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Abstract—We consider modulo- additive noise channels, where the
noise process is a stationary irreducible and aperiodic Markov chain of
order . We begin by investigating the capacity-cost function( ( )) of
such additive-noise channels without feedback. We establish a tight upper
bound to ( ( )) which holds for general (not necessarily Markovian)
stationary -ary noise processes. This bound constitutes the counterpart
of the Wyner–Ziv lower bound to the rate-distortion function of stationary
sources with memory. We also provide two simple lower bounds to ( )
which along with the upper bound can be easily calculated using the
Blahut algorithm for the computation of channel capacity. Numerical
results indicate that these bounds form a tight envelope on ( ).

We next examine the effect of output feedback on the capacity-cost
function of these channels and establish a lower bound to the capacity-cost
function with feedback ( ( )). We show (both analytically and
numerically) that for a particular feedback encoding strategy and a
class of Markov noise sources, the lower bound to ( ) is strictly
greater than ( ). This demonstrates that feedback can increase the
capacity-cost function of discrete channels with memory.

Index Terms—Additive noise, capacity-cost function, channels with feed-
back, channels with memory, cost constraints.

I. INTRODUCTION

In this work, we analyze the capacity of discrete (discrete-time
finite-alphabet) channels with memory subject to an input cost
constraint. More specifically, we consider modulo-q additive noise
channels, where the noise process is a stationary irreducible and
aperiodic Markov chain of orderk.
Mod-q additive noise channels are symmetric; by this we mean

that the block mutual information between input and output vectors of
such channels is maximized for equiprobable input blocks (uniform
independent and identically distributed (i.i.d.) input process). A
closed-form solution exists for the capacity of such channels [1].
However, since additive channels with memory become nonsym-
metric under input constraints, a closed-form expression for their
capacity-cost function does not exist. This indicates the necessity to
establish bounds to the channel capacity-cost function.

Insight into how and where to look for these bounds comes from
Shannon, who first commented on the duality between a source and a
channel [17]:
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There is a curious and provocative duality between the proper-
ties of a source with a distortion measure and those of a channel.
This duality is enhanced if we consider channels in which there is
a cost associated with the different input letters, and it is desired
to find the capacity subject to the constraint that the expected cost
not exceed a certain quantity[. . .]. The solution of this problem
leads to a capacity cost function for the channel[. . .] this function
is concave downward[� � �]. In a somewhat dual way, evaluating
the rate distortion functionR(D) for a source amounts, mathe-
matically, to minimizing a mutual information[. . .] with a linear
inequality constraint[. . .]. The solution leads to a functionR(D)
which is convex downward[. . .]. This duality can be pursued fur-
ther and is related to a duality between past and future and the
notions of control and knowledge. Thus we may have knowledge
of the past but cannot control it; we may control the future but not
have knowledge of it.

Equipped with Shannon's illuminating observation, we begin by inves-
tigating the capacity-cost function(C(�)) of mod-q additive-noise
channels without feedback. We derive a tight upper bound toC(�)
which holds for all discrete channels with stationary additive noise.
This bound constitutes the counterpart of the Wyner–Ziv lower bound
to the rate-distortion function of stationary sources. We also provide
two simple lower bounds toC(�) which along with the upper bound
can be easily calculated using the Blahut algorithm for the computation
of channel capacity. Numerical results indicate that these bounds form
a tight envelope onC(�).

We next study the capacity-cost function of themod-q additive chan-
nels with feedback. We establish a lower bound to the capacity-cost
function with feedback(CFB(�)) and introduce a feedback encoding
strategy and a class of Markov noise sources for which the lower bound
toCFB(�) is strictly greater thanC(�). This is demonstrated both an-
alytically and numerically.

The rest of this correspondence is organized as follows. In Section II,
we define the capacity-cost function and present its properties. The
analysis of the nonfeedback and feedback capacity-cost functions of
additive noise channels is given in Sections III and IV, respectively. A
summary is stated in Section V.

II. PRELIMINARIES: THE CAPACITY-COST FUNCTION

Consider a discrete channel with finite-input alphabetX , fi-
nite-output alphabetY , andn-fold transition probability

Q
(n)(y1; y2; � � � ; yn j x1; x2; � � � ; xn);

xi 2 X ; yi 2 Y; i = 1; 2; � � � ; n:

In general, the use of the channel is not free; we associate with
each input letterx a nonnegative numberb(x), that we call the
“cost” of x. The function b(�) is called the cost function. If we
use the channeln consecutive times—i.e., we send an input vector
xn = (x1; x2; � � � ; xn)—the cost associated with this input vector is
“additive”:

b(xn) =

n

i=1

b(xi):

For an input processfXig
1

i=1 with block input distribution

PX (xn) = Pr(X1 = x1; X2 = x2; � � � ; Xn = xn)

theaverage costfor sendingXn is defined by

E[b(Xn)] =
x

PX (xn)b(xn) =

n

i=1

E[b(Xi)]:

