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Abstract—An approach to hybrid digital–analog (HDA) source–channel
coding for the communication of analog sources over memoryless Gaussian
channels is introduced. The HDA system, which exploits the advantages of
both digital and analog systems, generalizes a scheme previously presented
by the authors, and can operate for any bandwidth ratio (bandwidth com-
pression and expansion). It is based on vector quantization and features
turbo coding in its digital component and linear/nonlinear processing in its
analog part. Simulations illustrate that, under both bandwidth compres-
sion and expansion modes of operation, the HDA system provides a robust
and graceful performance with good reproduction fidelity for a wide range
of channel conditions.

Index Terms—Additive white Gaussian noise (AWGN) channels, broad-
casting, Gaussian sources, hybrid digital–analog coding, robust coding,
source–channel coding, turbo codes, vector quantization.

I. INTRODUCTION

Consider the problem of constructing a communication system for
the transmission and reproduction of a discrete-time analog-valued
(i.e., with continuous alphabet) source over a discrete-time memory-
less Gaussian channel. There are two common approaches for building
such a system: analog communication, such as amplitude modulation;
and digital communication, which typically consists of quantizing the
source, followed by error-control coding ,and digital modulation.

One of the main advantages of digital communication over analog
communication is the excellent rate–distortion–capacity performance
offered by digital coding systems. This excellent performance is
achieved by advanced quantization and error-correcting techniques.
There are, however, two fundamental disadvantages associated with
digital systems. The first is the “threshold effect” [2], which occurs
when the channel signal-to-noise ratio (CSNR) falls beneath a certain
threshold and the system performance degrades drastically. This
threshold effect is due to the total breakdown of the error-correcting
code at low CSNRs and the inherent nonlinearity of the quantizer.
During the last two decades, various digital joint source–channel
coding systems have been introduced to fight the threshold effect, thus
improving the system’s error resilience at low CSNRs (see, e.g., the
references in [3]–[6]). The second disadvantage is the “leveling-off
effect,” which refers to the fact that the system performance remains
constant even when the CSNR is increased above and beyond the
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threshold.1 This leveling-off effect is due to the nonrecoverable error
introduced by the quantizer.

Note that analog systems do not suffer from these problems to the
same extent, in particular concerning the leveling-off effect. On the
other hand, in practice, analog systems generally are inferior to dig-
ital systems in terms of rate–distortion–capacity performance—partic-
ularly at the designed CSNR.

Recently, Mittal and Phamdo [7] proposed a class of hybrid dig-
ital–analog (HDA) joint source–channel coding systems. These sys-
tems can theoretically achieve the Shannon rate–distortion–capacity
limit at the designed CSNR. Furthermore, they do not suffer from the
leveling-off effect—the threshold effect is still inherent, though less
severe, in the HDA systems [7]. Thus, systems that mix digital and
analog techniques can have some of the advantages of digital systems
and some of the advantages of analog systems (e.g., [3], [6], [8]–[11]).

In [6], [12], we presented a vector quantization (VQ) based HDA
system. This system is valid only for bandwidth ratios larger than one
(bandwidth expansion)—i.e., when the channel bandwidth is greater
than the source bandwidth. In this correspondence, we introduce a gen-
eralized version of the scheme in [6], [12]. The new system, originally
proposed in [1], can be used for either bandwidth expansion or band-
width compression. We begin with describing a highly general version
of the system, and then we investigate in some detail the performance,
under both bandwidth compression and expansion, of one important
typical case for the communication of a Gauss–Markov source over
a memoryless Gaussian channel. The new scheme has several impor-
tant features that were not present in the original work [6], [12]. In
particular, the system studied in detail incorporates a turbo error-cor-
recting code [13] to improve the performance at low CSNRs, and uses
a Karhunen–Loéve transform (KLT) to decorrelate the source vector
(for the bandwidth compression mode). The new scheme also allows
for both linear and nonlinear transformations in the analog part of the
HDA system (in [6], [12], only linear transformations are used). Other
recent methods which employ a direct source–channel analog mapping
or combine digital and analog coding include those in [3], [8], [11],
[14]–[19].

