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Abstract—In this work, we examine the existence and the computation
of the Rényi divergence rate lim,,—... £ Do(p™ [|q¢‘™), between two
time-invariant finite-alphabet Markov sources of arbitrary order and ar-
bitrary initial distributions described by the probability distributions p¢™
and ¢‘™, respectively. This yields a generalization of a result of Nemetz
where he assumed that the initial probabilities underp‘™ and ¢ are
strictly positive. The main tools used to obtain the Rényi divergence rate
are the theory of nonnegative matrices and Perron—Frobenius theory. We
also provide numerical examples and investigate the limits of the Rényi di-
vergence rate asoc — 1 and asa | 0. Similarly, we provide a formula
for the Rényi entropy rate lim,,_, o % H.,, (p(")) of Markov sources and
examine its limits asexc — 1 and asex | 0. Finally, we briefly provide an
application to source coding.

Index Terms—Kullback-Leibler divergence rate, nonnegative matrices,
Perron—Frobenius theory, Rényi’s divergence and entropy rates, Shannon
and Hartley entropy rates, time-invariant Markov sources.

I. INTRODUCTION
Let {X;, Xo, ...} be a first-order time-invariant Markov source
with finite alphabetY’ = {1, ..., M}. Consider the following two

different probability laws for this source. Under the first law

Pr{X| =i} =:p;, and Pr{Xp11 = j| X =i} =:pij, {,jEX

so that
p(")(ln) = PT{AYI = ilﬁ RN X, = 7r.n} = DPi1Pivic " " Pip_1in>
iy e, in EX
while under the second law the initial probabilities argthe transition
probabilities arey,;, and then-tuple probabilities arg™). Let p =
(p1, ..., pm) andq = (q1, ..., qur) denote the initial distributions
underp™ andq™, respectively.
The Rényi divergence [20] of order between two distributiong
andg defined onY’ is given by
A~ al—ar
Di 4; )

=1 lo
T a-—-1 & 4
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where0 < « < 1. This definition can be extended to > 1 if all
G; > 0. The base of the logarithm is arbitrary. Similarly,
entropy of order for j is defined as

log <
iex

Manuscript received April 5, 2000; revised October 28, 2000. This work

Da(pll9)

Ha(p) =

1 -«

Wi

1553

wherea > 0 anda # 1. Asa — 1, the Rényi divergence approaches
the Kullback—Leibler divergence (relative entropy) given by

TN . Di
D(5l9) ; pilog =
and the Rényi entropy approaches the Shannon entropy.

The above generalized information measures and their subsequent
variations [23] were originally introduced for the analysis of memory-
less sources. One natural direction for further studies is the investiga-
tion of the Rényi divergence rate

(p("')llq("))

1
lim — D,

n—oo

where

n n 1
Da (p( i >):a_

e 3 b
inecxn

and of the Rényi entropy rate
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for sources with memory, in particular Markov sources. Nemetz ad-
dressed these problems in [16], where he evaluated the Rényi diver-
gence ratdim, —o. - Du(p'"|¢"™)) between two Markov sources
characterized by™ andq‘™, respectively, under the restriction that
the initial probabilitiesp and¢ are strictly positive (i.e., alp;’s and

¢;'s are strictly positive).

The Rényi divergence rate has played a significant role in certain
hypothesis-testing questions [14], [16], [17]. Furthermore, the Rényi
entropy and the Rényi entropy rate have revealed several operational
characterizations in the problem of fixed-length source coding [7], [6],
variable-length source coding [4], [5], [13], [19], error exponent calcu-
lations [8], and other areas [1]-[3], [18].

In this work, we generalize the Nemetz result by establishing a
computable expression for the Rényi divergence rate between Markov
sources witharbitrary initial distributions. We also investigate the
questions of whether the Rényi divergence rate reduces to the Kull-
back-Leibler divergence rate as— 1 and the interchangeability of
limits betweernm anda asn — oc and asy | 0. To the best of our
knowledge, these issues have not been addressed before. We provide
sufficient (but not necessary) conditions on the underlying Markov
source distributiong™ andq{™ for which the interchangeability of

the RenYfimits asn — oo and asa — 1 is valid. We also give an example

of noninterchangeability of limits a8 — oc and asa — 1. We
also show that the interchangeability of limitsias— oo anda | 0
always holds. We next address the computation and the existence of
the Rényi entropy ratim,, . - Ha (p'"™)) for a Markov source with
distributionp™ and examine its limits as | 0 and asy — 1.