0018–9448/00$10.00 © 2000 IEEE
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Definition 1: An n-dimensional input random vectorXn =
(X1; X2; � � � ; Xn) that satisfies

1

n
E[b(Xn)] � �

is called a�-admissibleinput vector. We denote the set ofn-dimen-
sional�-admissibleinput distributions by�n(�)

�n(�) = PX (xn) :
1

n
E[b(Xn)] � � :

The capacity-cost function of discrete stationary1 channels with
memory is defined by [13]

C(�) = sup
n

Cn(�) = lim
n!1

Cn(�) (1)

whereCn(�) is thenth capacity-cost functiongiven by

Cn(�)
4
= max

P (x )2� (�)

1

n
I(Xn;Y n) (2)

whereI(Xn;Y n) is the block mutual information between the input
vectorXn and the output vectorY n.

The capacity-cost functionC(�) has anoperationalsignificance for
channels satisfying certain regularity conditions (e.g., a stationary er-
godic channel, a discrete channel with stationary and ergodic additive
noise, or an information-stable channel [8], [18]). More specifically,
C(�) represents the supremum of all ratesR for which there exist se-
quences of�-admissible block codes2 with vanishing probability of
error asn grows to infinity. In other words,C(�) is the maximum
amount of information that can be transmitted reliably over the channel,
if the channel must be used in such a way that the average cost does not
exceed�. If b(x) = 0 for every letterx 2 X , thenC(�) is just the
channelcapacityC as we know it.

C = sup
n

Cn = lim
n!1

Cn; (3)

where

Cn
4
= max

P (x )

1

n
I(Xn;Y n): (4)

In this work, we exclusively consider discrete channels with sta-
tionary ergodicmod-q additive noise. Since these channels have no
input memory or anticipation [1], it follows from [8, Lemma 12.4.3]
that, without loss of generality, we can restrict the maximizations in (2)
and (4) over the set ofn-dimensional distributions of stationary ergodic
input processes. With this fact in mind, we next state the properties of
C(�) for the class of discrete channels with stationary ergodic additive
noise. We first define, respectively,�min, �(n)max, and�max by

�min
4
= min

x2X
b(x);

�
(n)
max

4
= min

1

n
E [b(Xn)] :

1

n
I(Xn;Y n) = Cn

and

�max
4
= min lim

n!1

1

n
E [b(Xn)] : lim

n!1

1

n
I(Xn;Y n) = C :

1A discrete channel is said to be stationary if for every stationary input
process, the joint input-output process is stationary.

2A (nonfeedback) channel block code of lengthn overX is a subset

C = c(1); c(2); � � � ; c(jCj)

of X where eachc is ann-tuple. The rate of the code isR = log jCj.
The code is�-admissible ifb(c ) � n� for i = 1; 2; � � � ; jCj. If the encoder
wants to transmit messageW whereW is uniform overf1;2; � � � ; jCjg, it sends
the codewordc . At the channel output, the decoder receivesY and chooses
as estimate of the messagêW = g(Y ), whereg(�) is a decoding rule. The
(average) probability of decoding error is thenP = Prfg(Y ) 6=Wg.

From the definition of�min above, we can see that1
n
E[b(Xn)] �

�min; therefore,C(�) is defined only for� � �min. Furthermore, by
the additivity of the cost function and the stationarity of the capacity-
achieving input distribution, we have that�max = limn!1 �

(n)
max.

Remark: For a discrete channel withmod-q additive noisefZng
and linear cost constraints on the input—i.e.b(x) = x—we get that
�min = 0; �

(n)
max = �max = (q � 1)=2; C(�min) = 0

Cn(�
(n)
max) = Cn = log2 q � (1=n)H(Zn)

and

C(�max) = C = log2 q �H(Z1)

whereH(Z1) is the noise entropy rate.

Lemma 1 [13]: Thenth capacity-cost functionCn(�) given by(2)

is concaveandstrictly increasingin � for �min � � < �
(n)
max and is

equal toCn for � � �
(n)
max.

From the above lemma, the fact that the limit of a concave function
is concave, and the definition of�max, we deduce the following result.

Lemma 2: The capacity-cost functionC(�) given by (1) isconcave
andstrictly increasingin � for �min < � < �max, and is equal toC
for � � �max.

III. A DDITIVE-NOISE CHANNELS WITHOUT FEEDBACK

A. An Upper Bound to the Capacity-Cost Function

We consider a discrete channel with memory, with common input,
noise, and outputq-ary alphabetX =Y=Z=Aq=f0; 1; � � � ; q�1g
and described byYn = Xn � Zn, for n = 1; 2; 3; � � � where

• � represents the addition operation moduloq;

• the random variablesXn,Zn, andYn are, respectively, the input,
noise, and output of the channel;

• fXng ? fZng; i.e., the input and noise sequences are indepen-
dent of each other;

• the noise processfZng1n=1 is stationary.