In the next section, we provide a general description of the new
HDA system. In Section III, we study in detail the system under band-
width compression for a typical scenario and present simulation results.
We also compare the performance of the new scheme with i) a purely
analog system, ii) a purely digital system, and iii) the Shannon rate–dis-
tortion–capacity limit. We examine the new system under bandwidth
expansion in Section IV and evaluate its performance vis-a-vis systems
i)–iii) and the scheme studied in [6]. Finally, conclusions are given in
Section V.

Some notation used in this correspondence is as follows. Bold-faced
characters are used for vectors and matrices. Upper case is used for
random entities and lower case for their realizations. The notation (xxx)m
denotes the mth component of vector xxx.

II. SYSTEM DESCRIPTION

In Fig. 1, we depict a general version of the proposed HDA system.
The purpose of the system is to convey the p-dimensional random
source vector XXX 2

p over a memoryless Gaussian channel, and re-
produce it as X̂XX at the receiver. The upper part of the transmitter is the
digital part, and the lower part the analog part. In the following we de-
scribe in detail how the system works.

1In some multimedia applications (such as high-definition television (HDTV)
broadcasting), the leveling-off effect may be desirable because large variations
in signal quality over short periods of time may be annoying to the end users.
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Fig. 1. Proposed hybrid digital–analog system.

Fig. 2. Proposed decoder structure.

A. Encoding

The source vector is first fed to a linear invertible preprocessing map-
ping, defined by the matrix GGG. The resulting output, ~XXX , is then used
as input to the first encoder mapping "1. In the most general version
of the HDA system, "1 is a low-delay source or source–channel en-
coder. Examples include a VQ encoder trained for a noiseless channel,
i.e., a source-optimized VQ (SOVQ), a VQ encoder trained for a noisy
channel, i.e., a channel-optimized VQ (COVQ), or an SOVQ encoder
in tandem with a (short) channel block code. The discrete output I =
"1(XXX) 2 IN , where IN f0; . . . ; N � 1g and where we assume
N = 2L, is then fed (in its L-bit binary form) to the high-delay (n; k)
channel encoder "2, of rate rc = k=n < 1. An example of a specific
such mapping, which we use in this correspondence, is the encoder of
a rate rc = 1=2 turbo code [13].

A number M = k=L > 1 of consecutive outputs from "1 are
blocked and encoded by "2. The output indexK of "2 is then assigned a
q-dimensional channel symbol, sssK 2 q , from a finite set fssskg of pos-
sible symbols. The index I also chooses a vector zzzI from the encoder
codebook fzzzig. The vector zzzI is subtracted from ~XXX to form the “error
vector”EEE, and this vector is then used as input to the mapping �, with
outputZZZ = �(EEE) 2 r , where r = q=M . Ideally,� is an analog map-
ping, in the sense that ZZZ is a continuous function of EEE. The output sssK
of the upper digital part, and a scaled version, a �ZZZ , of the output from
the analog encoder are added and then fed to a discrete-time channel,
with zero-mean additive white Gaussian noise (AWGN) WWW , of vari-
ance �2 per component. The resulting channel output is denoted RRR.
The scaling constant a regulates the contribution of the analog part to
the input power of the channel.

Note that for ease of presentation, Fig. 1 does not explicitly illus-
trate the delay operation associated with the grouping ofM consecutive
blocks. In the digital part, this operation occurs before the high-delay
encoder "2; in the analog part, it occurs after2 the scaling of ZZZ by a.
Thus, the transmission of one q-dimensional channel symbol sssk in the
digital part corresponds to M different aZZZ’s in the analog part. This
point also applies to Fig. 2.

2The delay operation occurs after the analog mapping � instead of before.
This keeps the complexity of � manageable.