The rest of this correspondence is organized as follows. In the fol-
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matrix P associated with the Markov source ungé€t’ is irreducible  submatrices which correspond to non-self-communicating clagses
and if both the initial probability; and the probability transition ma- i = g+1, ..., [,arel x 1 zero matrices. In every roiv= g+1, ..., [
trix () associated with the Markov source ung€? are positive (with any of the matricest;y, ..., A:;—i may be zero.

strictly positive entries), then the Rényi divergence rate reduces to th
Kullback—Leibler divergence rate as— 1. We also show that the in- ) . .
terchangeability of limits as — oo and asx | 0 is always valid, In  SCME71: ---o ies ity # 0, Aiyiy # 0., Aij # 0, wherec is
Section V, we address similar questions for the Rényi entropy rate a%[anStl — 1 (since there aréclasses). Thus; can be viewed as the

briefly illustrate it with an application to variable-length source codingfhuarpf? ce)qurhsetigigﬁii‘ls(fjotr?nri:w;gf;igmg grégéﬂ;llj?;f’;gnz\lgtaess
Finally, concluding remarks are stated in Section VI. : ' !

C;if AE;) # 0 forsomec =1, ..., 1 -1, whereAE;’f) is theijth
submatrix ofA°.

A classC; is reachablefrom another clas€’; if A;; # 0, or if for

IIl. NONNEGATIVE MATRICES

N . . Proposition 2 (Frobenius):If A is irreducible, thend has a real
We begin with some results about nonnegative matrices. Most of . - ) . .
what follows may be found in [22] and [9] positive eigenvalue that is greater than or equal to the magnitude of

Matrices and vectors apmsitiveif all their components are positive each other eigenvalue. There is a positive left (right) eigenvectdy,

L : . r%orresponding td\, wherea is a row vector and is a column vector.
andnonnegativef all their components are nonnegative. Throughou
this section,A denotes ard/ x M nonnegative matrix4 > 0) with Proposition 3 [12, p. 508]: If A is irreducible, then the largest pos-
elements:;;. Theijth element of4™ is denoted by:\"™ . itive real eigenvalue has algebraic multiplicity

]
We writei — j if a5]> > 0 for some positive integer, and we

Proposition 4 [12, p. 494]: If A has a positive eigenvecter then

write i /» j if (7"’ = 0 for every positive integem. We say that for gl 1y = 1, 2, ..., and foralli = 1, .... M we have

andj communicatend write: «— jifi — jandj — . Ifi — j

butj #4 i for some indexj, then the index is calledinessentialor M max

transien}. An index which leads to no index at all (this arises when Z a,E;-") < IsksM P (A)

A has a row of zeros) is also called inessential. Also, an index that is i=1 1ohgarE

not inessential is calleessentialor recurren). Thus, ifi is essential,

i — j impliesi « j, and there is at least onesuch that — j. whereA™ = ((,,E;W) andp(A) 2 max {|A| : A eigenvalue ofd} is
With these definitions, it is possible to partition the set of indexage spectral radius od.

{1, 2, ..., M} into disjoint sets, calledlassesAll essential indexes

(if any) can be subdivided intessential classds such a way that all The following corollary follows directly from the previous proposi-

the indexes belonging to one class communicate, but cannot lead tdigR Py observing that

index outside the class. Moreover, all inessential indexes (if any) may M
be divided into two types oinessential classeself-communicating (™ « Zaﬁfﬁ)_ Vi=1l,...,M and j=1,..., M.
classes andon-self-communicatingasses. Each self-communicating b7 = ’ ’

inessential class contains inessential indexes which communicate with
each other. A non-self-communicating inessential class is a singletorCorollary 1: If A is irreducible, thend™ < A™C (i.e., af;") <

set whose element is an index which does not communicate with axye; ), forallm = 1, 2, ..., where) is the largest positive real eigen-
index (including itself). value of A and
A matrix is irreducibleiif its indexes form a single essential class;
i.e., if every index communicates with every other index. C = <w)
ming <x<m Tk

Proposition 1: By renumbering the indexes (i.e., by performing row
and column permutations), it is possible to put a nonnegative mati#a matrix with identical entries that are independent.of
A |n’ the canonical fom.‘as shgwn at the bottom of the page, where Proposition 5 [15, p. 371]: The eigenvalues of a matrix are contin-
A;,i = 1,..., g, are irreducible square matrices, and in each row . ’ .
. . : uous functions of the entries of the matrix.
i=h+1,..., gatleastone of the matrices, A2, ..., 4;;—1iS
not zero. The matri¥; fori = 1, ..., h corresponds to the essential Proposition 6 [15, p. 396]: Let A(«) be anM x M matrix whose
classC;; while the matrix4; fori = h + 1, ..., g corresponds to entries are all analytic functions afin some neighborhood ef; . Let
the self-communicating inessential cl&@s The other diagonal block ) be an eigenvalue of (« ) of algebraic multiplicityl . ThenA(«) has