We now turn to the analysis of the capacity-cost functionC(�) of this
channel. Since the input achievingC(�) is nonsymmetric for� <
�max, the formula ofC(�) given by (1) will not have a closed-form
expression. We will then try to derive an upper bound toC(�).

In [21], Wyner and Ziv derived a lower bound to the rate-distortion
function(R(D)) of stationary sources

R(D) � R1(D)� �1

where

• R1(D) is the rate-distortion function of an “associated” memo-
ryless source with distribution equal to the marginal distribution
P (1)(�) of the stationary source;

• �1
4

= H(X1)�H(X1), is the amount of memory in the source.
H(X1) is the entropy of the associated memoryless source with
distributionP (1)(�), andH(X1) is the entropy rate of the orig-
inal stationary source.

This lower bound was later tightened by Berger [2]

R(D) � Rn(D)� �n � R1(D)� �1 (5)

whereRn(D) is thenth rate-distortion function of the source,R1(D)
is as defined above, and�n = (1=n)H(Xn)�H(X1).

In light of the striking duality that exists betweenR(D) andC(�),
we prove an equivalent upper bound to the capacity-cost function of a
discrete additive-noise channel.
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Theorem 1: Consider a discrete channel with additive stationary
noisefZng. LetQ(n)(�) denote then-fold probability distribution of
the noise process. Then forN = kn wherek; n = 1; 2; � � � ; we have

CN (�) � Cn(�) + �nN � C1(�) + �1N (6)

where

• Cn(�) is then-fold capacity-cost function of the channel as de-
fined in (2);

• C1(�) is the capacity-cost function of the associated discrete
memoryless channel (DMC) with i.i.d. additive noise process
whose distribution is equal to the marginal distributionQ(1)(�)
of the stationary noise process;

•

�nN
4
= (1=n)H(Zn)� (1=N)H(ZN)

with Zi = (Z1; Z2; � � � ; Zi), i = n, orN , and

�1N = H(Z1)� (1=N)H(ZN)

whereH(Z1) is the entropy of the i.i.d. noise process of the as-
sociated DMC.

Proof: The proof employs a dual generalization of Wyner and
Ziv's proof of the lower bound to the rate-distortion function. We first
need to use the expression

I(XN ; Y N) �

k

i=1

I Xn
(i); Y

n
(i) +N�nN (7)

where

XN = (Xn
(1); X

n
(2); � � � ; X

n
(k))

Y N = (Y n
(1); Y

n
(2); � � � ; Y

n
(k))

Xn
(i) = (X1;(i); X2;(i); � � � ; Xn;(i))

and

Y n
(i) = (Y1;(i); Y2;(i); � � � ; Yn;(i))

with Xl;(i) andYl;(i) denoting thelth component of the vectorsXn
(i)

andY n
(i), respectively. Proving the above inequality goes as follows:

k

i=1

I Xn
(i); Y

n
(i) +N�nN � I(XN ;Y N )

=

k

i=1

H Y n
(i) �H Y n

(i) Xn
(i) +

N

n
H(Zn)

�H(ZN)�H(Y N) +H(Y N jXN)

=

k

i=1

H Y n
(i) �H Zn

(i) + kH(Zn)

�H(ZN)�H(Y N) +H(ZN)

=

k

i=1

H Y n
(i) �H(Y N ) =

k

i=1

H Y n
(i)

�

k

i=1

H Y n
(i) Y n

(i�1); Y
n
(i�2); � � � ; Y

n
(1)

�

k

i=1

H Y n
(i) �

k

i=1

H Y n
(i) = 0

where the third equality follows from the stationarity of the noise, and
the last inequality follows from the fact that conditioning decreases
entropy.

We now proceed to prove (6). LetPX (xN ) 2 �N (�)where�N (�)
is described in Definition 1. For this input distribution, we denote

�i
4
= 1

n
E[b(Xn

(i))] for i = 1; 2; � � � ; k; thus 1
k

k

i=1 �i � �. By (7),
we obtain with thisPX (xN) that

1

N
I(XN ;Y N) �

1

N

k

i=1

I Xn
(i); Y

n
(i) +�nN :

But 1
n
I(Xn

(i); Y
n
(i)) � Cn(�i) for i = 1; 2; � � � ; k; thus

1

N
I(XN ; Y N) �

1

k

k

i=1

Cn(�i) + �nN :

By concavity ofCn(�), we have

1

k

k

i=1

Cn(�i) � Cn

1

k

k

i=1

�i

and sinceCn(�) is strictly increasing we have that

Cn

1

k

k

i=1

�i � Cn(�):

Therefore,

1

N
I(XN ;Y N ) � Cn(�) + �nN

or

max
P (X )2� (�)

1

N
I(XN ;Y N ) = CN(�) � Cn(�) + �nN :

Thus the first inequality in (6) is proved. To prove the second inequality
in (6), we need to show thatCn(�) � C1(�) + �1n or Ck(�) �
C1(�)+�1k. This is shown using the first inequality in (6) and letting
n = 1.