B. Decoding

At the receiver, the decoder mapping � takes the channel output RRR
and outputs a source vector estimate X̂XX = �(RRR). Ideally, this mapping
should be chosen to minimize the mean squared-error (MSE) distortion
EkXXX � X̂XXk2, resulting in

�(rrr) = E[XXXjRRR = rrr]:

In general, however, the complexity of implementing this decoder pro-
hibits its use in practice. Therefore, we propose a suboptimal, but more
practical, decoder structure, as illustrated in Fig. 2. As shown in the
figure, the received vector RRR is fed to a decoder, �2, for the high-delay
code. The resulting discrete output J 2 IN is encoded by "2 and as-
signed a channel symbol. The result is then subtracted from the received
vector RRR and scaled by the constant b, forming an estimate, ẐZZ , of the
transmitted analog vector ZZZ . This estimate is then fed to the mapping
�, with output ÊEE. The purpose of � is to act as decoder for the analog
encoder�, and ÊEE is hence an estimate of the error vectorEEE. The output
index J of the high-delay channel decoder �2 is also fed to a decoder �1
for the low-delay source (or source–channel) code. The output �1(J) is
then added to ÊEE and the result is fed to the inverse of the preprocessing
map, resulting in the source vector estimate X̂XX .

While Figs. 1 and 2 describe the most general version of the proposed
HDA system, we will in the remaining parts investigate some specific
instances of the system. In particular, we will first employ the system
for bandwidth compression, and then study its performance when used
for bandwidth expansion.

III. BANDWIDTH COMPRESSION

In this part, we focus on using the system in Fig. 1, with the de-
coder in Fig. 2, for bandwidth compression, that is, under the assump-
tion that the “total” source vector dimension M � p is larger than the
channel signal space dimension q, and consequently the bandwidth
ratio � = q=(Mp) = r=p < 1 (channel dimensions/uses per source
dimension). For the sake of clarity and concreteness, we describe our
system explicitly in terms of a typical example with � = 1=2 (the gen-
eralization for systems with arbitrary � < 1 is straightforward). More
precisely, we have implemented a system with the following parame-
ters.

The source vector XXX is p = 32 dimensional, drawn from a zero-
mean Gauss–Markov source, with normalized correlation 0:9 between
samples. Letting RRRxxxxxx = E[XXXXXXT ], where T denotes transposition,
have eigenvalues �1 > �2 > � � � > �32 > 0, the mapping GGG is de-
fined by the KLT specified by RRRxxxxxx. That is, GGG = [vvv1; vvv2; . . . ; vvv32],
where vvvi is the eigenvector ofRRRxxxxxx corresponding to eigenvalue �i, re-
sulting in ~XXX = GGGXXX having independent components with variances
�1 through �32. The low-delay encoder "1 is an SOVQ encoder, of di-
mension p = 32 and sizeL = 8 bits, trained using the Linde, Buzo, and
Gray (LBG) algorithm [20], and the encoder codebook fzzzig is chosen
to be identical to the codebook defining "1. The high-delay encoder
"2 is an (n = 2048; k = 1024), rate rc = 1=2, turbo encoder, with
generators (37; 21) (punctured to rate 1=2) and with a random inter-
leaver [13]. The 8-bit output blocks from "1 are blocked into one k =
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1024-bit “superblock” which is fed to "2, resulting in a codeword of
length n = 2048 bits. The output bits from "2, corresponding to the
index K , are mapped directly into binary phase-shift keying (BPSK)
symbols,3 with alphabet f�1g. Consequently, the channel signal space
dimension is q = 2048 and sssk 2 f�1g2048. Since M = 1024=8 =
128, one "2-codeword represents 128 source vectors, and hence, � =
q=(Mp) = 2048=(128 � 32) = 1=2 (channel uses per source dimen-
sion).

The scaling constant a, in the analog part, is chosen so that a fraction
0 < � < 1 of the total input power to the channel is assigned to the
analog part. That is, since the power in the digital (BPSK) part is 1, the
constant a is solved to satisfy

� =
Ma2 EkZZZk2

q +Ma2 EkZZZk2

for a given �. The above equation is based on the assumption that the
analog and digital signals at the channel input are uncorrelated. Exper-
imental observations indicate that this is a reasonable assumption. The
output ZZZ of the analog encoder has dimension r = q=M = 16 and
M = 128 such vectors are transmitted simultaneously with the turbo
encoder codewords in one superblock.

