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Abstract—In this work, we examine the existence and the computation
of the Rényi divergence rate,lim ( ), between two
time-invariant finite-alphabet Markov sources of arbitrary order and ar-
bitrary initial distributions described by the probability distributions
and , respectively. This yields a generalization of a result of Nemetz
where he assumed that the initial probabilities under and are
strictly positive. The main tools used to obtain the Rényi divergence rate
are the theory of nonnegative matrices and Perron–Frobenius theory. We
also provide numerical examples and investigate the limits of the Rényi di-
vergence rate as 1 and as 0. Similarly, we provide a formula
for the Rényi entropy rate lim ( ) of Markov sources and
examine its limits as 1 and as 0. Finally, we briefly provide an
application to source coding.

Index Terms—Kullback–Leibler divergence rate, nonnegative matrices,
Perron–Frobenius theory, Rényi’s divergence and entropy rates, Shannon
and Hartley entropy rates, time-invariant Markov sources.

I. INTRODUCTION

Let fX1; X2; . . .g be a first-order time-invariant Markov source
with finite alphabetX = f1; . . . ; Mg. Consider the following two
different probability laws for this source. Under the first law

PrfX1 = ig =: pi and PrfXk+1 = jjXk = ig =: pij ; i; j 2 X

so that

p
(n)(in) := PrfX1 = i1; . . . ; Xn = ing = pi pi i � � � pi i ;

i1; . . . ; in 2 X

while under the second law the initial probabilities areqi, the transition
probabilities areqij , and then-tuple probabilities areq(n). Let p =
(p1; . . . ; pM ) andq = (q1; . . . ; qM) denote the initial distributions
underp(n) andq(n), respectively.

The Rényi divergence [20] of order� between two distributionŝp
andq̂ defined onX is given by

D�(p̂kq̂) =
1

�� 1
log

i2X

p̂
�
i q̂

1��
i

where0 < � < 1. This definition can be extended to� > 1 if all
q̂i > 0. The base of the logarithm is arbitrary. Similarly, the Rényi
entropy of order� for p̂ is defined as

H�(p̂) =
1

1� �
log

i2X

p̂
�
i
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where� > 0 and� 6= 1. As�! 1, the Rényi divergence approaches
the Kullback–Leibler divergence (relative entropy) given by

D(p̂kq̂) =
i2X

p̂i log
p̂i

q̂i

and the Rényi entropy approaches the Shannon entropy.
The above generalized information measures and their subsequent

variations [23] were originally introduced for the analysis of memory-
less sources. One natural direction for further studies is the investiga-
tion of the Rényi divergence rate

lim
n!1

1

n
D� p

(n)kq(n)

where

D� p
(n)kq(n) =

1

��1
log

i 2X

p
(n)(in)

�

q
(n)(in)

1��

and of the Rényi entropy rate

lim
n!1

1

n
H� p

(n)

where

H� p
(n) =

1

1� �
log

i 2X

p
(n)(in)

�

for sources with memory, in particular Markov sources. Nemetz ad-
dressed these problems in [16], where he evaluated the Rényi diver-
gence ratelimn!1

1
n
D�(p

(n)kq(n)) between two Markov sources
characterized byp(n) andq(n), respectively, under the restriction that
the initial probabilitiesp andq are strictly positive (i.e., allpi ’s and
qi ’s are strictly positive).

The Rényi divergence rate has played a significant role in certain
hypothesis-testing questions [14], [16], [17]. Furthermore, the Rényi
entropy and the Rényi entropy rate have revealed several operational
characterizations in the problem of fixed-length source coding [7], [6],
variable-length source coding [4], [5], [13], [19], error exponent calcu-
lations [8], and other areas [1]–[3], [18].

In this work, we generalize the Nemetz result by establishing a
computable expression for the Rényi divergence rate between Markov
sources witharbitrary initial distributions. We also investigate the
questions of whether the Rényi divergence rate reduces to the Kull-
back–Leibler divergence rate as� ! 1 and the interchangeability of
limits betweenn and� asn ! 1 and as� # 0. To the best of our
knowledge, these issues have not been addressed before. We provide
sufficient (but not necessary) conditions on the underlying Markov
source distributionsp(n) andq(n) for which the interchangeability of
limits asn ! 1 and as� ! 1 is valid. We also give an example
of noninterchangeability of limits asn ! 1 and as� ! 1. We
also show that the interchangeability of limits asn ! 1 and� # 0
always holds. We next address the computation and the existence of
the Rényi entropy ratelimn!1

1
n
H�(p

(n)) for a Markov source with
distributionp(n) and examine its limits as� # 0 and as�! 1.

The rest of this correspondence is organized as follows. In the fol-
lowing section, we review some definitions and relevant results from
the theory of nonnegative matrices and Perron–Frobenius theory. In
Section III, we provide a general formula for the Rényi divergence
rate betweenp(n) andq(n), with no restriction on the initial probabili-
tiesp andq, and illustrate it numerically. The result is first proved for
first-order Markov sources, and is then extended for Markov sources of
arbitrary order. In Section IV, we show that if the probability transition
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matrixP associated with the Markov source underp(n) is irreducible
and if both the initial probabilityq and the probability transition ma-
trix Q associated with the Markov source underq(n) are positive (with
strictly positive entries), then the Rényi divergence rate reduces to the
Kullback–Leibler divergence rate as�! 1. We also show that the in-
terchangeability of limits asn ! 1 and as� # 0 is always valid. In
Section V, we address similar questions for the Rényi entropy rate and
briefly illustrate it with an application to variable-length source coding.
Finally, concluding remarks are stated in Section VI.

II. NONNEGATIVE MATRICES

We begin with some results about nonnegative matrices. Most of
what follows may be found in [22] and [9].