Using (6) and (1), we obtain the following tight upper bound on
C(�).

Corollary 1: Consider the channel described in Theorem 1. Then

C(�) � Cn(�) +Mn � C1(�) +M1 (8)

where

• Cn(�) andC1(�) are as defined in Theorem 1;

• Mn
4
= �n1 = (1=n)H(Zn)� H(Z1), andM1

4
= �11 =

H(Z1) � H(Z1) denotes the amount of memory in the noise
process.

The bound given above is asymptotically tight withn since asn!1;
Mn ! 0.

Observation: We remark that the above bound given by (8) holds
also for real-valued additive noise channels (i.e., forX ,Y , andZ being
subsets of the real line) with the modulo addition operation replaced by
regular addition and entropy replaced by differential entropy.

B. Existing Lower Bounds to the Capacity-Cost Function

Lower bounds on the capacity-cost function can be formed in two
ways. First, thenth capacity-cost function provides a simple lower
bound toC(�):C(�) = supn�1Cn(�) � Cn(�). Blahut's algorithm
[3] is ideally suited for its computation using theqn�qn channel tran-
sition matrixQ, the probability of receivingY n given thatXn was
transmitted.

Another lower bound exists for the capacity-cost function when the
channel alphabet is binary. If we take the inputs to be i.i.d. andq =
2, we can apply Mrs. Gerber's Lemma [15] to obtain a lower bound
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Fig. 1. C (�) for n = 1; 2; 3; 5; and9 for a binary channel with first-order Markov noise given by��� . � = 1=2.

on C(�). More specifically, letP (Xi = 1)
4

= � be the marginal
distribution of an i.i.d. input process such thatE[b(Xi)] = �, then

C(�) � hb ~� � h�1
b

(�) �H(Z1) (9)

wherehb(�) is the binary entropy function,a�b
4

= a(1�b)+(1�a)b,

~�
4

= minf�; 1� �g, and�
4

= minfH(Z1); 1�H(Z1)g.
As we are dealing primarily withq-ary channels, we use theCn(�)

lower bound in all cases except the binary case where we also apply
Mrs. Gerber's bound. TheCn(�) lower bound is in fact dual to the
upper bound onR(D) computed by Blahut in [3].

C. Numerical Results for Markov Noise Sources

We have thus far derived an upper bound on the capacity-cost func-
tion (Corollary 1)

C(�) � Cn(�) +Mn

4

= Cub
n (�):

This bound becomes tight asn ! 1. Furthermore, a simple lower
bound to the capacity-cost function is given by

CL

n (�)
4

= Cn(�) � C(�):

We herein estimateC(�) numerically for the case where the noise
process is a stationary irreducible and aperiodic Markov chain of order
k. This is accomplished by computingCn(�) and Cn(�) + Mn.
Cn(�) is calculated via Blahut's algorithm for the computation of the
capacity-cost function [3], whileMn comes from a straightforward
computation of the noise entropy rate

Mn =
1

n
H(Z1; � � � ; Zn)�H(Zk+1 jZk; � � � ; Z1)

=
1

n
[H(Z1; � � � ; Zk)� kH(Zk+1 jZk; � � � ; Z1)]: (10)

The above entropies are computed using the stationary distribution
vector��� which is obtained by solving������ = ���, where��� is the state
transition matrix for thekth-order Markov noise.

We will hereafter assume that the cost functionb(�) is given by
b(x) = x; i.e., we will impose a linear cost constraint on the channel
input letters. In the numerical examples, we consider the casesq = 2
andq = 3.
Cn(�) is, in fact, the capacity-cost function of a discrete memory-

less channel whose input and output alphabets are the sets of words
of lengthn and whose transition probabilities are given by then-fold
probability distributions of the processfZig. Using the algorithm of [3,
Theorem 10], we calculateCn(�) andMn for different values of���, n,

and alphabet sizeq. The results, computed to an accuracy of10�6 bits
are plotted in Figs. 1–4. We have usedn = 9 for the binary channels
(see Figs. 1, 2, and 4), andn = 5 for the ternary channels (see Fig. 3).
Tighter results can be achieved for largern. However, the tightness im-
proves as1=n since from (10) we have thatMn = O(1=n), while the
computation complexity increases exponentially inn andq.

In Figs. 1 and 2, the following channel transition and stationary prob-
abilities were employed:

���2 =
0:95 0:05

0:2 0:8
��� =

0:8

0:2
:

The ternary example in Fig. 3 is computed using

���3 =

0:8 0:15 0:05

0:3 0:5 0:2

0:3 0:1 0:6

��� =

0:6

0:2167

0:1833

while in Fig. 4, we form the envelope on the capacity-cost function of
a channel with second-order binary noise described by

���
(2)
2 =

0:95 0:05 0 0

0 0 0:25 0:75

0:90 0:1 0 0

0 0 0:1 0:9

��� =

0:655

0:036

0:036

0:273

:

Note thatCL

n (0) = 0 = C(0) whileCub
n (�max) = C(�max). This

shows that for the extreme values of�, at least one of the bounds will
achieve the “true” capacity-cost function. Furthermore, the difference
between the two bounds, which is equal toMn, vanishes as(1=n).