The high-delay decoder �2 is a turbo decoder for the encoder "2, im-
plemented using 10 iterations and given access to the noise variance
�2. The low-delay decoder �1 is defined by a table lookup in a code-
book identical to the encoder codebook fzzzig. The constant b is chosen
to minimize the MSE EkZZZ � ẐZZk2, under the assumption that �2 is
powerful enough to correct all errors in the digital part and, again, as-
suming that �2 is known at the receiver. That is,

b =
1

a
�

�=(1��)

�2 +�=(1��)
:

What remains to be specified is the analog encoder–decoder pair
(�; �). We have investigated two systems, which are described in the
following two subsections. Simulations results for bandwidth compres-
sion are then provided in Section III-C.

A. Linear Analog Part

The first system employs linear mappings to define � and �. More
precisely, � is the linear mapping that projects EEE onto the subspace
spanned by the eigenvectors corresponding to the 16 strongest eigen-
values ofRRRxxxxxx. Hence, since a KLT is performed onXXX , the mapping �
is simply the operation of dropping the 16 low-energy components of
EEE, resulting in the r = 16 dimensional output ZZZ .

The decoder � is defined by the linear mapping of extending ẐZZ from
16 to 32 dimensions, by filling in zeros in the 16 low-energy dimen-
sions.

B. Nonlinear Analog Part

The second system employs a “discrete approximation” of the op-
timal, analog, generally nonlinear mappings (�; �) that minimize the
MSE, EkEEE� ÊEEk2 (so in this case the analog part is not really analog,
but “close-to-analog”). The mappings are described as follows.

The components (ZZZ)m; m = 1; . . . ; 16, of ZZZ are constrained to
belong to a discrete set of equally spaced signal points, i.e., multi-
level pulse amplitude modulation (PAM). The resolution is 256 PAM
levels per component. Hence, there are 25616 = 2128 different pos-
sible values for the transmittedZZZ . The encoder � maps a realization of
EEE into one of these values. Due to the prohibitive encoding complexity
of mapping a vectorEEE into one out of 2128 possible values, the encoder

3Although we only treat the case of BPSK signaling in the digital component
of the system, we can clearly accommodate multilevel signaling schemes in
general.

Fig. 3. Illustration of a two-dimensional nonlinear analog part implemented for
compression.

is split into 16 different encoders �m; m = 1; . . . ; 16, working inde-
pendently on two-dimensional parts of EEE. More precisely

(ZZZ)m = �m (EEE)2m�1; (EEE)2m ; m = 1; . . . ; 16:

Similarly, the decoder is split into 16 independent decoders �m; m =
1; . . . ; 16, that each implements hard-decision maximum-likelihood
(ML) detection of the transmitted PAM symbol a � (ZZZ)m, based on the
received value for (ẐZZ)m, and then performs a table lookup in a code-
book to assign values for (ÊEE)2m�1 and (ÊEE)2m. The implementation
of the ML detector is based on the assumption that the turbo decoder
�2 works without errors.

For each m 2 f1; . . . ; 16g, the encoder �m and decoder �m are
trained to minimize

E (EEE)2m�1 � (ÊEE)2m�1
2

+ E (EEE)2m � (ÊEE)2m
2

for a fixed channel noise power �2, a given �, a fixed a and under
a constraint on the total transmit power. Note that a power constraint
is needed in the design, since even if the PAM constellation for (ZZZ)m
and the value of the constant a are fixed, the encoder can still assign
different probabilities to different transmitted symbols (note that the
PAM symbols have different energy).