Matrices and vectors arepositiveif all their components are positive
andnonnegativeif all their components are nonnegative. Throughout
this section,A denotes anM �M nonnegative matrix(A � 0) with
elementsaij . Theijth element ofAm is denoted bya(m)

ij .

We write i ! j if a(m)
ij > 0 for some positive integerm, and we

write i 6! j if a(m)
ij = 0 for every positive integerm. We say thati

andj communicateand writei $ j if i ! j andj ! i. If i ! j

but j 6! i for some indexj, then the indexi is calledinessential(or
transient). An index which leads to no index at all (this arises when
A has a row of zeros) is also called inessential. Also, an index that is
not inessential is calledessential(or recurrent). Thus, ifi is essential,
i! j impliesi$ j, and there is at least onej such thati! j.

With these definitions, it is possible to partition the set of indexes
f1; 2; . . . ; Mg into disjoint sets, calledclasses. All essential indexes
(if any) can be subdivided intoessential classesin such a way that all
the indexes belonging to one class communicate, but cannot lead to an
index outside the class. Moreover, all inessential indexes (if any) may
be divided into two types ofinessential classes: self-communicating
classes andnon-self-communicatingclasses. Each self-communicating
inessential class contains inessential indexes which communicate with
each other. A non-self-communicating inessential class is a singleton
set whose element is an index which does not communicate with any
index (including itself).

A matrix is irreducible if its indexes form a single essential class;
i.e., if every index communicates with every other index.

Proposition 1: By renumbering the indexes (i.e., by performing row
and column permutations), it is possible to put a nonnegative matrix
A in the canonical formas shown at the bottom of the page, where
Ai, i = 1; . . . ; g, are irreducible square matrices, and in each row
i = h+ 1; . . . ; g at least one of the matricesAi1; Ai2; . . . ; Aii�1 is
not zero. The matrixAi for i = 1; . . . ; h corresponds to the essential
classCi; while the matrixAi for i = h + 1; . . . ; g corresponds to
the self-communicating inessential classCi. The other diagonal block

submatrices which correspond to non-self-communicating classesCi,
i = g+1; . . . ; l, are1�1 zero matrices. In every rowi = g+1; . . . ; l
any of the matricesAi1; . . . ; Aii�1 may be zero.

A classCj is reachablefrom another classCi if Aij 6= 0, or if for
somei1; . . . ; ic; Aii 6= 0, Ai i 6= 0; . . ., Ai ; j 6= 0, wherec is
at mostl � 1 (since there arel classes). Thus,c can be viewed as the
number of steps needed to reach classCj starting from classCi. Note
that from the canonical form ofA, the classCj is reachable from class
Ci if A(c)

ij 6= 0 for somec = 1; . . . ; l � 1; whereA(c)
ij is theijth

submatrix ofAc.

Proposition 2 (Frobenius):If A is irreducible, thenA has a real
positive eigenvalue� that is greater than or equal to the magnitude of
each other eigenvalue. There is a positive left (right) eigenvector,aaa (bbb),
corresponding to�, whereaaa is a row vector andbbb is a column vector.

Proposition 3 [12, p. 508]: If A is irreducible, then the largest pos-
itive real eigenvalue has algebraic multiplicity1.

Proposition 4 [12, p. 494]: If A has a positive eigenvectorx, then
for all m = 1; 2; . . . ; and for alli = 1; . . . ; M we have

M

j=1

a
(m)
ij �

max
1�k�M

xk

min
1�k�M

xk
�
m(A)

whereAm = (a
(m)
ij ) and�(A)

�
= maxfj�j : � eigenvalue ofAg is

the spectral radius ofA.

The following corollary follows directly from the previous proposi-
tion by observing that

a
(m)
ij �

M

j=1

a
(m)
ij ; 8 i = 1; . . . ; M and j = 1; . . . ; M:

Corollary 1: If A is irreducible, thenAm � �mC (i.e., a(m)
ij �

�mcij ), for allm = 1; 2; . . ., where� is the largest positive real eigen-
value ofA and

C =
max1�k�M xk

min1�k�M xk

is a matrix with identical entries that are independent ofm.

Proposition 5 [15, p. 371]: The eigenvalues of a matrix are contin-
uous functions of the entries of the matrix.

Proposition 6 [15, p. 396]: LetA(�) be anM �M matrix whose
entries are all analytic functions of� in some neighborhood of�0. Let
� be an eigenvalue ofA(�0) of algebraic multiplicity1. ThenA(�) has

A =

A1 . . . 0 0 . . . 0 . . . . . . 0

0 . . . 0 0 . . . 0 . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . Ah 0 . . . 0 . . . . . . 0

Ah+11 . . . Ah+1h Ah+1 . . . 0 . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Ag1 . . . Agh Agh+1 . . . Ag . . . . . . 0

Ag+11 . . . Ag+1h Ag+1h+1 . . . Ag+1g 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Al1 . . . Alh Alh+1 . . . Alg Alg+1 . . . 0
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an eigenvalue�(�) which is an analytic function in the neighborhood
of �0 and for which�(�0) = �.