In Figs. 2 and 4, we also include Mrs. Gerber's lower bound given
in (9). While it is obviously very weak for low-cost(�), as the per-
letter cost approaches�max, this bound outperforms Blahut's bound
for computable block lengthsn. The reason for the good performance
of Mrs. Gerber's bound for values of� close to�max comes from the
fact that the capacity of binary Markov channels, which is given by

C = 1�H(Z1)

is achieved at�max by an i.i.d. uniformly distributed input process.
This makes Mrs. Gerber's bound tight at�max (the right-hand side of
(9) with � = (1=2) is equal toC).

IV. A DDITIVE-NOISE CHANNELS WITH FEEDBACK

We have already addressed the estimation of the capacity-cost func-
tion C(�) for q-ary additive noise channels without feedback by es-
tablishing upper and lower bounds toC(�). We herein investigate the
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Fig. 2. Comparison ofC (�) with C (�) and Mrs. Gerber's lower bound for a binary channel with first-order Markov noise given by��� . � = 1=2.

Fig. 3. Comparison ofC (�) with C (�) for a ternary channel with first-order Markov noise given by��� . � = 1.

Fig. 4. Comparison ofC (�) with C (�) and Mrs. Gerber's lower bound for a binary channel with second-order Markov noise given by��� . � = :5.
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effect of output feedback on the capacity-cost function of such chan-
nels for the case where the noise process consists of a stationary ir-
reducible and aperiodic (hence ergodic) Markov chain of orderk. By
“output feedback” we mean that there exists a “return channel” from the
receiver to the transmitter; we assume this return channel is noiseless,
delayless, and has a large capacity. The receiver uses the return channel
to inform the transmitter what letters were actually received; these let-
ters are received at the transmitter before the next letter is transmitted
and, therefore, can be used in choosing the next transmitted letter.

In previous related work, Shannon first proved in [16] that feed-
back does not increase the capacity of discrete memoryless channels
(DMC's). He also conjectured that feedback can increase the capacity
of channels with memory.

In a seemingly different work [11], [12], Jelinek investigated the
capacity of finite-state indecomposable channels with side informa-
tion at the transmitter. In particular, he showed that the capacity of
state-computable finite-state Markovian indecomposable channels
with (modulo) additive noise, where the noise is a deterministic
function (�) of the state of a Markov source, is not increased with
the availability of side information at the transmitter [12, Theorem 8].
This result has an interesting connection with the problem of feedback
for channels with additive Markov noise. Specifically, if the (�)
function is the identity function, then the current state corresponds
to the previous noise sample and the problem of side information at
the transmitter reduces to the problem of feedback for a channel with
additive Markov noise. Thus [12, Theorem 8] implies that feedback
does not increase the capacity of channels with (modulo) additive
ergodic Markov noise. In [1], Alajaji demonstrated that for channels
with (modulo) additive noise, where the noise is anarbitrary (not
necessarily stationary nor ergodic) process, feedback does not increase
capacity. Recently, Erez and Zamir established simple expressions for
the capacity of discrete (modulo) additive-noise channels with causal
and noncausal side information at the transmitter [7].

For continuous-amplitude channels, Pinsker [14] and Ebert [6]
showed that feedback at most doubles the capacity of nonwhite addi-
tive Gaussian noise channels. No increase is possible for additive white
Gaussian noise channels. In [4], Cover and Pombra also proved that
feedback increases the capacity of nonwhite Gaussian noise channels
by at most half a bit. Ihara and Yanagi [9], [10], [22] provided general
(sufficient and necessary) conditions on the noise and average power
of nonwhite Gaussian channels under which the capacity is increased
by feedback. Finally, in [19], Viswanathan obtained a computable
expression for the capacity of finite-state Markov channels with
perfect channel state information at the receiver and delayed feedback.
He also applied his result to derive the capacity of finite-state additive
Gaussian as well as log-normal shadow fading channels.

A. A Lower Bound to the Feedback Capacity-Cost Function

A feedback channel block code with block lengthn and rateR con-
sists of the following.

• An index setf1; 2; � � � ; 2nRg on the messagesW .

• A sequence of encoding functionsfi : f1; 2; � � � ; 2nRg�Yi�1 !
X for i = 1; 2; � � � ; n.

• A decoding function,g :Yn ! f1; 2; � � � ; 2nRg, which is a de-
terministic rule assigning an estimatêW to each output vector.

