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Abstract—We study the error exponent, EJ , for reliably trans-
mitting a discrete stationary ergodic Markov (SEM) source QQQ
over a discrete channel WWW with additive SEM noise via a joint
source–channel (JSC) code. We first establish an upper bound for
EJ in terms of the Rényi entropy rates of the source and noise
processes. We next investigate the analytical computation ofEJ by
comparing our bound with Gallager’s lower bound (1968) when
the latter one is specialized to the SEM source–channel system.
We also note that both bounds can be represented in Csiszár’s
form (1980), as the minimum of the sum of the source and channel
error exponents. Our results provide us with the tools to system-
atically compare EJ with the tandem (separate) coding exponent
ET . We show that as in the case of memoryless source–channel
pairs EJ � 2ET and we provide explicit conditions for which
EJ > ET . Numerical results indicate that EJ 2ET for many
SEM source–channel pairs, hence illustrating a substantial ad-
vantage of JSC coding over tandem coding for systems with
Markovian memory.

Index Terms—Additive noise, error probability, error exponent,
joint source-channel (JSC) coding, Markov types, Rényi entropy
rate, stationary ergodic Markov source–channel, tandem separate
coding.

I. INTRODUCTION

THE lossless joint source–channel (JSC) coding error ex-
ponent, , for a discrete memoryless source (DMS)

and a discrete memoryless channel (DMC) with transmission
rate was thoroughly studied in [5], [6], [10], [26]. In [5], [6],
Csiszár establishes two lower bounds and an upper bound for

based on the random-coding and expurgated lower bounds
and the sphere-packing upper bound for the DMC error ex-
ponent. In [26], we investigate the analytical computation of
Csiszár’s lower and upper bounds for using Fenchel duality,
and we provide equivalent expressions for these bounds. As a re-
sult, we are able to systematically compare the JSC coding error
exponent with the traditional tandem coding error exponent ,
the exponent resulting from separately performing and concate-
nating optimal source and channel coding. We show that JSC

Manuscript received May 1, 2006; revised July 12, 2007. This work was sup-
ported in part by the Natural Sciences and Engineering Research Council of
Canada and the Premier’s Research Excellence Award of Ontario. The material
in this paper was presented in part at the Canadian Workshop on Information
Theory , Montreal, QC, Canada, June 2005 and the IEEE International Sympo-
sium on Information Theory, Adelaide, Australia, September 2005.

The authors are with the Department of Mathematics and Statistics,
Queen’s University, Kingston, ON K7L 3N6, Canada (e-mail: yangfan@mast.
queensu.ca; fady@mast.queensu.ca; campbell@mast.queensu.can).

Communicated by Y. Steinberg, Associate Editor for Shannon Theory.
Digital Object Identifier 10.1109/TIT.2007.909092

coding can double the error exponent vis-a-vis tandem coding
by proving that . Our numerical results also indicate
that can be nearly twice as large as for many DMS-DMC
pairs, hence illustrating the considerable gain that JSC coding
can potentially achieve over tandem coding. It is also shown in
[26] that this gain translates into a power saving larger than 2 dB
for binary DMS sent over binary-input white Gaussian noise and
Rayleigh-fading channels with finite output quantization.

As most real-world data sources (e.g., multimedia sources)
and communication channels (e.g., wireless channels) exhibit
statistical dependency or memory, it is of natural interest
to study the JSC coding error exponent for systems with
memory. Furthermore, the determination of the JSC coding
error exponent (or its bounds), particularly in terms of com-
putable parametric expressions, may lead to the identification
of important information-theoretic design criteria for the con-
struction of powerful JSC coding techniques that fully exploit
the source–channel memory. In this paper, we investigate
the JSC coding error exponent for a discrete communication
system with Markovian memory. Specifically, we establish a
(computable) upper bound for for transmitting a stationary
ergodic (irreducible) Markov (SEM) source over a channel

with additive SEM noise (for the sake of brevity, we
hereafter refer to this channel as the SEM channel ). Note that
Markov sources are widely used to model realistic data sources,
and binary SEM channels can approximate well binary input
hard-decision demodulated fading channels with memory (e.g.,
see [16], [24], [25]). The proof of the bound, which follows the
standard lower bounding technique for the average probability
of error, is based on the judicious construction from the original
SEM source–channel pair ( , ) of an artificial1 Markov
source and an artificial channel with additive Markov
noise , where is a parameter to be optimized, such that
the stationarity and ergodicity properties are retained by
and . The proof then employs the strong converse JSC
coding Theorem2 for ergodic sources and channels with ergodic
additive noise and the fact that the normalized log-likelihood
ratio between -tuples of two SEM sources asymptotically
converges (as ) to their Kullback–Leibler divergence

