be formed in two
- ZH (Y Yoy, Yioay. - Y ways. First, thenth capacity-cost function provides a simple lower
i=1 bound toC'(3): C(8) = sup,,~; Cw(8) > C(3). Blahut's algorithm
k k i [3] is ideally suited for its computation using thé x ¢ channel tran-
2 ZH (Y%) - ZH (¥H) =0 sition matrix ), the probability of receiving™™ given thatX™ was
=1 =1 transmitted.

where the third equality follows from the stationarity of the noise, and Another lower bound exists for the capacity-cost function when the
the last inequality follows from the fact that conditioning decreasehannel alphabet is binary. If we take the inputs to be i.i.d. and
entropy. 2, we can apply Mrs. Gerber's Lemma [15] to obtain a lower bound
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Upper bound to C(B) improving with n
I T I

0.7 . T

0 0.1 0.2 0.3 04 0.5 0.6

B

Fig. 1. Cu»(g3)forn =1,2,3,5, and9 for a binary channel with first-order Markov noise givenBy. 3u..x = 1/2.

on C(3). More specifically, letP(X; = 1) £ o be the marginal and alphabet size. The results, computed to an accuracyt@f® bits
distribution of an i.i.d. input process such tHah(X;)] = 3, then are plotted in Figs. 1-4. We have used= 9 for the binary channels
P <=l see Figs. 1, 2, and 4), amd= 5 for the ternary channels (see Fig. 3).
C8) 2 s ((}' *hy </\)) ~ H(Z) ©) Sl'ightergresults can be)achieved for IargelHOW):aver, the tig(htnessgim-)
whereh,,(+) is the binary entropy functiom,x b 2 a(l=b)+(1—a)b, provesad/n since from (10) we have that,, = O(1/n), while the
&2 min{a, 1 — a}, and 2 min{H (Zw),1 — H(Z)}. computation complexity increases exponentially.iandq.
As we are dea“ng primar”y Witb_ary channels, we use tif&, (/j) In FIgS 1and?2,the fO”OWing channel transition and Stationary prob-
lower bound in all cases except the binary case where we also apphjities were employed:
Mrs. Gerber's bound. The’,(3) lower bound is in fact dual to the m = |09 005 ~_[08
upper bound oi?( D) computed by Blahut in [3]. T { 0.2 0.8 } - {0.2} )
C. Numerical Results for Markov Noise Sources The ternary example in Fig. 3 is computed using
0.8 0.15 0.05 0.6
_ We have thus far derived an upper bound on the capacity-cost func- .= (03 05 0.2 T = |0.2167
tion (Corollary 1) 03 01 0.6 0.1833
C(B) < Cn(pB) + My 2 ™ (8). while in Fig. 4, we form the envelope on the capacity-cost function of
This bound becomes tight as — oo. Furthermore, a simple lower & channel with second-order binary noise described by
bound to the capacity-cost function is given by 0.95 005 0 0 0.655
CH(9) 8 () < O = oo o1 o 0| *=[oom
We herein estimaté’(3) numerically for the case where the noise 0 0 0.1 09 0.273

process is a stationary irreducible and aperiodic Markov chain oforderNote thatC' (0) = 0 = C(0) While C2* (Bnx) = C/(Bumns). This

k. This is accomplished by computing,.(3) and C,.(3) + M,,. ) )
Cr(3) is calculated via Blahut's algorithm for the computation of th%hOWs that for the extreme values@fat least one of the bounds will

. ) L . achieve the “true” capacity-cost function. Furthermore, the difference
capacity-cost function [3], whilélZ,, comes from a straightforward C :
X : between the two bounds, which is equalit,, vanishes a¢l/n).
computation of the noise entropy rate

1 In Figs. 2 and 4, we also include Mrs. Gerber's lower bound given
M, ==-H(Z\, -, Z,) — H(Zxs1 | Zto -+, Z1) in (9). While it is obviously very weak for low-cogt?), as the per-
? letter cost approaché$...x, this bound outperforms Blahut's bound
=—[H(Z\, -+, Zr) — kH(Zy41 | Zy,---,Z1)]. (10) for computable block lengths. The reason for the good performance
" (gnMrs. Gerber's bound for values gfclose to5,,.x comes from the