In Fig. 3, we illustrate, schematically, the typical structure of the
nonlinear compression. The circles mark code vectors in the two-di-
mensional input space, and �m is defined by a nearest neighbor search
among these code vectors to produce the corresponding 256-PAM
symbol. How code vectors are mapped to the PAM alphabet can clearly
be seen in the figure. The two endpoints of the PAM constellation are
mapped to the two endpoints of the “spiral” in Fig. 3, and any two
neighboring code vectors correspond to two neighboring PAM points.
At the receiver, a nearest neighbor search over the PAM constellation
produces the corresponding code vector (circle in the figure) to give a
value for ((ÊEE2m�1); (ÊEE2m)).

The approach we use for the nonlinear analog part, as described, is
essentially equivalent to the “BDCE system” studied by Vaishampayan
in his Ph.D. dissertation [17] (see, in particular, [17, Secs. 5.4–5.5]). A
similar system (�; �) has also been investigated in [14]. We refer the
reader to [17] for results on optimal encoder and decoder mappings,
how to handle the power constraint, and a design algorithm.
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Fig. 4. Compression, linear analog part. Solid lines from the left at SDR = 5 dB: � = 0:01; 0:1;0:2; 0:3; 0:4. Dashed lines from above at CSNR = 15 dB:
OPTA for analog input (OPTA ), purely analog, OPTA for binary input (OPTA ), and purely digital. (The right plot is an enlargement of parts of the left plot.).

C. Simulation Results: Bandwidth Compression

Here we evaluate the performance of the described HDA system
when used for bandwidth compression. We investigate the system both
with linear and nonlinear analog parts. The systems were trained for
a fixed relative power level � in the analog part, and a fixed CSNR,4

where CSNR = 10 log
10
(Pin=�

2) (in decibels), with Pin denoting
the total channel input power per component. In our simulations, moti-
vated by a broadcast scenario, we allow the receiver to have knowledge
of the true CSNR and thus to adapt to it as it varies, while the trans-
mitter is kept fixed. We employed 500 000 vectors in the training of
the SOVQ ("1; �1) and 100 000 vectors in the training of the nonlinear
(�; �) maps. The simulations were run with M = 128 and using 1000
“superblocks” (128 000 source vectors). All considered systems have
an overall bandwidth ratio of � = 1=2 channel uses per source symbol.

In Figs. 4 and 5, we show performance results in terms of the source
signal-to-distortion ratio (SDR)

SDR =
EkXXXk2

EkXXX � X̂XXk2

for the following systems.
• Five linear analog HDA schemes (Fig. 4), evaluated at an analog

power level � of 1%, 10%, 20%, 30%, and 40%, respectively.
• Four nonlinear analog HDA schemes (Fig. 5) trained at the fol-

lowing values of the pair (CSNR;�): CSNR = 20 dB and � =
20%, CSNR = 30 dB and � = 20%, CSNR = 40 m dB and � =
30%, and CSNR = 50 dB and � = 30%. The performance was
evaluated over a range of different CSNRs, and with � = 30% in
all cases.

• A purely analog system (Figs. 4 and 5) employing solely the
analog part of the linear analog HDA system (with the digital part
turned off). The SDR of this system is obtained as

SDR =
s1 + s2

d(�2) + s2
; with d(�2) =

p�2s1
2s1 + p�2

where s1 = 16

i=1
�i and s2 = 32

i=17
�i, that is, the power in

the strong half and the weak half of the dimensions, respectively.
• A purely digital tandem system (Fig. 4) employing solely the dig-

ital part of the HDA systems (with the analog part turned off).

4Note that, unlike the encoder of the nonlinear analog system, the encoder of
the linear analog system does not need any knowledge about the CSNR value.

• The optimal performance theoretically attainable (OPTA) shown
in Figs. 4 and 5, which is obtained by setting R(D) = �C , where
R(D) is the rate-distortion function in bits per source sample
of the Gauss–Markov source (under the squared-error distortion
measure), � = 1=2, and C is the channel capacity. The figure
shows two OPTA curves, OPTA1 corresponds to the analog-input
AWGN channel, that is with

C =
1

2
log

2
(1 + CSNR) [bits/channel use]:

Also, as a reference when judging the purely digital system, the
curve labeled OPTA2 (Fig. 4 only) shows the OPTA for the binary-
input Gaussian channel, that is with