III. T HE RÉNYI DIVERGENCERATE

A. First-Order Markov Sources

We assume first that the Markov sourcefX1; X2; . . .g is of order
one. Later, we generalize the results for an arbitrary orderk. With the
same notation as presented at the beginning of the Introduction, the
joint distributions of the random variables(X1; . . . ; Xn) underp(n)

andq(n) are given, respectively, by

p
(n)(in) := PrfX1 = i1; . . . ; Xn = ing = pi pi i � � � pi i ;

and

q
(n)(in) := PrfX1 = i1; . . . ; Xn = ing = qi qi i � � � qi i :

Let

V (n; �) =
i 2X

p
(n)(in)

�

q
(n)(in)

1��

:

Then

V (n; �) = p
�
i q

1��
i p

�
i i q

1��
i i � � � p�i i q

1��
i i

where the sum is overi1; . . . ; in 2 X . Define a new matrixR = (rij)
by

rij = p
�
ijq

1��
ij ; i; j = 1; . . . ; M:

Also, define two new1�M vectorssss = (s1; . . . ; sM ) and1 by

si = p
�
i q

1��
i ; 1 = (1; . . . ; 1):

Then, clearly,D�(p
(n)kq(n)) can be written as

D�(p
(n)kq(n)) =

1

�� 1
log sssRn�1

1
t (1)

where 1t denotes the transpose of the vector1. Without loss of
generality, we will herein assume that there exists at least one
i 2 f1; . . . ; Mg for which si > 0, because otherwise (i.e.,
if si = 08 i), D�(p

(n)kq(n)) is infinite. We also assume that
0 < � < 1; we can allow the case of� > 1 if q > 0 andQ > 0
(whereQ = (qij)). Before stating our first main theorem, we prove
the following lemma.

Lemma 1: If the matrixR is irreducible, then the Rényi divergence
rate betweenp(n) andq(n) is given by

lim
n!1

1

n
D�(p

(n)kq(n)) =
1

�� 1
log �

where� is the largest positive real eigenvalue ofR, and0 < � < 1.
Furthermore, the same result holds for� > 1 if q > 0 andQ > 0.

Proof: By Proposition 2, let� be the largest positive real eigen-
value ofR with associated positive right eigenvectorbbb > 0. Then

R
n�1

bbb = �
n�1

bbb: (2)

LetRn�1 = (r
(n�1)
ij ) andbbbt = (b1; b2; . . . ; bM). Also, let

bL = min
1�i�M

(bi)

and

bU = max
1�i�M

(bi);

Thus0<bL�bi�bU 8 i. LetRn�1111t=yyyt whereyyy=(y1; . . . ; yM ).
Then, by (2)

�
n�1

bi=

M

j=1

r
(n�1)
ij bj�

M

j=1

r
(n�1)
ij bU = bUyi; 8 i=1; . . . ; M:

Similarly, it can be shown that�n�1bi � bLyi, 8 i = 1; . . . ; M .
Therefore,

bi

bU
�

yi

�n�1
�

bi

bL
; 8 i = 1; . . . ;M: (3)

SincesssRn�1111t = M

i=1 siyi, it follows directly from (3) that

i

sibi

bU
�
sssRn�1111t

�n�1
�

i

sibi

bL
;

or

1

n
log i

sibi

bU
�

1

n
log

sssRn�1111t

�n�1
�

1

n
log i

sibi

bL
: (4)

Note thatsi; bi; bU ; bL do not depend onn. Therefore, by (4)

lim
n!1

1

n
log

sssRn�1111t

�n�1
= 0

since it is upper- and lower-bounded by two quantities that approach0
asn ! 1. Hence

lim
n!1

1

n
log sssR

n�1111t

= lim
n!1

1

n
log �

n�1 + lim
n!1

1

n
log

sssRn�1111t

�n�1
= log �

and thus

lim
n!1

1

n
D� p

(n)kq(n) = lim
n!1

1

n(�� 1)
log sssR

n�1111t

=
1

�� 1
log �:

We next use Lemma 1 and the canonical form ofR to prove the
following general result.

Theorem 1: LetRi, i = 1; . . . ; g; be the irreducible matrices along
the diagonal of the canonical form of the matrixR as shown in Propo-
sition 1. Write the vectorsss as

sss = (~s1; . . . ; ~sh; ~sh+1; . . . ; ~sg; sg+1; . . . ; sl)

where the vector~si corresponds toRi, i = 1; . . . ; g. The scalars
sg+1; . . . ; sl correspond to non-self-communicating classes.

• Let�k be the largest positive real eigenvalue ofRk for which the
corresponding vector~sk is different from the zero vector,k =
1; . . . ; g. Let �� be the maximum over these�k ’s. If ~sk = 0,
8 k = 1; . . . ; g, then let�� = 0.

• For each inessential classCi with corresponding vector~si 6= 0,
i = h + 1; . . . ; g; or corresponding scalarsi 6= 0, i = g +
1; . . . ; l; let �j be the largest positive real eigenvalue ofRj if
classCj is reachable from classCi. Let�y be the maximum over
these�j ’s. If ~si = 0 andsi = 0 for every inessential classCi,
then let�y = 0.

Let � = maxf��; �yg. Then the Rényi divergence rate is given by

lim
n!1

1

n
D� p

(n)kq(n) =
1

�� 1
log �

where0 < � < 1. Furthermore, the same result holds for� > 1 if
q > 0 andQ > 0.
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Proof: By Proposition 2, let�i be the largest positive real eigen-
value ofRi with associated positive right eigenvector~bi > 0, i =
1; . . . ; g. Let

bbb
t = (~b1; . . . ; ~bh; ~bh+1; . . . ; ~bg; 0; . . . ; 0);

where the zeros correspond to non self-communicating classes. By
Proposition 1 we have the matrix shown at the bottom of the page. Then

sssR
n�1

bbb=

g

i=1

~siR
n�1
i

~bi+

g

i=h+1

~si R
(n�1)
i1

~b1+� � �+R
(n�1)
ii�1

~bi�1

+

l

i=g+1

si R
(n�1)
i1

~b1+� � �+R
(n�1)
ig

~bg :

Rewrite the vector111 as

111 = (~11; . . . ; ~1h; ~1h+1; . . . ; ~1g; 1; . . . ; 1)

where~1i; i = 1; . . . ; g; correspond to essential and inessential self-
communicating classes and the1’s correspond to non-self-communi-
cating classes. LetRn�1111t = yyyt where

yyy = (~y1; . . . ; ~yh; ~zh+1 + ~yh+1; . . . ; ~zg + ~yg; ~zg+1; . . . ; ~zl)

and

~yi =R
n�1
i

~1ti; i = 1; . . . ; g

~zi =

i�1

j=1

R
(n�1)
ij

~1tj ; i = h+ 1; . . . ; g

~zi =

g

j=1

R
(n�1)
ij

~1tj +

i�1

j=g+1

R
(n�1)
ij ; i = g + 1; . . . ; l:

Therefore,

sssR
n�1111t =

g

i=1

~si~yi +

g

i=h+1

~si~zi +

l

i=g+1

si~zi: (5)

As in the proof of Lemma 1, sinceRi
~bi = �i~bi, we can write

R
n�1
i

~bi = �
n�1
i

~bi � bU ~yi; i = 1; . . . ; g

wherebU = max1�i�g(bU ) andbU is the largest component of~bi,
i = 1; . . . ; g. Similarly,

R
n�1
i

~bi = �
n�1
i

~bi � bL~yi; i = 1; . . . ; g

wherebL = min1�i�g (bL ) andbL is the smallest component of~bi,
i = 1; . . . ; g. Therefore,

�
n�1
i

~bi
bU

� ~yi �
�
n�1
i

~bi
bL

; i = 1; . . . ; g:

Hence,

1

bU

g

i=1

~si�
n�1
i

~bi �

g

i=1

~si~yi �
1

bL

g

i=1

~si�
n�1
i

~bi:

Therefore, by (5)

1

bU

g

i=1

~si�
n�1
i

~bi +

g

i=h+1

~si~zi +

l

i=g+1

si~zi

� sssR
n�1111t �

1

bL

g

i=1

~si�
n�1
i

~bi +

g

i=h+1

~si~zi +

l

i=g+1

si~zi

or

1

n
log

1

bU

g

i=1

~si
�i

�

n�1

~bi

+
1

�n�1

g

i=h+1

~si~zi +

l

i=g+1

si~zi

�
1

n
log

sssRn�1111t

�n�1

�
1

n
log

1

bL

g

i=1

~si
�i

�

n�1

~bi

+
1

�n�1

g

i=h+1

~si~zi +

l

i=g+1

si~zi

where� is as defined in the statement of the theorem. To show that
1
n
log (sssR 111

�
) converges to0 asn ! 1, it is sufficient to prove

that the lower and upper bounds converge to0. Since the lower and
upper bounds are within a constant scaling of each other, it is enough
to show that the lower bound converges to0 asn!1. Note that

g

i=h+1

~si~zi +

l

i=g+1

si~zi =

g

i=h+1

i�1

j=1

~siR
(n�1)
ij

~1tj

+

l

i=g+1

g

j=1

siR
(n�1)
ij

~1tj +

l

i=g+1

i�1

j=g+1

siR
(n�1)
ij :

R
n�1 =

Rn�1
1 . . . 0 0 . . . 0 . . . . . . 0

0 . . . 0 0 . . . 0 . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . Rn�1
h 0 . . . 0 . . . . . . 0

R
(n�1)
h+11 . . . R

(n�1)
h+1h R

n�1
h+1 . . . 0 . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

R
(n�1)
g1 . . . R

(n�1)
gh R

(n�1)
gh+1 . . . Rn�1

g . . . . . . 0

R
(n�1)
g+11 . . . R

(n�1)
g+1h R

(n�1)
g+1h+1 . . . R

(n�1)
g+1g 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

R
(n�1)
l1 . . . R

(n�1)
lh R

(n�1)
lh+1 . . . R

(n�1)
lg R

(n�1)
lg+1 . . . 0

:
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If R(n�1)
ij 6= 0 for somen, then classCj is reachable from classCi

(it is enough to check forn = 2; . . . ; l; since the number of classes
is l). From the block form ofR, if R(n�1)

ij 6= 0, then it is a weighted
sum involving products of powers ofRi andRj (which are irreducible)
and possibly some other submatrices (which are irreducible) along the
diagonal1 of R. By applying Corollary 1 to each of these irreducible
submatrices if~si 6= 0 or si 6= 0 (sinceR(n�1)

ij is multiplied by~si
or si), the above expression is upper-bounded by linear combinations
of powers of the largest eigenvalues of the submatrices along the di-
agonal ofR for which ~si 6= 0; i = h + 1; . . . ; g; or for which the
corresponding class is reachable from classCi, i = g + 1; . . . ; l.

For example, in the case of theR as given in the footnote,R(n�1)
21 �

(n � 1)�n�2C, whereC > 0 and its entries are independent ofn.
Hence,

lim
n!1

1

n
log

1

bU

g

i=1

~si
�i
�

n�1

~bi

+
1

�n�1

g

i=h+1

~si~zi +

l

i=g+1

si~zi = 0:

This follows from the fact that for largen, the argument of the loga-
rithm is a polynomial expression of first degree inn, and

lim
n!1

1

n
log(an + b) = 0:

If R has three submatrices along the diagonal, then from the block
form ofR, the matrixR(n�1)

31 depends recursively on a weighted sum
involving R21 and R32. Therefore, it is bounded by�n�2p(n)D,
wherep(n) is a polynomial of second degree inn, andD > 0 with
entries independent ofn.

In general, for largen, the argument of the logarithm is a polynomial
expression in the variablen of degree at mostl� 1 (l is the number of
classes), and hence it follows that

lim
n!1

1

n
log

1

bU

g

i=1

~si
�i
�

n�1

~bi

+
1

�n�1

g

i=h+1

~si~zi +

l

i=g+1

si~zi = 0:

Therefore,

lim
n!1

1

n
log

sssRn�1111t

�n�1
= 0

and thus

lim
n!1

1

n
D� p(n)kq(n) = lim

n!1

1

n(�� 1)
log sssRn�1111t

=
1

�� 1
log �:

Remark: In [16], Nemetz showed that the Rényi divergence rate be-
tween two time-invariant Markov sources withstrictly positiveinitial
distributions is given by 1

��1
log ~�, where~� is the largest positive real

eigenvalue ofR. Nemetz also pointed out that this assumption could be
replaced by other conditions, although he did not provide them. Note
that by Theorem 1, the Rényi divergence rate between two time-in-
variant Markov sources witharbitrary initial distributions is not nec-
essarily equal to 1

��1
log ~�, where~� is the largest positive real eigen-

value ofR. However, if the initial distributions are strictly positive,
which implies directly thatsss > 0, then Theorem 1 reduces to the
Nemetz result. This follows directly from the fact that, in this case,

1For example, ifR = , thenR = R R R .