To convey messageW 2 f1; 2; � � � ; 2nRg, the user sends the codeword
Xn = (X1;X2; � � � ; Xn), whereXi = fi(W;Y1; Y2; � � � ; Yi�1) for
i = 1; 2; � � � ; n. The decoder receivesY n = (Y1; Y2; � � � ; Yn) and
guesses the original message to beg(Y n). A decoder error occurs

if g(Y n) 6= W . We assume thatW is uniformly distributed over
f1; 2; � � � ; 2nRg. The probability of decoding error is then given by

P
(n)
e = Prfg(Y n) 6=Wg:

Since we are studying the capacity-cost function, we require an av-
erage cost constraint on the channel input code lettersXi 's. We say
that a feedback rateR is achievableif there exists a sequence of�-ad-
missible (as defined in Footnote 2) feedback codes with block lengthn

and rateR such thatlimn!1 P
(n)
e = 0: The supremum of all achiev-

able feedback code rates is then the channel capacity-cost function with
feedback, denoted byCFB(�).

Since the channel is additive, we haveYi = Xi�Zi wherefZig is a
q-ary stationary irreducible and aperiodic Markov chain of orderk. We
assume thatW andfZig are independent of each other. Note, however,
that because of the feedback,Xn andZn are no longer independent;
Xi may depend recursively onZi�1.

With output feedback, the encoder is informed at time instanti about
all the previously received output symbolsY1; Y2; � � � ; Yi�1; and thus
knows all the previous channel noise samplesZ1; Z2; � � � ; Zi�1; i =
1; 2; � � �. Note also that for a finite memory system of orderk, the feed-
back of terms more thank time steps old provides no new information.
Therefore, we can express the feedback function in terms of the input
components and the noise state as

Xi = fi(W;Zi�k; � � � ; Zi�1): (11)

In general, the feedback rulefi(W;Zi�k; � � � ; Zi�1) is time-varying.
In this work, we obtain a lower bound toCFB(�) by only focusing on
time invariant feedback strategies.

For thismod q channel with feedback, we defineClb(�) using a
fixedencoding rulef� as

C
lb(�) = sup

n

C
lb
n (�) = lim

n!1
C

lb
n (�) (12)

where

C
lb
n (�) = max

P (v )2~� (�)

1

n
I(V n;Y n) (13)

whereYi = Xi�Zi; Xi = f�(Vi; Zi�k; � � � ; Zi�1) for i = 1; � � � ; n;
V n is aq-aryn-tuple independent ofZn, and

~�n(�)
4
= PV (vn) :

1

n
E[b(Xn)] � � : (14)

Observe that the cost constraint is imposed on the feedback vectorXn

rather thanV n. We next state without proving the following result.
Its proof, which employs the usual random coding argument and the
asymptotic equipartition property, is given in [20].

Theorem 2 (Achievability ofC lb(�):CFB(�) � C lb(�)): Con-
sider aq-ary kth-order additive Markov noise channel defined above
with a fixed time-invariant feedback functionf�. If C lb

n (�) is as de-
fined in (12), then there exists a sequence of�-admissible feedback
codes of block lengthn and rateR such thatP (n)

e ! 0 asn!1 for
all ratesR < Clb(�).

B. Nonlinear Feedback for WhichCFB(�) > C(�)

We next introduce a simple nonlinear feedback scheme and a class of
noise processes for which feedback increasesC(�). For a channel with
q-arykth-order additive Markov noise, letV n(W ) = (V1; � � � ; Vn) be
a q-aryn-tuple representing messageW 2 f1; 2; � � � ; 2nRg. Then, to
transmitW , the encoder sendsXn(W ) = (X1;X2; � � � ; Xn), where
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Xi = f�(Vi; Y1; Y2; � � � ; Yi�1) for i = 1; 2; � � � ; n and the time-in-
variant feedback encoding functionf�(�) is given as follows:

Xi = Vi if i � k;Xi = f�(Vi; Si)
4
=

Vi; Si 6= ~s

0; Si = ~s
if i > k

(15)

where

Si
4
= (Zi�k; Zi�k+1; � � � ; Zi�1)

denotes the state of the noise process at timei, and~s is some preselected
state. Note that in the above coding scheme,V n is nothing but the
“nonfeedback” codeword; that is, if the channel is without feedback,
thenXn(W ) = V n.

Under linear or power cost constraints this feedback strategy asks
the transmitter to monitor the noise stateS. If the encoder detects a
particularbadstate~s (i.e., one whose transition probabilities are nearly
uniform) at stepi, then the transmitter is instructed to send the least
expensive word regardless of the current message symbolVi. In our
examples the least expensive letter hasb(0) = 0.

Let us now apply this feedback strategy to aq-ary channel with a
particular additive Markov noise of orderk.