r A 0 0 0 oo 07
0 ... 0 0 ... 0 - ... 0
0 Ap 0 0 ... 0
Ap ... A A
4= ht11 ht1h ht1 0 0
4‘191 e A.gh -"1gh+1 e 449 e e 0
AgJ’_]] [P x4g+1h, Ag+l/z+1 P flg_i,_]g 0 “e 0
L An . Ap ‘41],,_;,_1 Ce Alg ‘41,,+1 e 0
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an eigenvalué («) which is an analytic function in the neighborhoodThus0 < bz, <b; <by Vi. LetR" '1' =y' wherey=(y1, ..., yum).
of ag and for whichA(ag) = A. Then, by (2)
M . M
lll. THE RENYI DIVERGENCE RATE )\"—15,:2 rE;_“b]- SZ rl(']’f—l)bU —byys, Vi=1, ..., M.
A. First-Order Markov Sources =1 =1
We assume first that the Markov sourE&,, Xo, ...} is of order Similarly, it can be shown that"~'b; > by, Vi = 1...., M.
one. Later, we generalize the results for an arbitrary okd#vith the Therefore,
same notation as presented at the beginning of the Introduction, the b, yi b, ) /
joint distributions of the random variablés;. ..., X,,) underp(™ b = AT = b Vi=1... .M. 3)
andq™ are given, respectively, by _ u _ _
SincesR™~'1' = 372 siy,, it follows directly from (3) that
(n)gny . ¢ — Y e ey )
pE") = Pr{Xy =1, ..., Xo = in} = DiDigin " Pin_1in Zﬁibz‘ e Z sib;
and =<
n),m . - . b - AT = by
‘)(1, Yi=Pr{X1 =i, ..., X =in} = iy Qigiz Qip_yin- or v L
i bi 5005
Let Lo (% Lo (s 1 (2
— log < log [ ) < log - (4)
N \ w n An—1 n br
V(n, (1) — Z |:p(n)(in):| [q(az)(in)] .
inean Note thats;, b;, bry, by, do not depend on. Therefore, by (4)
n—11qt
Then lim L log <M) =0
n—oo N An—1
(n, a) qu il a° . . »
e n—1in iy 1t since it is upper- and lower-bounded by two quantities that appr@ach
where the sumis ovér, ..., i, € X.Defineanewmatri® = (r;;) asn _1> oo Hence
by lim — log (3}?"71175)
n—oo T
e — @1 ;i — A n—1 f
Fij = Pijdij bj=1l ... M = lim 1 log A" 7' + lim 1 log <—R ) =log A
n—oo N n—oco 7 An—1
Also, define two newl x M vectorss = (s1, ..., sa) andl by and thus
si=piql 1=(1,....1). im LD (™) = 1 1 n=tg
i i ’ im = Da (p"|lq = lim ——— log (sR )
n—oo N n—0o0 n,((,v - )

Then, clearly,D..(p™||¢"™) can be written as

771

n n 1
Da(p™llg") = —— logsR 1)

where 1! denotes the transpose of the vectiar Without loss of

O

1
—3 log A.

We next use Lemma 1 and the canonical formibto prove the
following general result.

generality, we will herein assume that there exists at least oneTheorem 1: LetR;,i =1, ..., g, betheirreducible matrices along
i € {1,..., M} for which s, > 0, because otherwise (i.e.,the diagonal of the canonical form of the matfixas shown in Propo-
if s; = ()Vz) D.(p™¢""™) is infinite. We also assume that sition 1. Write the vectos as

0 < a < 1;we can allow the case af > 1if ¢ > 0 and@ > 0 B o .

(where@ = (¢i;)). Before stating our first main theorem, we prove 8= (815 oy Bhs Sty oo Bgs Sgt1s e 81)

the following lemma. where the vectog; corresponds tdz;, 7 = 1, ..., g. The scalars

Lemma 1: If the matrix R is irreducible, then the Rényi divergencesg+1, - -

rate betweep™) andq(" is given by

1 1
1 oy — .
hm L D.(p"|lg""™) po—) log A

wherel is the largest positive real eigenvalue®f and0 < « < 1.
Furthermore, the same result holds fot> 1 if ¢ > 0 and@ > 0.

Proof: By Proposition 2, lef\ be the largest positive real eigen-
value of R with associated positive right eigenvecbor 0. Then

R b= A"""b. 2)
LetR" ! = (r{"~") andb’ = (by, b, ... bur). Also, let
br, = min (b
1<i<
and
by = max (b;),

1<:<M

., s1 correspond to non-self-communicating classes.

* Let )\, be the largest positive real eigenvalugf for which the
corresponding vecto¥;, is different from the zero vectok, =
1, ..., g. Let \* be the maximum over these.’s. If 5, = 0,
VE=1,..., g9, thenlet\* = 0.

« For each inessential claés with corresponding vecta¥; # 0,
i =h+1,...,4, or corresponding scalat # 0, ¢ g+
1, ..., 1, let \; be the largest positive real eigenvaluel®f if
classC; is reachable from clags;. Let At be the maximum over
these);’s. If 5, = 0 ands; = 0 for every inessential clags;,
then letA’ = 0.

Let A = max{)\*, AT}. Then the Rényi divergence rate is given by

(p(")llq(")) =

where() < « < 1. Furthermore, the same result holds for> 1 if
g > 0and@ > 0.