The above entropies are computed using the stationary distributyfact that the capacity of binary Markov channels, which is given by

vectorm which is obtained by solvingIl = =, wherell is the state
transition matrix for thekth-order Markov noise. C=1-H(Z«)

We will hereafter assume that the cost functigin) is given by s achieved atimax by an i.i.d. uniformly distributed input process.

b(x) = x; i.e., we will impose a linear cost constraint on the channglhis makes Mrs. Gerber's bound tight&t. (the right-hand side of
input letters. In the numerical examples, we consider the case2 (9) with o = (1/2) is equal toC).

andg = 3.

C»(3) is, in fact, the capacity-cost function of a discrete memory-
less channel whose input and output alphabets are the sets of words
of lengthn and whose transition probabilities are given by #héold We have already addressed the estimation of the capacity-cost func-
probability distributions of the proce$&’; } . Using the algorithm of [3, tion C'(3) for ¢-ary additive noise channels without feedback by es-
Theorem 10], we calculaté, (3) andM,, for different values ofl, n,  tablishing upper and lower bounds@4 3). We herein investigate the

IV. ADDITIVE-NOISE CHANNELS WITH FEEDBACK
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Envelope on C(5)
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Fig. 2. Comparison of’y*(3) with CZ(8) and Mrs. Gerber's lower bound for a binary channel with first-order Markov noise givBis b, = 1/2.

o Envelope on C(f)

0.6 .

0 0.2 0.4 0.6 0.8 1 1.2

Fig. 3. Comparison of'+"(3) with CZ(3) for a ternary channel with first-order Markov noise givenIby. 3max = 1.

Envelope on C(f)
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0.1 4
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Fig. 4. Comparison of’y*(3) with CZ(3) and Mrs. Gerber's lower bound for a binary channel with second-order Markov noise giﬂé@bwmx =.5.
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effect of output feedback on the capacity-cost function of such chah-¢g(Y™") # W. We assume thall” is uniformly distributed over

nels for the case where the noise process consists of a stationan{ir-2,- - -, 2"™}. The probability of decoding error is then given by
reducible and aperiodic (hence ergodic) Markov chain of okdd&y
“output feedback” we mean that there exists a “return channel” from the P = Pr{g(Y"™) £ W}.

receiver to the transmitter; we assume this return channel is noiseless,

delayless, and has a large capacity. The receiver uses the return chasimele we are studying the capacity-cost function, we require an av-
to inform the transmitter what letters were actually received; these letage cost constraint on the channel input code lefigts. We say
ters are received at the transmitter before the next letter is transmittbat a feedback ratB is achievabldf there exists a sequence @fad-

and, therefore, can be used in choosing the next transmitted letter. missible (as defined in Footnote 2) feedback codes with block length

In previous related work, Shannon first proved in [16] that feedand rateR such thatim,, —o. P = 0. The supremum of all achiev-
back does not increase the capacity of discrete memoryless chanAgl§ feedback code rates is then the channel capacity-cost function with

(DMC's). He also conjectured that feedback can increase the capaf§§dback, denoted by s(3).
of channels with memory. Since the channel is additive, we hale= X; © Z; where{Z; } isa

g-ary stationary irreducible and aperiodic Markov chain of oddéie

capacity of finite-state indecomposable channels with side inform ssume thall” and{Z; } arelndspendept of each other. 'Note, however,
t because of the feedback;” andZ" are no longer independent;

tion at the transmitter. In particular, he showed that the capacity . i1

state-computable finite-state Markovian indecomposable chann %Ar/rjay depend recursively o’ . L

with (modulo) additive noise, where the noise is a deterministic ith outputfeedbac_k, the encoder |3|nforrped attlfnefnatabbut
function ¢ (-) of the state of a Markov source, is not increased witf}| '€ Préviously received output symbafs, ¥z, - - -, ¥i—; and thus
the availability of side information at the transmitter [12, Theorem 8f""OWS all the previous channel noise samples Zs., - - -, Zi—1, i =