1The notion of artificial (or auxiliary) Markov sources is herein adopted from
[21], where Vašek employed it to study the source coding error exponent for
ergodic Markov sources. However, it should be pointed out that the auxiliary
source concept was first introduced by Csiszár and Longo in [4] for the memo-
ryless case.

2The idea of using a strong converse coding theorem for error exponents was
first initiated by Haroutunian in [12], where a strong converse channel coding
theorem is used to bound the channel error exponent.
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rate. To the best of our knowledge, this upper bound, which
is expressed in terms of the Rényi entropy rates of the source
and noise processes, is new and the analytical computation of
the JSC coding error exponent for systems with Markovian
memory has not been addressed before.

We also examine Gallager’s lower bound for [10, Prob-
lem 5.16] (which is valid for arbitrary source–channel pairs
with memory), when specialized to the SEM source–channel
system. By comparing our upper bound with Gallager’s lower
bound, we provide the condition under which they coincide,
hence exactly determining . We note that this condition
holds for a large class of SEM source–channel pairs. Using a
Fenchel-duality-based approach as in [26], we provide equiva-
lent representations for these bounds. We show that our upper
bound (respectively, Gallager’s lower bound) to , can also
be represented by the minimum of the sum of SEM source error
exponent and the upper (respectively, lower) bound of SEM
channel error exponent. In this regard, our result is a natural
extension of Csiszár’s bounds [5] from the case of memoryless
systems to the case of SEM systems.

Next, we focus our interests on the comparison of the JSC
coding error exponent with the tandem coding error expo-
nent under the same transmission rate. As in [26], which
considers the JSC coding error exponent for discrete memory-
less systems, we investigate the situation where for
the same SEM source–channel pair. Indeed, as pointed out in
[26], this inequality, when it holds, provides a theoretical under-
pinning and justification for JSC coding design as opposed to the
widely used classical tandem or separate coding approach, since
the former method provides a faster exponential rate of decay
for the error probability, which often translates into improved
performance and substantial reductions in complexity/delay for
real-world applications. We prove that and estab-
lish sufficient conditions for which . We observe via
numerical examples that such conditions are satisfied by a wide
class of SEM source–channel pairs. Furthermore, numerical re-
sults indicate that is nearly twice as large as for many
SEM source–channel pairs.

The rest of the paper is organized as follows. In Section II,
we present preliminaries on the JSC coding error exponent and
information rates for systems with memory. Some relevant re-
sults involving Markov sources and their artificial counterparts
are given in Section III. In Section IV, we derive an upper bound
for for SEM source–channel pairs and study the computation
of by comparing our bound with Gallager’s lower bound.
Section V is devoted to a systematic comparison of and ,
and sufficient conditions for which are provided. In
Section VI, we extend our results to SEM systems with arbi-
trary Markovian orders and we give an example for a system
consisting of a SEM source and the queue-based channel with
memory introduced in [24]. We close with concluding remarks
in Section VII.

II. SYSTEM DESCRIPTION AND DEFINITIONS

A. System

We consider throughout this paper a communication
system with transmission rate (source symbols/channel

use) consisting of a discrete source with finite alphabet
described by the sequence of -dimensional distributions

, and a discrete channel described by the
sequence of -dimensional transition distributions

with common input and output
alphabets . Given a fixed , a
JSC code with block length and transmission rate is a pair
of mappings: and

In this work, we confine our attention to discrete channels
with (modulo ) additive noise of -dimensional distribution

. The channels are described by

where , , and are the channel’s output, input, and noise
symbols at time , and is indepen-
dent of , .