1
lim — D,

n—oc N

il log A
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Proof: By Proposition 2, led; be the largest positive real eigen-wherebz, = mini<;<, (br,) andbz, is the smallest component bf,

value of R; with associated positive right eigenvector > 0,7 = ¢ =1, ..., g. Therefore,
1, ..., 9. Let ne13 >
? ) /\nglbi i< /\zzflbi 1
~ ~ ~ ~ _— Yq —_—, =1, ...,
b = (b ey b bigrs oees bys 0, ety 0), b VST, e d
where the zeros correspond to non self-communicating classes. I—é?pce,
Proposition 1 we have the matrix shown at the bottom of the page. Then 1 < . g 1 < .
— Z AT <> s < — AT
& = g 15 1)5 bU =1 1=1 bL =1
D T A (RE?* Ve B >bi,1)
i=1 i=h+1 Therefore, by (5)
! (n—=1)7 (n—1)7 1 g . g !
+> s (Rgl bit: -+ Ry bg)- Y ENTR A Y EE+ Y sE
i=g+1 U= i=htl =gt
Rewrite the vectol as 1 3 . g !
. 5 5 5 < sRn_ll[ < b_ Z §i/\:L_1bL' + Z 5:Z; + Z 8:%;
1=(11, ..., 1n, Lpga, ovey 101, 000 1) L = i=h+1 i—g+1
or
wherel;, i = 1, ..., g, correspond to essential and inessential self-
communicating classes and this correspond to non-self-communi- LR A i e n i
cating classes. Lek" 11" = y' where AN s HANY :
Y= (Gt oy Gnr ot FGnt1, ooy Zg+ gy Zg41s -0y E1) 1 g !
+ < Z SiZi + Z Sz%))
and A i=h+1 i=g+1
gi:Rzzilﬂw i=1,...,4 1 sRn—lll
) < = log a1l

1—1
5= ROV i=h+1,....g
=1

VAN
I |
>
oe
TN
Ll
= "—‘
-
e
N
>
~—
1
s@‘l

g i—1
G=3 RyTVL4 3 ORGTYV. i=g4ld
j=1

1
j=g+1 +)\nl—71 < i 52 + Z blil>>

Therefore, i=h+1 i—g1
g g l whereA is as tdefined in the statement of the theorem. To show that
sR"'1' = Z Sy + Z $iZi + Z 5:%i. (6) L log(=£—1) converges td) asn — oc, it is sufficient to prove
i=1 i=h+1 i=g+1 that the lower and upper bounds convergé t&ince the lower and

upper bounds are within a constant scaling of each other, it is enough

As in the proof of Lemma 1, sincBib; = A:b:, we can write to show that the lower bound convergesitasn — oo. Note that

R?715¢ = )\?712),' < bugi, =1, ..., g 9 t 9 il .
- ’ i o sz D sim= Y Y &RV
whereby = maxi<;<4(bu,) andby, is the largest component 6f,  i=n+1 i=g+1 i=h+1 j=1
i=1,..., g. Similarly, i i P i i ()
o . =+ SiRi77 13-—1— SiRi?7 .
R; 1bi =X\ 1bi > bLys, t=1....9 i=g+1 j=1 ‘ i=g+1 j=g+1 ‘
r Ry 0 0 0 0 7
0 0 0 0 0
0 R A 0 0 |
(n—1) (n—1) w—
. RS .o R R - 0 B
R =
(n—1) (n—1) (n—1) n—
RY, ... Ry, R ... RyTY . .0
n—1 n—1 n—1 n—1
R .o RUCY ORUSDL 0 RGP 0 L0
(n—1 n—1) n—1 n—1) n—1)
LRY ... R RyY .. Ry R! e 0]

lg+1
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If REJ"J_‘) # 0 for somen, then clas<; is reachable from clasS; X = A\* = max{A:}, k = 1, ..., g, and the fact that the determi-

(it is enough to check fon = 2, ..., I, since the number of classesnant of a block lower triangular matrix is equal to the product of the
is 7). From the block form ofR, if RE;‘” # 0, then it is a weighted determinants of the submatrices along the diagonal (thus, the largest
sum involving products of powers &; andR; (which are irreducible) eigenvalue of this matrix is given hylax{\ }).

and possibly some other submatrices (which are irreducible) along the

diagonat of R. By applying Corollary 1 t? efi\ch of these irreducibleB. Numerical Examples

submatrices i # 0 ors; # 0 (sinceR,; Vs multiplied bys; | yie section, we use the natural logarithm. I2andQ be two
or s;), the above expression is upper-bounded by linear comblnatlo%?