C = � 1

2
log

2
2�e�2

�
1

�1

g(x) log
2
g(x)dx [ bits/channel use]

where

g(x) =
1

2
p
2��2

e
�

+ e
�

:

We observe from the figures that the HDA systems offer a robust
and graceful performance over the entire range of the CSNRs. We also
remark that the performance of the HDA systems at low to medium
CSNRs is strongly affected by the power allocation provided to the
analog part, with the value of � playing a role similar to that of “rate
allocator” between the digital and analog parts. The linear analog HDA
systems outperform the purely analog systems for a wide range of
CSNRs, depending on �. The systems with � = 30% or 20% can
be said to provide the best overall performance. The HDA systems
also provide substantial improvements over the purely digital system
at medium to high CSNRs. A drawback of using a linear analog part,
however, is that the performance saturates at SDR � 14 dB. This can
be counteracted by using the nonlinear maps (�; �) in the analog part,
as can be seen in Fig. 5. They perform very well (with a strictly positive
SDR curve slope) in the vicinity of the CSNR at which their encoder
was designed; they also provide a smooth degradation/improvement
as the true CSNR varies away from the designed CSNR. Indeed, their
SDR is within 5 dB of OPTA for a wide range of CSNRs (e.g., for 6 dB
� CSNR � 45 dB in Fig. 5). Note also that the HDA system with non-
linear analog part can be made to saturate at an arbitrarily high SDR,
by increasing the resolution of the maps (�; �).
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Fig. 5. Compression, nonlinear analog part. Solid lines: (�; �) trained at a: CSNR = 20 dB and � = 0:2; b: CSNR = 30 dB and � = 0:2; c: CSNR = 40 dB
and � = 0:3; d: CSNR = 50 dB and � = 0:3. In a–d, the performance is evaluated over different CSNRs and with the power allocation set at � = 0:3 in all
cases. Dashed lines from above: OPTA (analog input) and purely analog.

IV. BANDWIDTH EXPANSION

Here we study the system in Figs. 1 and 2 when used for bandwidth
expansion, that is, � = q=(Mp) = r=p > 1. The precise system we
have implemented is specified as follows.

The source vector XXX is p = 8 dimensional. As in Section III, the
vector XXX is drawn from a zero-mean Gauss–Markov source with nor-
malized correlation 0:8. In this section, we do not use linear prepro-
cessing, soGGG is the identity matrix. The low-delay encoder "1 is again
an SOVQ encoder, this time of dimension p = 8 and size L = 8
bits, and the codebook fzzzig is identical to the codebook defining "1.
The high-delay encoder "2 is the same (k = 1024; n = 2048), rate
rc = 1=2, turbo encoder as used in Section III, andM = 128 blocking
is again used. The output bits from "2 are mapped to �1 BPSK sym-
bols, and 2048 bits are transmitted to represent M = 128 source vec-
tors. This gives a bandwidth ratio � = 2 channel uses per source
sample.

A. Linear Analog Part

In the case of bandwidth expansion with a linear analog part, � is
the linear mapping corresponding to transmitting each component of
EEE twice. More precisely

(ZZZ)m = (ZZZ)p+m = (EEE)m; m = 1; . . . ; p:

The constant scaling in the analog part of the receiver is chosen as
b = 1 for simplicity (since b anyhow can be absorbed into �), and
the decoder � is defined as the linear mapping that computes the com-
ponent-wise linear minimum MSE estimate of the vector EEE based on
RRR, again assuming the digital decoder �2 works without errors. That is
(with b = 1)

(ÊEE)m =
asm

2a2sm + �2
(ẐZZ)m + (ẐZZ)p+m ; m = 1; . . . ; p

where sm = E f(EEE)mg
2 .