This result has an interesting connection with the problem of feedbab k2k j %‘tNOte also thtﬁgtr' a f'n'tte merlzory SYZtem of orcﬂgtrf\e fee?'
for channels with additive Markov noise. Specifically, if th&-) ack otterms more thahtime Steps old provides no new information.

function is the identity function, then the current state corresponzwere}‘ore’tWe cgr;hexpr(_ess tf:etfeedback function in terms of the input
to the previous noise sample and the problem of side information AtMPONENts and the noise state as

the transmitter reduces to the problem of feedback for a channel with
additive Markov noise. Thus [12, Theorem 8] implies that feedback
does not increase the capacity of channels with (modulo) additi

ergodic Markov noise. In [1], Alajaji demonstrated that for channe R this work, we obtain a lower bound s (5) by only focusing on
with (modulo) additive noise, where the noise is anbitrary (not . ! ) B(17) by only 9
time invariant feedback strategies.

il i i f k i . . b .
neces_sarlystatlonary nor ergodlc)_ process, eedl?ac does not increa or thismod ¢ channel with feedback, we defir@” () using a
capacity. Recently, Erez and Zamir established simple eXpreSSIOnSfTQrdencodin rulef* as
the capacity of discrete (modulo) additive-noise channels with cautsf 9
and noncausal side information at the transmitter [7].

For continuous-amplitude channels, Pinsker [14] and Ebert [6]
showed that feedback at most doubles the capacity of nonwhite addi-
tive Gaussian noise channels. No increase is possible for additive whirieere
Gaussian noise channels. In [4], Cover and Pombra also proved that 1

. . . . . b/ oy .y n
feedback increases the capacity of nonwhite Gaussian noise channels =, Jmax 510 ;Y™) (13)
by at most half a bit. Ihara and Yanagi [9], [10], [22] provided general v "

(sufficient and necessary) conditions on the noise and average PoWRkreY; = X, 47, X, = f*(Vi. Zick, -+, Zi_y)fori = 1,-+ . n,
of nonwhite Gaussian channels under which the capacity is increased is 4 4-ary n-tuple indepehde/nt o™, and -
by feedback. Finally, in [19], Viswanathan obtained a computable

In a seemingly different work [11], [12], Jelinek investigated th

Xi=fi(W, Zicp, . Zi). (11)

iﬁgeneral, the feedback rufe(W, Z,_y, - - -, Z,—1) is time-varying.

n—

C"™(B)=supC(B) = lim C(B) (12)

expression for the capacity of finite-state Markov channels with N A | n )

perfect channel state information at the receiver and delayed feedback. () = {P"’”(” ) ;E[b(}‘ < ,J} : (14)
He also applied his result to derive the capacity of finite-state additive

Gaussian as well as log-normal shadow fading channels. Observe that the cost constraint is imposed on the feedback vE&tor

rather thanV’™. We next state without proving the following result.
Its proof, which employs the usual random coding argument and the

A. A Lower Bound to the Feedback Capacity-Cost Function asymptotic equipartition property, is given in [20].
_ Theorem 2 (Achievability af'"(3): Crr(3) > C'™(3)): Con-
A feedback channel block code with block lengtland ratefz con-  sider ag-ary kth-order additive Markov noise channel defined above
sists of the following. with a fixed time-invariant feedback functiofi. If C'*(3) is as de-

« Anindex set{1,2, ---,2"%} on the messagd¥’ fined in (12), then there exists a sequence3aidmissible feedback
R e o i codes of block length and rateR such thatP!™) — 0 asn — oo for
. stic:qenc;zc;fencodlng functiofis: {1,2,---,2""}xY'7" — allratesR < C™(3).
A t=1,2,---,n.