X . ssible probability transition matrices f6X,, X, ...} defined as
of powers of the largest eigenvalues of the submatrices along the P y o1, Xz, ood

i . lows:
agonal ofR for which s, # 0,i = h + 1, ..., g, or for which the / ,
corresponding class is reachable fromclassi = g + 1, ..., L. 1/4 {5/4 0 0 0
For example, in the case of tligas given in the footnotdlg'fl) < 1/32/3 0 0 0
(n — 1)A"2C, whereC' > 0 and its entries are independentraf P=10 0 1/2 1/2 0©
Hence, 0 0 1/5 4/5 0
g et 0 1/6 1/2 0 1/3
1. (1 oY -
nlgq;og log ™ Z sil v bi 1/5 4/5 0 0
=t l 1/6 5/6 0 0 0
1 SN . Q= 0 0 1/4 3/4 0
tir (3 s 3 wa)) <o 00 s
i=h+1 1=g+1

This follows from the fact that for large, the argument of the loga- 0 1/2 1/3 0 1/6

rithm is a polynomial expression of first degreesinand Let the parameter = 1/3. The largest eigenvalues of the three sub-
1 matrices along the diagonal @ are, respectivelyh; = 0.98676,
Jim = log(an +b) = 0. X2 = 0.95937, andAs = 0.20998. Letp = (0, 0, 3/4, 1/4, 0)

. . andq = (0, 0, 1/3, 2/3, 0) be two possible initial distributions under
If R has three sqbrr}%tpges along the d|agona|, then frpm the blogk,) andq™), respectively. For these given initial distributions, we get
form QfR’ the matrixfz;, depend; r_ecurswely on a,)'!i'ghted su y Theorem 1 thak™ = X, andA" = 0. Therefore, the Rényi diver-
involving [, and Fs». Therefore, it is bounded by™ “p(n)D,  4onc6 rate i (Ay)/(a—1) = 0.06221. Note thatks is notthe largest
eigenvalue ofR. We also obtain the following.

wherep(n) is a polynomial of second degreesin andD > 0 with
entries independent of.
In general, for large,, the argument of the logarithm is a polynomial

expression in the variabte of degree at mogdt— 1 (I is the number of n 717_ D., (p(“)“q("))
classes), and hence it follows that
1 L Ly 1000 0.06227
2 o8 (E ; * <7) b 2000 0.06224
1 L S 3000 0.06223
+/\n—_1 < Z $;z; + Z m:l)) = 0.
i=h+1 1=g+1

Clearly, asn gets large,L Do (p'"||¢™) is closer to the Rényi
divergence rate. Note, however, that, in general, the function
s 1t L D.(p"|1¢"™) is not monotonic im.
<ﬁ> =0 Suppose that has zero components on the first two classes. For ex-
ample, lepp = (0, 1/4, 1/4, 0, 1/2) andg = (1/4, 0, 0, 1/4, 1/2).
and thus In this case)* = X3, andAt = max{)\;, Az} (the first and second
I lD Y = 1 low (sR"—'1" classes are reachable from the third). Therefore, the Rényi divergence
e (p lla ) T n(a—1) o (s ) rate isln(A1)/(a — 1) = 0.01999. We also get the following.

-1 T log A. O
o — n n
n L Da (p( )14¢ ))
Remark: In[16], Nemetz showed that the Rényi divergence rate be-

Therefore,

lim — log
n—oo N

tween two time-invariant Markov sources witrictly positiveinitial 1000 0.02223
distributions is given by log \, where is the largest positive real 2000 0.02111
eigenvalue oR?. Nemetz also pointed out that this assumption could be

replaced by other conditions, although he did not provide them. Note 3000 0.02074

that by Theorem 1, the Rényi divergence rate between two time-in-
variant Markov sources withrbitrary initial distributions is not nec-
essarily equal th,—l log A, wherel is the largest positive real eigen-

value of R. However, if the initial distributions are strictly positive,gence rate. . . S
which implies directly thats > 0, then Theorem 1 reduces to the Suppose now that has strictly positive components (as required in

Nemetz result. This follows directly from the fact that, in this caséa&e Nemetz result). For example, jet= (1/8,1/4,1/8, 1/4,1/4)

Clearly, as gets largel D, (p™]|¢™) is closer to the Rényi diver-

d ¢ = (1/10,3/10,2/10, 2/10, 2/10). In this case,
IFor example, ifR = [151 " ]’thenRé’TU = 712_:2 RiRs Ry ™72, AT = AT = max{dr, A2, As} = A1 Therefore, the Renyi di-
21 Hz i=o vergence rate idn(\)/(a — 1) = 0.01999. Note that\; is the
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largest eigenvalue aR which is expected since the components of transition matrices associated witf") and¢(™, respectively. Let;

are strictly positive. We also get the following. be the initial distribution with respect g™ . If Q > 0,¢ > 0, and
P is irreducible, then the Kullback—Leibler divergence rate between
n 1p., (p(n)”q(n)> P\ and¢™ is given by
" .1 (MY _ . , :
1000 0.02105 g D (1) lla ) = —Hp(X) - ;mm log qi,
where
2000 0.02052 )
H,(X) 2 lim %H(p(n)) = - Zﬁz‘pz‘j log pij
3000 0.02034 i“J
denotes the Shannon entropy rate of the source with respptt’to

Clearly, as: gets largel D..(p(™||¢""") is closer to the Rényi diver- andr denotes the stationary distribution associated witH.

gence rate. We first show the following lemma; a direct consequence of this

lemma generalizes a result of [21, p. 21] for ergodic Markov sources
to irreducible Markov sources.