B. Nonlinear Analog Part

We again employ the discrete approximation described in Sec-
tion III-B, the only essential difference being that � is split into

eight parts �m that each maps one input dimension into two channel
dimensions. That is, the 8-dimensional vectorEEE is transmitted via one
use each of �m; m = 1; . . . ; 8, producing a 16-dimensional vector
ZZZ . The components of ZZZ are restricted to the same PAM alphabet as
used in Section III. The decoder � maps (ẐZZ)2m�1 and (ẐZZ)2m into
(ÊEE)m for m = 1; . . . ; 8, as before based on ML decisions and table
lookup decoding. As in Section III, the pair (�; �) is trained subject to
a power constraint on the channel input symbols.

C. Simulation Results: Bandwidth Expansion

Here we evaluate the performance of HDA bandwidth expansion,
with linear and nonlinear analog parts. As in Section III-C, the systems
were trained for a fixed relative power level � in the analog part. The
receiver knows the true CSNR and can thus adapt to it, while the trans-
mitter is kept fixed. As before, we employed 500 000 vectors in the
training of the SOVQ ("1; �1) and 100 000 vectors in the training of
the nonlinear (�; �) maps. The simulations were run with M = 128
and using 1000 “superblocks” (128 000 source vectors). All systems in
the comparison have an overall bandwidth ratio of � = 2 channel uses
per source dimension.

Figs. 6 and 7 illustrate the performance for the following systems.
• Four linear analog HDA schemes (Fig. 6), evaluated at an analog

power level � of 1%, 10%, 20%, and 30%, respectively.
• Four nonlinear analog HDA schemes (Fig. 7) trained at � = 0:3

(in all cases) and for the following CSNRs: 10, 15, 20, 25 dB. The
performance was evaluated over a range of different CSNRs, and
with � = 30% in all cases.

• A purely analog system (Figs. 6 and 7) employing solely the
analog part of the linear analog HDA system (with the digital part
turned off).

• A purely digital tandem system (Fig. 6) employing solely the dig-
ital part of the HDA systems (with the analog part turned off).

• The “HDA-VQ” system presented in [6] (cf. [6, Fig. 4]).
The figures also show the OPTA curves for � = 2.

We remark from Figs. 6 and 7 that our bandwidth expansion systems
perform analogously to the bandwidth compression systems studied in
the previous section (cf. Figs. 4 and 5). Indeed, the gains vis-a-vis the
purely analog and digital systems are maintained at medium to high
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Fig. 6. Expansion, linear analog part. Solid lines from the left at SDR = 5 dB: � = 0:01; 0:1;0:2; 0:3. Dashed lines from above at CSNR = 9 dB: OPTA for
analog input (OPTA ), OPTA for binary input (OPTA ), the “HDA-VQ” system in [6], purely analog and purely digital.

Fig. 7. Expansion, nonlinear analog part. Solid lines: (�; �) trained at � = 30% and CSNR = 10, 15, 20, 25 dB, as marked. The performance is evaluated over
different CSNRs and with the power allocation set at � = 0:3. Dashed lines from above at CSNR = 15 dB: OPTA (analog input), the “HDA-VQ” system in [6],
and purely analog.

CSNRs. Furthermore, the HDA system is improved at high CSNRs
when the linear maps in its analog component are replaced by the
nonlinear maps. For example, the HDA system with a linear analog
part with � = 30% has an SDR of 28 dB for CSNR = 20 dB (see
Fig. 6), while the HDA system with a nonlinear analog part trained for
CSNR = 20 dB provides an SDR � 33 dB at the same CSNR (see
Fig. 7), resulting in a substantial gain. This gain is however reduced if
there is a mismatch between the true CSNR and the CSNR for which
the nonlinear encoder of the analog part is designed; for example, when
the true CSNR is 20 dB and the nonlinear encoder’s design CSNR is
15 dB, the gain is 3 dB (it is 1 dB for a design CSNR of 25 dB). This

indicates that one advantage of the linear analog part is that it does not
need to know the CSNR at the encoder and thus it is not affected by a
CSNR mismatch. The main difference between the bandwidth expan-
sion and compression systems is that the SDR in our bandwidth ex-
pansion schemes, with a linear or infinite-resolution5 nonlinear analog
part, have no leveling-off effect—the slope of their SDR curve is posi-
tive for any CSNR. The slope, however, is noticeably less than that of
the OPTA curve (slope = 2).