� = �� = maxf�kg; k = 1; . . . ; g; and the fact that the determi-
nant of a block lower triangular matrix is equal to the product of the
determinants of the submatrices along the diagonal (thus, the largest
eigenvalue of this matrix is given bymaxf�kg).

B. Numerical Examples

In this section, we use the natural logarithm. LetP andQ be two
possible probability transition matrices forfX1; X2; . . .g defined as
follows:

P =

1=4 3=4 0 0 0

1=3 2=3 0 0 0

0 0 1=2 1=2 0

0 0 1=5 4=5 0

0 1=6 1=2 0 1=3

Q =

1=5 4=5 0 0 0

1=6 5=6 0 0 0

0 0 1=4 3=4 0

0 0 1=2 1=2 0

0 1=2 1=3 0 1=6

:

Let the parameter� = 1=3. The largest eigenvalues of the three sub-
matrices along the diagonal ofR are, respectively,�1 = 0:98676,
�2 = 0:95937, and�3 = 0:20998. Let p = (0; 0; 3=4; 1=4; 0)
andq = (0; 0; 1=3; 2=3; 0) be two possible initial distributions under
p(n) andq(n), respectively. For these given initial distributions, we get
by Theorem 1 that�� = �2 and�y = 0. Therefore, the Rényi diver-
gence rate isln(�2)=(��1) = 0:06221. Note that�2 is not the largest
eigenvalue ofR. We also obtain the following.

n 1
n
D� p(n)kq(n)

1000 0:06227

2000 0:06224

3000 0:06223

Clearly, asn gets large, 1
n
D�(p

(n)kq(n)) is closer to the Rényi
divergence rate. Note, however, that, in general, the function
1
n
D�(p

(n)kq(n)) is not monotonic inn.
Suppose thatsss has zero components on the first two classes. For ex-

ample, letp = (0; 1=4; 1=4; 0; 1=2) andq = (1=4; 0; 0; 1=4; 1=2).
In this case,�? = �3, and�y = maxf�1; �2g (the first and second
classes are reachable from the third). Therefore, the Rényi divergence
rate isln(�1)=(�� 1) = 0:01999. We also get the following.

n 1
n
D� p(n)kq(n)

1000 0:02223

2000 0:02111

3000 0:02074

Clearly, asn gets large1
n
D�(p

(n)kq(n)) is closer to the Rényi diver-
gence rate.

Suppose now thatsss has strictly positive components (as required in
the Nemetz result). For example, letp = (1=8; 1=4; 1=8; 1=4; 1=4)
and q = (1=10; 3=10; 2=10; 2=10; 2=10). In this case,
�� = �y = maxf�1; �2; �3g = �1. Therefore, the Rényi di-
vergence rate isln(�1)=(� � 1) = 0:01999. Note that�1 is the
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largest eigenvalue ofR which is expected since the components ofsss

are strictly positive. We also get the following.

n 1
n
D� p(n)kq(n)

1000 0:02105

2000 0:02052

3000 0:02034

Clearly, asn gets large1
n
D�(p

(n)kq(n)) is closer to the Rényi diver-
gence rate.

C. kth-Order Markov Sources

Now, suppose that the Markov source has an arbitrary orderk. Define
fWng as the process obtained byk-step blocking the Markov source
fXng; i.e.,

Wn
�
= (Xn; Xn+1; . . . ; Xn+k�1):

Then

Pr(Wn = wnjWn�1 = wn�1; . . . ; W1 = w1)

= Pr (Wn = wnjWn�1 = wn�1)

andfWng is a first-order Markov source withMk states. Let

pw w
�
= Pr(Wn = wnjWn�1 = wn�1):

We next write the joint distributions offXng in terms of the conditional
probabilities offWng. Forn � k,V (n; �), as defined before, is given
by

V (n; �)= p�w q1��w p�w w q1��w w � � � p�w w q1��w w

where the sum is overw1; w2; . . . ; wn�k+1 2 X
k. For simplicity of

notation, let(p1; . . . ; pM ) and(q1; . . . ; qM ) denote the arbitrary
initial distributions ofW1 underp(n) andq(n), respectively. Also let
pij andqij denote the transition probability thatWn goes from indexi
to indexj underp(n) andq(n), respectively,i; j = 1; . . . ; Mk. Define
a new matrixR = (rij) by

rij = p�ijq
1��
ij ; i; j = 1; . . . ;Mk: (6)

Also, define two new1�Mk vectorssss = (s1; . . . ; sM ) and1 by

si = p�i q
1��
i ; 1 = (1; . . . ; 1):

Then, clearly,D�(p
(n)kq(n)) can be written as

D� p(n)kq(n) =
1

�� 1
log sssRn�k

1
t

where1t denotes the transpose of the vector1. It follows directly that
with the new matrixR as defined in (6), all the previous results also
hold for a Markov source of arbitrary order.

IV. I NTERCHANGEABILITY OF LIMITS

A. Limit as� ! 1

We herein show that although the Rényi divergence reduces to the
Kullback–Leibler divergence as� ! 1, the Rényi divergence rate
does not necessarily reduce to the Kullback–Leibler divergence rate.
Without loss of generality, we will herein deal with first-order Markov
sources since anykth-order Markov source can be converted to a first-
order Markov source byk-step blocking it. Let us first note the fol-
lowing result about the computation of the Kullback–Leibler diver-
gence rate between two time-invariant Markov sources which follows
based on [10, p. 68] and [12, Theorem 8.6.1].