C. kth-Order Markov Sources

Now, suppose that the Markov source has an arbitrary érdeefine ; ) _
{W,} as the process obtained bystep blocking the Markov source Lemma 2: Let A = (a;;) be ann x n matrix of rankn — 1 with

{X.};ie., the property than a;; = ( for eachi. Define¢; to be the cofactor
of a;;; i.e., the determinant of the matrix obtained frotrby deleting
W, 2 (X, Xont1, oo vy Xogbot). theith row and theth column and let = (c1, c2, ..., ¢.). Thencis
a nonzero vector and satisfied = 0.
Then Proof: See the Appendix.
Pr(W, = wn|[Whno1 = wn—1, ..., W1 = w1)

i We next prove the following theorem.

= Pl(VIrn = Wn |1"1'/nfl = 'wnfl) ) . . )
and{W, } is a first-order Markov source with/* states. Let Theorem 2: Given thata € (0, 1) U (1, oc), consider a time-in-
variant Markov sourc¢ X, Xs, ...} with finite alphabetY’ and two
’ possible distributiong!®’ and¢(™ on X™. Let P and( be the prob-
We nextwrite the joint distributions dfX,, } interms of the conditional apjjity transition matrices o’ associated with"" andq‘™, respec-

probabilities of W, }. Forn > k,V(n, «), as defined before, is given tively. If the matrix P is irreducible, the matrix) is positive, and the

A -
Pwyp_qwy = PI(‘Vn = 'LU71|‘/I"7171 - wnfl)-

by initial distributionq with respect ta;") is positive then
Vin, a) IprE] q’l"‘1 Pl q’l’“‘s’? o 'p:}'n*““n*kﬂq'l“ni““ﬂfkﬂ lim lim 1 D, (p(")Hq(n)) = lim lim 1 D, (p(n)Hq(n))
where the sum is ovar,, ws, ..., w._r11 € X*. For simplicity of ol noeea—lm
notation, let(py, ..., pys«) and(qi, ..., qu+) denote the arbitrary = —H,(X) =) mipijlog g
initial distributions of W, underp™ andq(™), respectively. Also let iJ
pi; andy;; denote the transition probability thEf, goes from index = Z mipi; log(pij/qis)
toindex;j undenp™ andq"", respectivelyi, j = 1, ..., M* . Define i
a new matrixR = (r;;) by and, therefore, the Rényi divergence rate reduces to the Kull-
i = p;.qb—u ij=1,...,M". (6) back-Leibler inerggqce ratg as— 1. . N .
Also, define two newl x M* vectorss = (51, ..., s,,+) and1 by Prpof: _SlnceP_ is wreo!uglble an_d) is positive, thgn the matrik _
si = plgl = 1=(1....1) (as defined in Section Ill) is irreducible. For convenience of notation,

) ) denote the largest positive real eigenvaluddfy \(«., R). We know
Then, clearly,D. (p'"™’[|¢""’) can be written as by Proposition 5 that each eigenvaluefs a continuous function of
D., (p(n)”q(n)) 1 - log sR™*1' elements ofR. Note that sinc&) > 0, R — P asa — 1, and the

. largest eigenvalue of the stochastic ma#fixs 1. Hence,
wherel® denotes the transpose of the vedoit follows directly that lim Mo, B) = 1
with the new matrixR as defined in (6), all the previous results also a—1 R

hold for a Markov source of arbitrary order. Let « denote an arbitrary base of the logarithm. Then, by I'Hopital's
rule, we find that
IV. INTERCHANGEABILITY OF LIMITS Ly 08 B) 1 N, R 2 1 9X(a, R) %

a—1  a—1 " Ina Ina fget o1
which is well defined by Proposition 6 since the algebraic multiplicity
We herein show that although the Rényi divergence reduces to tfex(a, R) is 1 (R is irreducible) by Proposition 3. The equation
Kullback-Leibler divergence as — 1, the Rényi divergence rate defining the largest positive eigenvaldér, R) = X of R is

A. Limitasa — 1

does not necessarily reduce to the Kullback-Leibler divergence rate. ., 1. \ o d—a Ca d—a
Without loss of generality, we will herein deal with first-order Markov | 71411 P2tz Prartig
sources since arth-order Markov source can be converted to a first- PRaaT " PRadey S — A e Poardans
order Markov source b¥-step blocking it. Let us first note the fol- ) ) ] =0 (8)
lowing result about the computation of the Kullback—Leibler diver- : E :
gence rate between two time-invariant Markov sources which follows R po gl—a e lea g
M19nr Par2dpro Pvmdning — 4

based on [10, p. 68] and [12, Theorem 8.6.1].
» . whereM = |
Proposition 7: Let {Xi. X, ...} be a time-invariant Markov get [15], [19]
source with finite alphabet . Letp™ andq(™) be twon-dimensional
probability distributions ont™. Let P and ) be the probability Di4+Dy+---+Dy=0 9)

. By differentiating this equation with respecttowe
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whereD; is the determinant obtained from (8) by replacingdtterow Example: Given thate € (0, 1) U (1, o), let P and@ be as fol-

by lows:

(Pl “n(pin/gn)s oo pliali (i /gi) = N(@), ... 1/4 3/4 0 1/3 173 1/3
' In(pins i) P=[3/4 1/4 0 O=1[1/3 1/3 1/3
Piring HAPiM [ GiMd 0 0 1 1/3 1/3 1/3

and leaving the otheld — 1 rows unchanged. In this equatiox, de- S that p™ | tati ith  stat distributi
notes the derivative of with respect tox. Note that if we add inp, ~>UPPOs€  thatp= 1S stationary - with stationary —distribution

all the other columns to th&h column, the value of the determinant(b/Q’ b/Q,’,l, N {’)’ .Wh.ere(). < b,,< 11s arbltrary. Also, suppose
remains unchanged. Therefore, foe= 1 and hence\ = 1, D; is the that the initial distributiony is positive. Then following [11, p. 40], a
determinant ’ ' simple computation yields that the Kullback—Leibler divergence rate

is given bylog, 3 —2b+ (3b/4)log, 3, where the logarithm is to the

pri—1 0 Dim base2.
P21 0 pam The eigenvalues aR are
g Mo=1/(3"1)
Pi—1,1 .- Pi—1, M —« 1—a —« 1—2a
Xi ’ Ag =477/(3%)+47/(3
Pi1 111(1%1/%1) o S(X |L) -\ .. DiM ln(piM /qiM) d 2 / ) /( )
Pit1,1 e 0 P Pi+1, M an | 1—a
. () . >\'§ — 4—0/(3 —u) _ 4—0/(3 —_0().
PAM1 - 0 . parar—1 Note thats > 0 and that, if0 < o < 1, max;<i<s{Ai} = X2. By The-
h orem 1, the Rényi divergence ratdis— 1) * log, A». By 'H6pital's
where rule, we get that
M
S(XNi) = pi (i /4:7)- lim (o = 1)~ logy A» = (7/4)logy 3 — 2.
j=1

. . . . Therefore,
A zero occurs in all the entries of th#a column except for théah entry,

: M _
since}" )", pi; = 1. We conclude that 1{3%1 Tim % D. (p(”)”q(”)) = (7/4)log, 3 — 2.
Di = (S(X[i) = A'(1)) e (10) .
On the other hand, it > 1, maxi<i<s{A;} = Ai. Therefore, the
whereg; is theM — 1 x M — 1 cofactor ofp;; — 1 in the determinant Rényi divergence rate is given Ity — 1)~ " log, A;. Clearly,

of (8) for the casex = 1, given b
©) J Y lim (a = 1) "log, A1 = log, 3.

P11 -1 ... P1,i—1 DI >
P21 . P2,i—1 e P Hence,
lim lim 1 D, (p(”)Hq(")) = log, 3.
¢ =|pi-1,1 --- Di—1,i—1—1 ... pic1i,m |. )l n—oo M
Pitl,1 o vee o Pitict e P M Therefore, the interchangeability of limits is not valid since
: : o B S N
PrM1 - DM, i—1 oo pum =1 101%111 Jim o D, (P( Nl )> < lim lim - D, (p( lqt )>
After substituting (10) in (9) and solving foY' (1), we obtain by (7) < lim lim 1 D. (p(”)||g(")) )
tha’[ alln—oco N
log (o, B) 1 l
lim —=——"~ = _~ _)N(1, R) = — T, S(X|i 11 imi /
lim == e (LR = ; mS(X]i) (11) B. Limitasa ] 0

We obtain the following result.
where . L .
Theorem 3:Let o« € (0, 1). Consider a time-invariant Markov

. source{ X, X, ...} with finite alphabetY and two possible distri-
26 butionsp™ andg™ onx". Let P and() be the probability transition
matrices onY’ associated with(™) andg‘™, respectively. Then

Asa — 1, R — P;letA = P—I. Since the stationary distribution 1 1
of the irreducible matrix? is unique, the rank oft isn — 1 because  lim lim — D, (p(”)”g(")) = lim lim ~ D, (p(”)”g(")) .
the nullity of 4 is 1 in this case. Hence, the conditions in Lemma 2 “'*"~>" nesalom

are satisfied. ThereforeA = 0, which is equivalent te P = ¢. Note Proof: By Theorem 1, we have

thatc is the nonnormalized stationary distribution®fand (11) is just

the Kullback—Leibler divergence rate betweBnand ) by Proposi- lim L D., (p(")llq(")> =1 log M, R).
tion 7. O n—oo N a—1

The following example illustrates that the Rényi divergence rate doB¥ Proposition SA(a, R) — A(0. R) asa | 0. Hence,

not necessarily reduce to the Kullback-Leibler divergence rate if the o1 ()11 (m)
conditions of the previous theorem are not satisfied. E% Jim — Do (p Ilg ) = —log A(0, R).
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On the other hand, VI. CONCLUDING REMARKS