Denote the transmitted source message by
, the corresponding -length code-

word by , and the received
codeword at the channel output by .
Denote and
as the random vectors in and , respectively. The
probability of receiving under the conditions that the message

is transmitted (i.e., the input codeword is ) is given
by

where the last equality follows by the independence of input
codeword and the additive noise , noting that is
modulo- subtraction here. The decoding operation is the
rule decoding on a set of nonintersecting sets of output words

such that . If , then we conclude that
the source message has been transmitted. If the source mes-
sage has been transmitted, the conditional error probability in
decoding is given by

where , and the probability of error of the code
( ) is

(1)

B. Error Exponent and Information Rates

Roughly speaking, the error exponent is a number with the
property that the probability of decoding error is approximately

for codes of large block length . The formal definition
of the JSC coding error exponent is given by the following.

Definition 1: The JSC coding error exponent
for source and channel is defined as the supremum of
all numbers for which there exists a sequence of JSC codes

with transmission rate block length such that
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When there is no possibility of confusion, will
be written as (as in Section I). A lower bound for for
arbitrary discrete source–channel pairs with memory was al-
ready obtained by Gallager [10]. In Section IV, we establish an
upper bound for for SEM source–channel pairs. For a dis-
crete source , its (lim sup) entropy rate is defined by

where is the Shannon entropy of ; admits
an operational meaning (in the sense of the lossless fixed length
source coding theorem) if is information stable [11]. The
source Rényi entropy rate of order is defined by

where

is the Rényi entropy of , and the special case of
should be interpreted as

The channel capacity for any discrete (information stable [11],
[23]) channel is given by

where denotes mutual information. For discrete chan-
nels with finite-input finite-output alphabets, the supremum is
achievable and can be replaced by maximum. If the channel
is an additive noise channel with noise process , then

where is the noise entropy rate.

III. MARKOV SOURCES AND ARTIFICIAL MARKOV SOURCES

Without loss of generality, we consider first-order Markov
sources since any th-order Markov source can be con-
verted to a first-order Markov source by -step blocking
it (see Section VI). For the sake of convenience (since we
will apply the following results to both the SEM source
and the SEM channel), we use, throughout this section,

to denote a first-order SEM source with
finite alphabet , initial distribution

and transition distribution

so that the -tuple probability is given by

Denote the transition (stochastic) matrix by , we
then set

which is nonnegative and irreducible (here we define
). The Perron–Frobenius theorem [18] asserts that the

matrix possesses a maximal positive eigenvalue
with positive (right) eigenvector
such that , where denotes transposi-
tion. As in [21], we define the artificial Markov source

with respect to the original source
such that the transition matrix is , where

(2)

It can be easily verified that . We emphasize
that the artificial source retains the stochastic characteristics (ir-
reducibility) of the original source because if and
only if , and clearly, for all , the th marginal of
is absolutely continuous with respect to the th marginal of .
The entropy rate of the artificial Markov process is hence given
by

where is the stationary
distribution of the stochastic matrix . We call the artificial
Markov source with initial distribution the artificial SEM
source. It is known [21, Lemmas 2.1–2.4] that is a con-
tinuous and nonincreasing function of . In particular,

and . The following
lemma illustrates the relation between and the entropy
of the DMS with uniform distribution .

Lemma 1: with equality if and only if
, i.e., for all .

The following properties regarding the artificial SEM source
are important in deriving the upper and lower bounds for the
JSC coding exponent of SEM source–channel pairs.

Lemma 2: Let be a SEM source under and
, then

almost surely under as .

Lemma 3: [17], [21] For a SEM source and any , we
have
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and

The proofs of Lemmas 1 and 2 are given in Appendix I and II.
Lemma 3 follows directly from [17, Lemma 1] and [21, Lemma
2.3]. Note that there is a slight error in the expression of
in [21, Lemma 2.3, eq. (2.11)], where a factor is missing in
the second term of the right-hand side of the equation.

IV. BOUNDS FOR

We first prove a strong converse JSC coding theorem for
ergodic sources and channels with additive ergodic noise; no
Markov assumption for either the source or the channel is
needed for this result.