5For finite resolution in the proposed implementation of the nonlinear analog
part, the SDR will level off asymptotically, however, in principle, the CSNR at
which this happens can be pushed arbitrarily high by increasing the resolution.
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With respect to the “HDA-VQ” system of [6], it is first worthy to
point out that our system employs superposable coding (as the digital
and analog signals are added to each other at the encoder output be-
fore transmission over the channel), while the system of [6] does not.
In Fig. 6, we observe that our system with the linear analog part pro-
vides a better performance at low to medium CSNRs. This can be ex-
plained in virtue of the turbo channel coding employed in the digital
part of our system, which helps combat channel error in the “water-
fall” error region of the turbo code at low to medium CSNRs. On the
other hand, the system of [6] does not employ strong channel coding
and is hence prone to the significant channel impairment in that CSNR
range. However, in the high-CSNR regime, the system of [6] is less sus-
ceptible to channel noise and its analog component becomes “cleaner”
than our system’s since it does not use superposable coding; i.e., unlike
our system, it does not need to “filter” out the digital and analog signals
from each other at the decoder. Still, as illustrated in Fig. 7, our system
with the nonlinear analog part can match or outperform the system of
[6] at high CSNRs that lie in the vicinity of the CSNR for which the
nonlinear encoder map is designed; e.g., the nonlinear system designed
for a CSNR of 25 dB outperforms the scheme of [6] for CSNRs in an
interval starting at 23 dB (for finite resolution in the nonlinear analog
part, the curve from [6] will cross the new curve at a CSNR � 35 dB,
however, by increasing the resolution, the range over which the new
system outperforms the one in [6] can be improved). Finally, it is im-
portant to note that the new system is more general than that of [6] as it
allows for both expansion and compression modes. In fact, it subsumes
the scheme in [6]; e.g., for � = 2, the new system can be converted to
the one in [6] if we replace the high-delay channel encoding map "2 by
a simple rc = 1=2 map resulting in 16 BPSK symbols where the 8 bits
of index I appear in the first eight positions and zeros are stacked in
the last eight positions (the decoder �2 performs the reverse operation),
and if we choose the analog map � to produce a vector ZZZ 2

16 such
that the first eight components ofZZZ are zeros andEEE appears within the
last eight components.

V. SUMMARY AND CONCLUSION

An HDA source–channel coding system for the reliable communi-
cation and reproduction of discrete-time analog-valued sources over
AWGN channels is proposed and investigated. The HDA system, which
is based on VQ source coding, employs turbo channel coding in its dig-
ital component and linear/nonlinear coding in its analog component,
before superposing the analog and digital signals for transmission over
the channel. As a result, the system accommodates all bandwidth ratios
and, unlike the scheme studied in [6], it can operate in both bandwidth
compression and expansion modes. Numerical results show that the
HDA system provides a robust and graceful performance for a wide
range of channel conditions (medium to high CSNRs), substantially
outmatching purely digital and analog coding systems. Under band-
width compression, the system performs within 5 dB (in SDR) of the
OPTA limit for a large CSNR range. The advantages of using linear and
nonlinear coding in the analog part of the system are also illustrated:
linear coding is simple and does not need the knowledge of the CSNR
at the encoder, while nonlinear coding can significantly improve the
system performance at high CSNRs.

Future work may include improving the system performance at low
CSNRs. An interesting direction is to optimize the performance of the
digital component of the system using joint source–channel coding
techniques without affecting its performance at high CSNRs. This
can be accomplished by leaving the VQ encoder unoptimized and
designing a joint source–channel decoder for the VQ–turbo decoder
pair according to the methods of [4], [5], [21]. A first step in this
direction is undertaken in [22], in the context of image communication
without the use of turbo coding, and the digital encoder and decoder

are optimized under bandwidth compression. Finally, since the HDA
system is general, it can be applied for a variety of source and channel
models, including fading channels used in conjunction with multilevel
modulation.
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