Lemma 3: Consider aq-ary channel with stationary irreducible and
aperiodic additive Markov noise of orderk with the feedback rule given
in (15) relatingXi, Vi, andSi. If for a particular noise state~s the
conditional probabilities of the current noise sample are uniformly dis-
tributed; i.e.,

PZ jS (zi j ~s) =
1

q
; 8zi 2 Aq

then the conditional probabilities ofyn givenvn areequalfor both the
feedback and nonfeedback channels

PY jV (yn j vn) = PFB
Y jV (yn j vn); for all yn; vn 2 An

q :

Proof: The transition probabilities for the nonfeedback channel
are given by

PY jV (yn j vn) = PZ (zn = yn 	 vn)

= PZ (y1 	 v1; y2 	 v2; � � � ; yk 	 vk)

�

n

i=k+1

PZ jS (yi 	 vi j si) (16)

wheresi = (zi�k; zi�k+1; � � � ; zi�1) is the state of the Markov chain
at stepi for a given input–output pair(vn; yn). Using the same notation
but with a superscript to denote feedback, the transition probabilities of
the feedback channel are given by

PFB
Y jV (yn j vn) = PZ (y1 	 v1; y2 	 v2; � � � ; yk 	 vk)

�

n

i=k+1

P �
Z jS (yi 	 f�(vi; si) j si) (17)

where

P �
Z jS (yi 	 f�(vi; si) j si) =

PZ jS (yi 	 vi j si); if si 6= ~s

PZ jS (yi j si); if si = ~s:

Notice that (16) and (17) are identical except possibly when noise state
~s occurs. ButPZ jS(z j ~s) = (1=q) for all z 2 f0; 1; � � � ; q � 1g; this
implies that

PZ jS (yi j ~s) = PZ jS (yi 	 vi j ~s) =
1

q
: (18)

Therefore,

PY jV (yn j vn) = PFB
Y jV (yn j vn)

for the feedback encoding scheme in (15) if the conditional probabili-
ties ofZi givenSi = ~s are uniform.

Lemma 3 implies that since the nonfeedback channel is symmetric,
the feedback channel is also symmetric. From [5, Theorem 8.2.1] we
can infer that a uniform distribution on the input blocksV n induces a
uniform distribution on the output blocksY n.

We have so far shown that for a particular type of Markov noise
sources, our feedback rule has no effect on the channel conditional
distribution. It does, however, affect thecostof individual input blocks.
The following lemma compares the expected cost of nonfeedback
channel inputs with the cost of feedback channel inputs encoded using
our strategy.

Lemma 4: Consider the nonfeedback and feedback channels
described above, with the feedback strategy given in (15), and
PZ jS(z j ~s) = 1

q
for all z. Let P �

V (vn) be a stationary input
distribution that achievesCn(�) for � > �min. Then

Clb
n �lbn � Cn(�)

where�lbn is the expected per letter cost underP �
V (vn) and the feed-

back encoding strategy, and is given by

�lbn = 1�
n� k

n
PS(~s) �:

Proof: For the nonfeedback channel

� =
1

n
v

P �
V (vn)b(vn) =

v

P �
V (v)b(v)

sinceP �
V (vn) is a stationary input distribution that achieves the non-

feedback capacity-cost functionCn(�). For the feedback channel we
charge costs to the channel input letters after applying the feedback rule
f�. Thus

�lbn =
1

n
E [b(Xn)] =

1

n

n

i=1

E [b(Xi)]

=
1

n

k

i=1 v

PV (vi)b(Vi)

+
1

n

n

i=k+1

E[b(f�(Vi; Si))]

=
k

n
� +

n� k

n
v s

PS(s)PV (v)b(f
�(v; s))

=
k

n
� +

n� k

n
v

PS(~s)PV (v)b(0)

+
s6=~s v

PS(s)PV (v)b(v)

=
k

n
� +

n� k

n
s6=~s

PS(s)�

= 1�
n� k

n
PS(~s) � (19)

wheresi = (zi�k; � � � ; zi�1). Note that, since we are dealing with sta-
tionary irreducible and aperiodic Markov noise processes,PS(~s) > 0
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Fig. 5. C (�) versusC(�); C = C = log q �H(Z ); �1 = ~� ; and�2 = � .

and thus�lb
n
< �. Now, by Lemma 3, the channel transition probabil-

ities are identical for the feedback and nonfeedback channels. Using
P �

V (vn) as a particular input distribution, we obtain that

C lb

n �lbn �
1

n
v ;y

P �

V (vn)PFB

Y jV (yn j vn)

� log
PFB

Y jV (yn j vn)

v
P �V (vn)PFB

Y jV (yn j vn)

=
1

n
v ;y

P �V (vn)PY jV (yn j vn)

� log
PY jV (yn j vn)

v

P �V (vn)PY jV (yn j vn)

= Cn(�):

Theorem 3: Consider theq-ary nonfeedback and feedback channels
with stationary irreducible and aperiodick'th order additive Markov
noise and feedback rule described above. LetPZ jS (zi j ~s) = (1=q)
for all zi 2 Aq. Then for0 < � < �max