In this work, we derived a formula for the Rényi divergence rate
between two time-invariant finite-alphabet Markov sources of arbitrary
order and arbitrary initial distributions. We also investigated the limits
wheres = lim, o 8 andY” = lima o R. Therefore, by again applying of the Rényi divergence rate as— 1 and asv | 0. Similarly, we

lim 1 D. (p(n)Hq(n)) _ % log 41"

al0n

Theorem 1 tat’, we get examined the computation and the existence of the Rényi entropy rate
1 for Markov sources and investigated its limitsas- 1 and asv | 0.
lim_ lim = Do (p(")Hq(")) = —log (0, R). We also observed that an operational characterization for the Rényi
n—oo |0 N

entropy rate can be established by extending a variable-length source

Hence the interchangeability of limits is always valid betweemnda ~ coding theorem for memoryless sources to the case of Markov sources.
asn — oo and asy | 0. O
APPENDIX

V. THE RENYI ENTROPY RATE Proof of Lemma 2:

The existence and the computation of the Rényi entropy rate of an>teP 1 First we prove that # 0. The firstz — 1 columns of4
arbitrary time-invariant finite alphabet Markov source can be deducgtf linearly independent, because, otherwise, the rankisfless or
from the existence and the computation of the Rényi divergence reggual ton — 2 since the sum of the columns dfis 0. Thus, there is
Indeed, if") is stationary memoryless with uniform marginal distri-2t least one nonzero determinaitof size(n — 1) x (rn — 1) which

bution then for anyx > 0, a # 1 can be formed by deleting one row and tith cqurTmuofA which fol-
lows from the fact that the determinant of a matriX igf the columns

D. (p(")”q(”)) = nlog M — H., (p(n)> ' are linearly dependent. Let the deleted row belitterow. If &k = =,

A = ¢, and soc # 0. If £ < n, add all the columns except theh

column to thekth column; this does not change the value of the deter-

minantA. Becausey_; ai; = 0, the elements of théth column are
(p@)) ' NOW —a1,, —@2n, - .., —Gnyn. Multiply the elements of this column

by —1 and move this column to the rightmost position. This yields a

Hence, the existence and the computation of the Rényi entropy Dew determinant with valug-A because these operations affect only

follows directly from Theorem 1. Actuallyim, .. % . (p(")) can € sign of the determinant. However, the new determinant is jyusb

be computed directly from Theorem 1 by determiningvith R — thgt once again; # 0. Th_us, at least one of the cofactetss nonzero.
N o . Without loss of generality assume that # 0. Next we prove that
(pf;) ands; = pf', and setting

Therefore,

tim LD, (p1g) = 10g 21— 1 L,

n— n n—oo N

cA = 0.

- 1 " (p(")) _ 1 log . Step 2: Consider the: — 1 equations

n—oo N 11—« n
A formula for the Rényi entropy rate was established earlier in [18] and Zl i =0, je{l2,..on—1} (12)
[19], but only for the particular case of ergodic finite alphabet time-
invariant Markov sources. Note thaty"" | a;;jx; = 0 is equivalent tdy 1" ai;zi = —an ;2.

Although the Rényi entropy reduces to the Shannon entropy, tBicec, # 0, we can use Cramer's rule [15, p. 60] to solve these
Rényi entropy rate does not necessarily reduce to the Shannon entregyations fotes, ..., x,_1 in terms ofz,, as follows:
rate asae — 1. From the results about the interchangeability of
limits for the Rényi divergence rate, it follows easily that the Rényi Th = —Tn Dr (13)
Cn

entropy rate always reduces to the Hartley entropy rate as 0

(lim,—se & Ho(p(™)), and if the Markov source is irreducible, itwhereDyis given in the equation at the bottom of the page, and where

reduces to the Shannon entropy ratevas: 1. the elements from theth column have replaced the elements of the
In [19], we established an operational characterization for the Rémyth column. If we add the other rows to thgh row (note that the

entropy rate by extending the variable-length source coding theorengigterminants are transposed here) and use the facﬁylat;j =90

[5] for discrete memoryless sources to ergodic Markov sources. Usiyg get a new:th row

the above expression for the Rényi entropy rate, this source coding

theorem can be easily extended to arbitrary time-invariant Markov

sources. We also note that, by the results on the interchangeabififyer moving thekth row and thé'th column to the last row and column

—QA1n, —A2n,- -+, = Qk—1,n, —0nn, —Ok+1 ns -y~ An—1,n-

of limits, the coding theorem does not necessarily reduce to thesition, respectively, it follows thab, = —ci. From (13), if we
Shannon lossless source coding theorem as 1. It does reduce to putw, = ¢,, thenxz, = ¢, forall k € {1, 2,..., n}. Because
the Shannon coding theorem if, for example, the Markov sourceE] a;; = 0, any solution of (12) is a solution of the same equation for
irreducible. j=mn.Thus,c = (¢, ..., ¢,) satisfiescA = 0. O
at a21 Ak—1,1 AnA k41,1 An—1,1
D, =| “2 22 S k1,2 A2 k1,2 0 dn—1,2

A1, n—1 A2, n—1 o dk—1,n—1 An,n—-1 QAk4+1,n—1 ctt Un—1,n—1
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