Theorem 1: (Strong converse JSC coding Theorem) For a
source and a channel with additive noise such that
and are ergodic processes, if

, then .
Proof: Assume . We first

recall the fact that for additive channels the channel capacity
is achieved by the uniform input distribution

. Furthermore, this uniform input distribution yields a uni-
form distribution at the output

Define for some

Considering that

(3)

we need to show that van-
ishes as goes to infinity. Note that

For the first sum, we have

(4)

For the second sum, we have (5) and (6) at the bottom of the
page, where denotes the probability measure under
the joint distribution , and (5) follows
from the fact that . It follows from the
well-known Shannon–McMillan–Breiman theorem for ergodic
processes [1] that the above probabilities converge to as goes
to infinity. On account of (4), (6), and (3), the proof is complete.

We next establish an upper bound for for SEM
source–channel pairs . Before we proceed, we de-
fine the following function for an SEM source-channel pair:

(7)

Lemma 4: has the following properties.

(5)

(6)
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(a) and

(8)

is continuous non-increasing in .
(b) is concave in ; hence, every local maximum (sta-

tionary point) of is the global maximum.
(c) is positive if and only if ;

otherwise, .
(d) is finite if and infinite

if .

Remark 1: If , then

no matter whether the limit is finite or not.

Proof: We start from (a). since the largest eigen-
value for any stochastic matrix is . Equation (8) follows from
Lemma 3. is a continuous nonincreasing function since

and are both continuous nondecreasing

functions. (b) follows immediately from (a). (c) follows from
the concavity of and the facts that and that

. (d) follows from the concavity of
and the facts that and that

Theorem 2: For a SEM source and a discrete channel
with additive SEM noise such that

and , the JSC coding error exponent
satisfies

(9)

Remark 2: We point out that the condition
holds for most cases of interest. First note that the eigen-

values and are no less than . By Lemma 1,
we have that if the noise transition matrix
has positive entries (i.e., ); in that case, the con-
dition is satisfied if (i.e., if
the source transition matrix is not a deterministic matrix). In
fact, when , by Lem-
ma 4 (d), and hence it gives a trivial upper bound for . When

, we do not have an upper bound for .

Remark 3: Using the first identity of Lemma 3, the upper
bound can be equivalently represented as

where and are the Rényi entropy rates
of and , respectively. Meanwhile, the upper bound (9)
holds for any one of the following source–channel pairs: DMS

and SEM channel , SEM source and additive DMC ,
and DMS and additive DMC (note that the more general
cases of DMS and arbitrary DMC are investigated in [26]),

all with finite alphabets. For example, when the source is DMS
with distribution such that for all

, the source could be regarded as a SEM source
with transition matrix

...
...

...
...

and initial distribution . It is easy to verify that for such a , the
eigenvalue reduces to , which
agrees with the results for memoryless systems given in [26].
Thus, the above bound is a sphere-packing-type upper bound
for for SEM source–channel systems.

Proof of Theorem 2: Under the assumption
and , it follows from Lemma 4 that

and . Since is continuous and nonin-
creasing, there must exist some such that

, where is small enough. For the SEM source , we
introduce an artificial SEM source (as described in Sec-
tion III) such that . For the SEM
channel , we introduce an artificial additive channel for
which the corresponding SEM noise is .

Based on the construction of the artificial SEM source–
channel pair , we define for some the set

where we set for those such that

for some

We then have a lower bound for the average probability of error

(10)

where the last sum can be lower-bounded as follows:

(11)

We point out that the first sum in the right-hand side of (11) is
exactly the error probability of the JSC system consisting of the
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artificial SEM source and the artificial SEM channel .
Since by definition , which implies

then applying the strong converse JSC coding theorem (The-
orem 1) to and , the first sum in the right-hand side
of (11) converges to as goes to infinity. We next show
that the second term in the right-hand side of (11) vanishes
asymptotically (see (12) and (13) at the bottom of the page),
where denotes the probability measure under the

joint distribution , and (12) follows from
the facts that

and that

Applying Lemma 2, the above probabilities in (13) converge
to as .3 On account of (10), (11), and (13), and noting
that and are arbitrary, we obtain

Finally, replacing by in the above right-hand side
terms and taking the maximum over completes the proof.

3Convergence almost surely implies convergence in probability.