CFB(�) > C(�):

Proof: From Lemma 4, we have that

C lb

n �lbn � Cn(�) (20)

where

�lbn = 1�
n� k

n
PS(~s) �:

Therefore, taking the limit asn ! 1 in (20), and using the fact that
the limit of a concave function is concave and thus continuous, yield

C lb(�lb) � C(�) (21)

where

�lb = lim
n!1

�lbn = [1� PS(~s)]�:

SinceC(�) is strictly increasing in� and� > �lb, we obtain that

C lb(�lb) > C(�lb)

which implies that

CFB(�
lb) > C(�lb) for 0 < �lb < �max:

Observation: We already know from [1] that for additive noise
channels an i.i.d. uniform input achieves the capacity without feedback
(C), and that the capacity with feedback(CFB) is equal toC. Thus

CFB = C = log q �H(Z1) (22)

for channels with stationary ergodic noise. From (21), (22), and the fact
thatC lb(�) is a lower bound toCFB(�) we remark that

CFB(�) = C lb(�) = CFB = C

= log q �H(Z1); 8� � ~�lb

where~�lb = [1 � PS(~s)]�max. We summarize the results of this ob-
servation and Theorem 3 by illustrating them in Fig. 5.

C. Numerical Examples

We have thus far demonstrated analytically that for a class of Markov
noise sources and a specific feedback scheme, feedback can increase
the capacity-cost function. This was achieved by showing that the lower
bound to the capacity-cost function with feedback(C lb(�)) is strictly
greater than the nonfeedback capacity-cost function(C(�)).We herein
illustrate this result numerically by comparing, for a given block length
n, C lb(�) with the upper bound toC(�) given (in Section III) by

C(�) � Cub

n (�)
4
= Cn(�) +Mn:

Since

C lb(�) = sup
n

C lb

n (�)

it suffices to show thatC lb

n (�) is strictly greater thanCub

n (�). As in
Section III, we perform this numerical investigation using Blahut's al-
gorithm for the computation of the capacity-cost function [3].

We use the binary examples of Section III, but with different tran-
sition probabilities. Examples for channels with ternary or quaternary
alphabets can be obtained from [20]. In some instances we use a
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Fig. 6. Feedback increase:C (�) > C (�) for � < ~� = 0:375, for a binary channel with first-order Markov noise given by��� .

Fig. 7. Feedback increase:C (�) > C (�) for � < ~� = 0:375, for a binary channel with first-order Markov noise given by��� .

channel with a uniformly poor state~s, and in others we use a nearly
uniformly poor state. In both instances, we observe an increase in
the capacity-cost function with feedback. The results, computed to
an accuracy of10�6, are displayed in Figs. 6–8 for different channel
parameters.

In Fig. 6, we use a binary channel with a first-order Markov noise
described by

���2;FB =
0:8 0:2

0:5 0:5
:

For the feedback scheme, we use~s = 1. In Fig. 7, we employ a binary
channel with first-order Markov noise defined by

����2;FB =
0:82 0:18

0:45 0:55

with ~s = 1. Fig. 7 shows that we obtain a numerical increase inClb
8 (�)

overCub
8 (�) even if the state~s is not uniformly corrupting.

Finally, the example in Fig. 8 employs a second-order binary noise
process with

���
(2)
2;FB =

0:80 0:20 0 0

0 0 0:50 0:50

0:78 0:22 0 0

0 0 0:50 0:50

:

In this example, the feedback rule is applied as follows:

Xi = f
�(Vi; Si)

4

=
Vi; Si 2 f(00); (10)g

0; Si 2 f(01); (11)g:

All figures clearly indicate that feedback increases the capacity-cost
function. Note that as the block lengthn increases, the increase due to
feedback becomes larger sinceCub

n (�) decreases withn whileC lb
n (�)

increases.

V. SUMMARY

In this work, we investigated the capacity-cost functionC(�) of
q-ary channels with additive Markov noise. We introduced average cost
constraints on the input sequences of the additive channels, rendering
them nonsymmetric. We proved a tight upper bound toC(�); the bound
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Fig. 8. Feedback increase:C (�) > C (�) for a binary channel with second-order Markov noise given by��� .

turns out to constitute the counterpart of the Wyner–Ziv lower bound
to the rate-distortion functionR(D). This illustrates the striking du-
ality that exists betweenR(D) andC(�), as luminously remarked by
Shannon. Using this bound along with two other lower bounds toC(�),
we illustrated the computation ofC(�) via Blahut's algorithm for the
calculation of channel capacity.

We then examined the effect of output feedback on the capacity-cost
function of these channels. We demonstrated, both analytically and nu-
merically, that for a particular feedback-encoding strategy and a class
of Markov noise sources, feedback can increase the capacity-cost func-
tion. Future studies may include the investigation of the effect of feed-
back on the reliability function of discrete channels with memory.
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