Proposition 7: Let fX1; X2; . . .g be a time-invariant Markov
source with finite alphabetX . Letp(n) andq(n) be twon-dimensional
probability distributions onXn. Let P and Q be the probability

transition matrices associated withp(n) andq(n), respectively. Letq
be the initial distribution with respect toq(n). If Q > 0, q > 0, and
P is irreducible, then the Kullback–Leibler divergence rate between
p(n) andq(n) is given by

lim
n!1

1

n
D p(n)kq(n) = �Hp(X )�

i; j

�ipij log qij

where

Hp(X )
�
= lim

n!1

1
n
H(p(n)) = �

i; j

�ipij log pij

denotes the Shannon entropy rate of the source with respect top(n),
and� denotes the stationary distribution associated withp(n).

We first show the following lemma; a direct consequence of this
lemma generalizes a result of [21, p. 21] for ergodic Markov sources
to irreducible Markov sources.

Lemma 2: Let A = (aij) be ann � n matrix of rankn � 1 with
the property that

j
aij = 0 for eachi. Defineci to be the cofactor

of aii; i.e., the determinant of the matrix obtained fromA by deleting
theith row and theith column and letc = (c1; c2; . . . ; cn). Thenc is
a nonzero vector and satisfiescA = 0.

Proof: See the Appendix.

We next prove the following theorem.

Theorem 2: Given that� 2 (0; 1) [ (1; 1), consider a time-in-
variant Markov sourcefX1; X2; . . .g with finite alphabetX and two
possible distributionsp(n) andq(n) onXn. LetP andQ be the prob-
ability transition matrices onX associated withp(n) andq(n), respec-
tively. If the matrixP is irreducible, the matrixQ is positive, and the
initial distributionq with respect toq(n) is positive then

lim
�!1

lim
n!1

1

n
D� p(n)kq(n) = lim

n!1
lim
�!1

1

n
D� p(n)kq(n)

= �Hp(X )�
i; j

�ipij log qij

=
i; j

�ipij log(pij=qij)

and, therefore, the Rényi divergence rate reduces to the Kull-
back–Leibler divergence rate as� ! 1.

Proof: SinceP is irreducible andQ is positive, then the matrixR
(as defined in Section III) is irreducible. For convenience of notation,
denote the largest positive real eigenvalue ofR by �(�; R). We know
by Proposition 5 that each eigenvalue ofR is a continuous function of
elements ofR. Note that sinceQ > 0, R ! P as� ! 1, and the
largest eigenvalue of the stochastic matrixP is 1. Hence,

lim
�!1

�(�; R) = 1:

Let a denote an arbitrary base of the logarithm. Then, by l’Hôpital’s
rule, we find that

lim
�!1

log �(�; R)

�� 1
=

1

ln a
�0(1; R)

�
=

1

ln a

@�(�; R)

@�
�=1

(7)

which is well defined by Proposition 6 since the algebraic multiplicity
of �(�; R) is 1 (R is irreducible) by Proposition 3. The equation
defining the largest positive eigenvalue�(�; R) = � of R is

p�11q
1��
11 � � p�12q

1��
12 � � � p�1Mq1��1M

p�21q
1��
21 p�22q

1��
22 � � � � � p�2Mq1��2M

...
...

. . .
...

p�M1q
1��
M1 p�M2q

1��
M2 � � � p�MMq1��MM � �

= 0 (8)

whereM = jX j. By differentiating this equation with respect to�, we
get [15], [19]

D1 +D2 + � � �+DM = 0 (9)
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whereDi is the determinant obtained from (8) by replacing theith row
by

p�i1q
1��
i1 ln(pi1=qi1); . . . ; p

�
iiq

1��
ii ln(pii=qii)� �0(�); . . . ;

p�iMq1��iM ln(piM=qiM)

and leaving the otherM � 1 rows unchanged. In this equation,�0 de-
notes the derivative of� with respect to�. Note that if we add inDi

all the other columns to theith column, the value of the determinant
remains unchanged. Therefore, for� = 1 and hence� = 1, Di is the
determinant

p11�1 . . . 0 . . . p1M
p21 . . . 0 . . . p2M

...
... 0 . . .

...
pi�1; 1 . . . 0 . . . pi�1;M

pi1 ln(pi1=qi1) . . . S(Xji)��0 . . . piM ln(piM=qiM)

pi+1; 1 . . . 0 . . . pi+1;M
...

... 0 . . .
...

pM1 . . . 0 . . . pMM�1

where

S(Xji) =

M

j=1

pij ln(pij=qij):

A zero occurs in all the entries of theith column except for theith entry,
since M

j=1 plj = 1. We conclude that

Di = S(Xji)� �0(1) ci (10)

whereci is theM � 1�M � 1 cofactor ofpii� 1 in the determinant
of (8) for the case� = 1, given by

ci =

p11 � 1 . . . p1; i�1 . . . p1M
p21 . . . p2; i�1 . . . p2M

... . . . . . . . . .
...

pi�1;1 . . . pi�1; i�1 � 1 . . . pi�1;M
pi+1; 1 . . . pi+1; i�1 . . . pi+1;M

... . . . . . . . . .
...

pM1 . . . pM; i�1 . . . pMM � 1

:

After substituting (10) in (9) and solving for�0(1), we obtain by (7)
that

lim
�!1

log�(�; R)

�� 1
=

1

ln a
�0(1; R) =

1

ln a

M

i=1

�iS(Xji) (11)

where

�i =
ci

j

cj
:

As�! 1,R! P ; letA = P �I . Since the stationary distribution
of the irreducible matrixR is unique, the rank ofA is n � 1 because
the nullity ofA is 1 in this case. Hence, the conditions in Lemma 2
are satisfied. Therefore,cA = 0, which is equivalent tocP = c. Note
thatc is the nonnormalized stationary distribution ofP and (11) is just
the Kullback–Leibler divergence rate betweenP andQ by Proposi-
tion 7.