» A decoding functiong: Y — {1,2,---.2""}, which is ade- B. Nonlinear Feedback for Whidfirs (3) > C(3)

terministic rule assigning an estimdfé to each output vector. . . .
gning P We next introduce a simple nonlinear feedback scheme and a class of

To convey messad& € {1,2,---,2""} the user sends the codewordnoise processes for which feedback incre@sgs). For a channel with
X" = (X,Xs, -, X,), whereX; = f;(W,Y1,Y5,---,Y;_y) for g-arykth-order additive Markov noise, 1&" (W) = (V3,---,V,,) be
i = 1,2,---,n. The decoder receives™ = (Y1,Y»,---,Y,) and ag-aryn-tuple representing messafjé € {1,2,~~-,2”R}. Then, to

guesses the original message tode® ™). A decoder error occurs transmitiW, the encoder sends” (W) = (X1, X»,---, X,,), where
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X, = f*(Vi,Y1,Ys,---,Y;_q) fori = 1,2,---,n and the time-in- Therefore,
variant feedback encoding functigii (-) is given as follows:
n n FB n n
Pywjyn(y™|0") = Py yn(y™ [0")

Xi=V; ifz’Sk;Xi:f*(W,S;)é{‘/“ 5‘7éf if i >k , , , - -
0, S =5 for the feedback encoding scheme in (15) if the conditional probabili-
(15) ties ofZ; givenS; = 5 are uniform. O
where Lemma 3 implies that since the nonfeedback channel is symmetric,
the feedback channel is also symmetric. From [5, Theorem 8.2.1] we
S; = (Zickr Zi—pars-+ s Zi1) can infer that a uniform distribution on the input blodk induces a

uniform distribution on the output blocRs™.
denotes the state of the noise process attjraeds is some preselected  We have so far shown that for a particular type of Markov noise
state. Note that in the above coding scheé&, is nothing but the sources, our feedback rule has no effect on the channel conditional
“nonfeedback” codeword; that is, if the channel is without feedbackistribution. It does, however, affect thestof individual input blocks.
thenX" (W) = V", The following lemma compares the expected cost of nonfeedback

Under linear or power cost constraints this feedback strategy agkgnnel inputs with the cost of feedback channel inputs encoded using
the transmitter to monitor the noise stafelf the encoder detects a our strategy.

particularbadstates (i.e., one whose transition probabilities are nearly ) .
uniform) at step’, then the transmitter is instructed to send the least Lémma 4: Consider the nonfeedback and feedback channels
expensive word regardless of the current message syfiben our described abovel, with the feedback strategy given in (15), and
examples the least expensive letter hi@s = 0. Pzis(z]3) = ¢ for all = Let ?)V”(I'” ) be a stationary input
Let us now apply this feedback strategy tg-ary channel with a distribution that achieves., (5) for 7 > fuix. Then
particular additive Markov noise of ordér
ol (a) > Cu)
Lemma 3: Consider a-ary channel with stationary irreducible and
;e;]pelrlgdlrc F?S]'t'\:? MstO\:]gc;!;el?f]‘orrde|t2ithcel f?id?a(:k ;mﬁ %II;/ en whereg!" is the expected per letter cost undgt. (v" ) and the feed-
( ) elatingA., Vi, ando:. tfor a particuiar noise stals the - ,, encoding strategy, and is given by
conditional probabilities of the current noise sample are uniformly dis-
tributed; i.e., g = {1 _n—k

) PSG‘)} A.
Pzi\si(3i|§):_7 Vzi € Aq

1 Proof: For the nonfeedback channel
then the conditional probabilities gf' givenv™ areequalfor both the

p ]- * n n *k 3
feedback and nonfeedback channels 8= . ZPW (v™)b(0v"™) = Z Py (v)b(v)

Pynyn(y"|v") = Py jya(y™ 0"),  forally™,o" € A7, _ _ _ o _
sincePy-» (v™) is a stationary input distribution that achieves the non-
Proof: The transition probabilities for the nonfeedback channééedback capacity-cost functid, (3). For the feedback channel we

are given by charge costs to the channel input letters after applying the feedback rule
f*. Thus
Pyujyu(y"|v")=Pzn(z" =y" ©0")
= Pu(y1 ©Ov1,y2 Ovaye o, Yk O vg) gl — lE b(X™)] = 1y Eb(X;
" Hn n [ (‘ )] n ; [ ( l)]
X H PZi | 5; (yi © vy | $i) (16) ) 2
i=k+41 = ; Z ZPV? (U,)b(‘/;)
wheres; = (z;—1, zi—k+1," -+, zi—1) IS the state of the Markov chain =1

at step for a given input—output paip™, y™ ). Using the same notation
but with a superscript to denote feedback, the transition probabilities of
the feedback channel are given by