The following example illustrates that the Rényi divergence rate does
not necessarily reduce to the Kullback–Leibler divergence rate if the
conditions of the previous theorem are not satisfied.

Example: Given that� 2 (0; 1) [ (1; 1), letP andQ be as fol-
lows:

P =

1=4 3=4 0

3=4 1=4 0

0 0 1

Q =

1=3 1=3 1=3

1=3 1=3 1=3

1=3 1=3 1=3

:

Suppose that p(n) is stationary with stationary distribution
(b=2; b=2; 1 � b), where0 < b < 1 is arbitrary. Also, suppose
that the initial distributionq is positive. Then following [11, p. 40], a
simple computation yields that the Kullback–Leibler divergence rate
is given bylog2 3�2b+(3b=4) log2 3, where the logarithm is to the
base2.

The eigenvalues ofR are

�1 = 1=(31��)

�2 = 4��=(31��)+ 4��=(31�2�)

and

�3 = 4��=(31��)� 4��=(31�2�):

Note thatsss> 0 and that, if0<�< 1, max1�i�3f�ig=�2. By The-
orem 1, the Rényi divergence rate is(��1)�1 log2 �2. By l’Hôpital’s
rule, we get that

lim
�"1

(�� 1)�1 log2 �2 = (7=4) log2 3� 2:

Therefore,

lim
�"1

lim
n!1

1

n
D� p(n)kq(n) = (7=4) log2 3� 2:

On the other hand, if� > 1, max1�i�3f�ig = �1. Therefore, the
Rényi divergence rate is given by(�� 1)�1 log2 �1. Clearly,

lim
�#1

(�� 1)�1 log2 �1 = log2 3:

Hence,

lim
�#1

lim
n!1

1

n
D� p(n)kq(n) = log2 3:

Therefore, the interchangeability of limits is not valid since

lim
�"1

lim
n!1

1

n
D� p(n)kq(n) < lim

n!1
lim
�!1

1

n
D� p(n)kq(n)

< lim
�#1

lim
n!1

1

n
D� p(n)kq(n) :

B. Limit as� # 0

We obtain the following result.

Theorem 3: Let � 2 (0; 1). Consider a time-invariant Markov
sourcefX1; X2; . . .g with finite alphabetX and two possible distri-
butionsp(n) andq(n) onXn. LetP andQ be the probability transition
matrices onX associated withp(n) andq(n), respectively. Then

lim
�#0

lim
n!1

1

n
D� p(n)kq(n) = lim

n!1
lim
�#0

1

n
D� p(n)kq(n) :

Proof: By Theorem 1, we have

lim
n!1

1

n
D� p(n)kq(n) =

1

�� 1
log �(�; R):

By Proposition 5,�(�; R)! �(0; R) as� # 0. Hence,

lim
�#0

lim
n!1

1

n
D� p(n)kq(n) = � log �(0; R):
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On the other hand,

lim
�#0

1

n
D� p

(n)kq(n) =
1

n
log ŝssY 1t

whereŝss = lim�#0 sss andY = lim�#0 R. Therefore, by again applying
Theorem 1 toY , we get

lim
n!1

lim
�#0

1

n
D� p

(n)kq(n) = � log �(0; R):

Hence the interchangeability of limits is always valid betweenn and�
asn!1 and as� # 0.

V. THE RÉNYI ENTROPY RATE

The existence and the computation of the Rényi entropy rate of an
arbitrary time-invariant finite alphabet Markov source can be deduced
from the existence and the computation of the Rényi divergence rate.
Indeed, ifq(n) is stationary memoryless with uniform marginal distri-
bution then for any� > 0, � 6= 1

D� p
(n)kq(n) = n logM �H� p

(n)
:

Therefore,

lim
n!1

1

n
D� p

(n)kq(n) = logM � lim
n!1

1

n
H� p

(n)
:

Hence, the existence and the computation of the Rényi entropy rate
follows directly from Theorem 1. Actually,limn!1

1
n
H�(p

(n)) can
be computed directly from Theorem 1 by determining� with R =
(p�ij) andsi = p�i , and setting

lim
n!1

1

n
H�(p

(n)) =
1

1� �
log �:

A formula for the Rényi entropy rate was established earlier in [18] and
[19], but only for the particular case of ergodic finite alphabet time-
invariant Markov sources.

Although the Rényi entropy reduces to the Shannon entropy, the
Rényi entropy rate does not necessarily reduce to the Shannon entropy
rate as� ! 1. From the results about the interchangeability of
limits for the Rényi divergence rate, it follows easily that the Rényi
entropy rate always reduces to the Hartley entropy rate as� # 0
(limn!1

1
n
H0(p

(n))), and if the Markov source is irreducible, it
reduces to the Shannon entropy rate as� ! 1.

In [19], we established an operational characterization for the Rényi
entropy rate by extending the variable-length source coding theorem in
[5] for discrete memoryless sources to ergodic Markov sources. Using
the above expression for the Rényi entropy rate, this source coding
theorem can be easily extended to arbitrary time-invariant Markov
sources. We also note that, by the results on the interchangeability
of limits, the coding theorem does not necessarily reduce to the
Shannon lossless source coding theorem as� ! 1. It does reduce to
the Shannon coding theorem if, for example, the Markov source is
irreducible.

VI. CONCLUDING REMARKS

In this work, we derived a formula for the Rényi divergence rate
between two time-invariant finite-alphabet Markov sources of arbitrary
order and arbitrary initial distributions. We also investigated the limits
of the Rényi divergence rate as� ! 1 and as� # 0. Similarly, we
examined the computation and the existence of the Rényi entropy rate
for Markov sources and investigated its limits as�! 1 and as� # 0.
We also observed that an operational characterization for the Rényi
entropy rate can be established by extending a variable-length source
coding theorem for memoryless sources to the case of Markov sources.

APPENDIX

Proof of Lemma 2:
Step 1: First we prove thatc 6= 0. The firstn � 1 columns ofA

are linearly independent, because, otherwise, the rank ofA is less or
equal ton � 2 since the sum of the columns ofA is 0. Thus, there is
at least one nonzero determinant� of size(n � 1) � (n � 1) which
can be formed by deleting one row and thenth column ofA which fol-
lows from the fact that the determinant of a matrix is0 iff the columns
are linearly dependent. Let the deleted row be thekth row. If k = n,
� = cn and soc 6= 0. If k < n, add all the columns except thenth
column to thekth column; this does not change the value of the deter-
minant�. Because

j
aij = 0, the elements of thekth column are

now�a1n; �a2n; . . . ; �ann. Multiply the elements of this column
by �1 and move this column to the rightmost position. This yields a
new determinant with value�� because these operations affect only
the sign of the determinant. However, the new determinant is justck, so
that once again,c 6= 0. Thus, at least one of the cofactorsci is nonzero.
Without loss of generality assume thatcn 6= 0. Next we prove that
cA = 0.

Step 2: Consider then � 1 equations

n

i=1

aijxi = 0; j 2 f1; 2; . . . ; n� 1g: (12)

Note that n

i=1 aijxi = 0 is equivalent to n�1
i=1 aijxi = �anjxn.

Sincecn 6= 0, we can use Cramer’s rule [15, p. 60] to solve these
equations forx1; . . . ; xn�1 in terms ofxn as follows:

xk = �xn
Dk

cn
(13)

whereDk is given in the equation at the bottom of the page, and where
the elements from thenth column have replaced the elements of the
kth column. If we add the other rows to thekth row (note that the
determinants are transposed here) and use the fact that

j
aij = 0

we get a newkth row

�a1n; �a2n;. . . ;�ak�1; n; �ann; �ak+1; n;. . . ;�an�1; n:

After moving thekth row and thekth column to the last row and column
position, respectively, it follows thatDk = �ck. From (13), if we
put xn = cn, thenxk = ck for all k 2 f1; 2; . . . ; ng. Because

j
aij = 0, any solution of (12) is a solution of the same equation for

j = n. Thus,c = (c1; . . . ; cn) satisfiescA = 0.

Dk =

a11 a21 � � � ak�1; 1 an1 ak+1; 1 � � � an�1; 1

a12 a22 � � � ak�1; 2 an2 ak+1; 2 � � � an�1; 2

� � � � � � � � � � � � � � � � � � � � � � � �

a1; n�1 a2; n�1 � � � ak�1; n�1 an;n�1 ak+1; n�1 � � � an�1; n�1
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One Stochastic Process and Its Application to Multiple
Access in Supercritical Region

Boris Tsybakov, Member, IEEE

Abstract—A discrete-argument stochastic process is presented. The
process is a generalization of the Çinlar semiregenerative process [5]
and process ( ) given in [17]. For this process, the theorem, which is
similar to the Smith regenerative process theorem, is given. We use this
theorem to find the transmission rate and mean packet delay for stack
and part-and-try random multiple access algorithms in their supercritical
regions. For part-and-try algorithm, the results are new. For stack
algorithm, we give a new method of finding the rate and delay.

Index Terms—Packet multiple access, random process.

I. INTRODUCTION

In this correspondence, we present a discrete-argument stochastic
process which is useful in random multiple-access problems. The
process is a generalization of the semiregenerative process [5] and
process�(t) given in [17]. The presented process is called the
generalized process�(t).

Similarly to the regenerative process, the generalized process�(t)
consists of independent cycles. But cycles are not stochastically the
same; similarly as in both the semiregenerative process [5] and process
�(t) given in [17]. There are a number (maybe an infinite number)
of stochastically different processes" the beginnings of which can be
candidates for the next cycle. The candidates are enumerated. A can-
didate number is called the type of process". The type for the next
cycle is chosen randomly depending on the given type and length of
the previous cycle. As in process�(t) given in [17], but not as in the
semiregenerative process [5], the time of cycle end is not necessarily
the Markov moment of�(t). However, contrary to both the semire-
generative process [5] and process�(t) given in [17], the processes"
beyond their cycles can be dependent. Also, the cycle can depend on
the processes" beyond their cycles. Such dependencies are essential in
some applications. For example, they are essential in our consideration
of stack algorithm in Section III.

Two such applications are given in this correspondence. In the first,
we consider the delayD and transmission rateR of the random packet-
multiple-access stack algorithm [18], [16]. If the Poisson packet traffic
arrival rate� is less than�cr � 0:36, the stack algorithm has a finite
average packet delay [18]. The delay as a function of� was found in
[21], [6], and [13] for traffic arrival rate� < �cr � 0:360177 . . . .
When� � �cr (this is the supercritical region of rates), the stack algo-
rithm has infinite average delay because some arriving packets do not
achieve successful transmission at all. However, there exists a certain
portion of arriving packets which are successful. The rate of success-
fully transmitted packetsR as a function of� for � � �cr was found
in [12]. The average delay of successfully transmitted packetsD as a
function of� for � � �cr was found in [22]. The method, which was
applied to findingR in [12] andD in [22], uses linear and nonlinear
functional equations and their recursive solutions [7].

In this correspondence, we give a different approach for findingR

andDwhen� � �cr. The approach interprets the stochastic processes,
which describe the stack algorithm, as the generalized process�(t) and
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