+ 1S BBV S)

1=k+1

k n—k «
= 254+ 2NN Py(s) Pr(0)b(£7 (0, )
Py yn (¥ |0") = Py (y1 © w1, 92 G v, -, yk © k) " RN
" . n k.o n—Fk .
X H Py s, (yi © f (v, si) | si) (A7) = ;/3 + " ZR@(S)PV(”)Z](O)
i=k+1 v
where + D) Ps(s)Pu(v)b(v)
. . Py 1s.(yi ovilsi), ifsi#5 FE
Py s, (yi © fF(vinsi)|si) = { L s ~ k n—k )
| Priysityils)s  ifsi=5. = A+ =D Ps(s)
Notice that (16) and (17) are identical except possibly when noise state & e
5 oceurs. BUtP, (=] 35) = (1/¢) forall = € {0,1,--+.¢q — 1}; this = {1 _n= 'pg(g)} 3 (19)
implies that "
. - . 1 wheres; = (zi—x,- -, zi—1). Note that, since we are dealing with sta-
Py s, (yi|3) =Py, s,(yi Ovi|5) = —. (18)

q tionary irreducible and aperiodic Markov noise proces#ess) > 0
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e

—_—— e e = —

p1 p2 p
Fig. 5. C'™(3) versusC(5); C = Crp = logq — H(Zs); 81 = 3; andB2 = Bmax.

and thus3l® < 3. Now, by Lemma 3, the channel transition probabilSinceC'(3) is strictly increasing i3 andj3 > 3'®, we obtain that
ities are identical for the feedback and nonfeedback channels. Using (" > (8"
P (o™ i i istributi i . ]
v~ (v") as a particular input distribution, we obtain that which implies that
cr (@f}’) > 1 S Pl (0" PR (g [ 0") Cre(8"™) > C(8"™) for0 < 4" < Bumax- O
n

oy

FB o Observation: We already know from [1] that for additive noise
Pyl yn(y |v")

x log . 5 channels an i.i.d. uniform input achieves the capacity without feedback
2 on Poa () PRl (37 [ 07) (C), and that the capacity with feedba@K, ) is equal toC'. Thus
:%.X:m%@wanwwyww) Cri = C = logq — H(Zx) (22)
Cwn ™ for channels with stationary ergodic noise. From (21), (22), and the fact
Pyujyn(y” o) thatC"™(-) is a lower bound t&’r5 () we remark that
X log " - p—— 1b
Z;P,,,, (v)Pynyn(y™|v™) Cep(3)=C"(B)=Cvp =C
= Co(B). O =logg—H(Z), V827"

where"” = [1 — Ps(5)]fmax. We summarize the results of this ob-
Theorem 3: Consider thg-ary nonfeedback and feedback channelservation and Theorem 3 by illustrating them in Fig. 5.
with stationary irreducible and aperiodi¢th order additive Markov
noise and feedback rule described above.Ret; s, (z; | §) = (1/¢) C. Numerical Examples

forall z; € Ag. Then for0 < § < Bmax We have thus far demonstrated analytically that for a class of Markov
Cra(3 (3 noise sources and a specific feedback scheme, feedback can increase
rB(d) > C(3). the capacity-cost function. This was achieved by showing that the lower

Proof: Erom Lemma 4. we have that bound to the capacity-cost function with feedbd6R® (3)) is strictly
’ greater than the nonfeedback capacity-cost fun¢titig ) ). We herein
cP (J}Ib) > Ca(8) (20) illustrate this result numerically by comparing, for a given block length

n, C'"(3) with the upper bound t6’(3) given (in Section Ill) by

where C(B) < C™(B) 2 Cu(B) + M,.

= 1= E o] s Since
n

] o ] ] C™(8) =sup Cy(3)
Therefore, taking the limit a8 — oo in (20), and using the fact that n

the limit of a concave function is concave and thus continuous, yield . b . . b .
it suffices to show tha€’;,’(3) is strictly greater thait';” (). As in

Clb(g“)) > C(8) (21) Section I, we perform this numerical investigation using Blahut's al-
gorithm for the computation of the capacity-cost function [3].
where We use the binary examples of Section Ill, but with different tran-
T o B sition probabilities. Examples for channels with ternary or quaternary
A7 = lim 3, =[1 - Ps(3)]p. alphabets can be obtained from [20]. In some instances we use a

n— 00
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Increase in C(f) due to feedback

0.25 . : . :
Feedback
oz | S —— |
015 F T |
" No Feedback

01}t . g
. CcP(B) —
Cgb(ﬂ) ......

0.05 F J

O / L L 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 6. Feedback increasgi’(3) > Cx>() for 8 < B = 0.375, for a binary channel with first-order Markov noise givenIy .

Increase in C(3) due to feedback

0.25 T T T I
Feedback
02| J .
0.15 No Feedback i
0.1 " -
Cy(B) —
Csub(ﬂ) ......
0.05 -
0 1 L L 1 1
0 0.1 0.2 053 0.4 0.5 0.6

Fig. 7. Feedback increasg®"(3) > Cy"(8) for 8 < 3% = 0.375, for a binary channel with first-order Markov noise givenliy?.,

channel with a uniformly poor state and in others we use a nearly Finally, the example in Fig. 8 employs a second-order binary noise
uniformly poor state. In both instances, we observe an increasepimcess with
the capacity-cost function with feedback. The results, computed to 0.80 020 0 0
an accuracy ot0~¢, are displayed in Figs. 6-8 for different channel ) ’ .
X y play g g _ | 0 0 050 050
parameters. 2FB 0.78 022 0 0

In Fig. 6, we use a binary channel with a first-order Markov noise 0 0 050 0.50

described b
Y In this example, the feedback rule is applied as follows:

Vi, S: € {(00),(10)}

e = 0, S; € {(01),(1D)}.

<

0.8 0.2 Xi=f"(Vi.5) = {
0.5 05]°
All figures clearly indicate that feedback increases the capacity-cost
For the feedback scheme, we use 1. In Fig. 7, we employ a binary function. Note that as the block lengthincreases, the increase due to

channel with first-order Markov noise defined by feedback becomes larger sin€g" () decreases with while C%°(3)
increases.
0.82 0.18
PR = V. SUMMARY
I {0.4.5 0.55}

In this work, we investigated the capacity-cost functions) of
g-ary channels with additive Markov noise. We introduced average cost
with § = 1. Fig. 7 shows that we obtain a numerical increagé¥(3)  constraints on the input sequences of the additive channels, rendering

overCy"(3) even if the staté is not uniformly corrupting. them nonsymmetric. We proved a tight upper bound (6 ); the bound
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Increase in C(3) due to feedback

0.35 T T T T T
0.3 F -
0.25 -
Feedback
02 l ....................................... -
0.15 F [ -
.‘ No Feedback Céb(ﬁ) o
0.1 o Feedbacl] -
Cgb([@) ......
0.05 | .
0 / 1 I 1 1 1
0 0.1 0.2 (:83 0.4 0.5 0.6

Fig. 8. Feedback increas€l®(3) > Cy*(8) for a binary channel with second-order Markov noise giverﬂ}é%B.

turns out to constitute the counterpart of the Wyner—Ziv lower bound14] M. S. Pinsker, presented at the The Soviet Information Theory Meeting,
to the rate-distortion functio®(D). This illustrates the striking du-

ality that exists betweeR (D) andC(3), as luminously remarked by

Shannon. Using this bound along with two other lower bound¥(t®),

we illustrated the computation @f(3) via Blahut's algorithm for the

calculation of channel capacity. C : ) - .
We then examined the effect of output feedback on the capacity-coé’f” ——, “Coding theorems for a discrete source with a fidelity criterion,”

function of these channels. We demonstrated, both analytically and ny-
merically, that for a particular feedback-encoding strategy and a class

[15]

[16]

of Markov noise sources, feedback can increase the capacity-cost funa9]
tion. Future studies may include the investigation of the effect of feed-

back on the reliability function of discrete channels with memory.
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