We next introduce Gallager’s lower bound for and spe-
cialize it for SEM source–channel pairs by using Lemma 3.

Proposition 1: [10, Problem 5.16] The JSC coding error
exponent for a discrete source and a discrete
channel with transmission rate admits the following lower
bound:

(14)

where , in which

(15)

is Gallager’s source function for and

(16)

with

is Gallager’s channel function for .
We remark that this bound is suitable for arbitrary discrete

source–channel pairs with memory. Particularly, when the
channel is symmetric (in the Gallager sense [10]), which di-
rectly applies to channels with additive noise, the maximum in
(16) is achieved by the uniform distribution:

(12)

(13)
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for all . Thus. for our (modulo ) additive noise
channels, reduces to

(17)
It immediately follows by Lemma 3 that for our SEM
source–channel pair

(18)

That is, the SEM source–channel function we defined in (7) is
exactly the same as the difference of Gallager’s channel and
source function. In light of Theorem 2 and Proposition 1, we
obtain the following regarding the computation of .

Theorem 3: For a SEM source and a SEM channel
with noise such that and

, is positive and deter-
mined exactly by if , where is
the smallest positive number satisfying the equation .
Otherwise (if ), the following bounds hold:

Remark 4: If , i.e.,
, then .

Remark 5: According to Lemma 4 (c) and (d), there must
exist a positive and finite provided that
and . Using Lemma 4 (a), such can be
numerically determined.

The proof of Theorem 3 directly follows from Theorem 2
and Proposition 1 and the use of Lemma 4. The following
by-product results regarding the error exponents of SEM
sources and SEM channels immediately follow from Theorems
1 and 2.

Corollary 1: For any rate , the source
error exponent for a SEM source satisfies

(19)

where

(20)

Particularly, for , .

Note that when the source reduces to
a DMS (with alphabet ). This upper bound is exactly the same
as the one given by Vašek [21]. In fact, he shows that is
the real source error exponent (also see [3]) for all . We
point out that can be equivalently expressed in terms of
a constrained minimum of Kullback–Leibler divergence [15], as
the error exponent for DMS [22]; also see (35) in Appendix III.

Corollary 2: For any rate , the
channel error exponent for a SEM channel satisfies

(21)

Fig. 1. The lower and upper bounds of E for the binary SEM source and the
binary SEM channel of Example 1 with t = 1.

where

(22)

Particularly, for , .

When the SEM channel reduces to an additive noise
DMC, [10, p. 158]. Note that the
usual case (when the transition matrix is positive) is that

(see Lemma 1). It can be shown
that is positive, nonincreasing, and convex, and
hence strictly decreasing in . Comparing with Gallager’s
random-coding lower bound for [10] (when special-
ized for SEM channels) given by

(23)

and applying the results of Section III, we note that the upper
and lower bounds are equal if , where

is the critical rate of the SEM channel. Thus, the
channel error exponent for SEM channel is determined exactly
for .

Example 1: We consider a system consisting of a binary SEM
source and a binary SEM channel with transmission rate

, both with symmetric transition matrices given by

and

such that .4 The upper and lower bounds for
are plotted as a function of parameters and

in Fig. 1. It is observed that for this source–channel pair, the

4Note that P is not the channel probability transition matrix; it is the tran-
sition matrix of SEM channel noise.
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bounds are tight for a large class of pairs. Only when or
is extremely close to or , is not exactly known.

One may next ask if the lower and upper bounds for the SEM
source–channel pair enjoy a form that is similar to Csiszár’s
bounds for DMS–DMC pairs [5], which are expressed as the
minimum of the sum of the source error exponent and the lower/
upper bound of the channel error exponent. The answer is indeed
affirmative, as given in the following theorem.

Theorem 4: Let and .
The equivalent representations of (24) and (25) (shown at
the bottom of the page) hold, where is defined in (7),

is given by (20), and and
are given by (22) and (23), respectively.

Note that we write “min” instead of “inf” in (24) and (25)
because the optimizations are achievable due to the convexity
of the source and channel exponents. Theorem 4 can be
proved via the Lagrange multiplier method, since the functions

and are differentiable
functions of and their derivatives admit closed-form expres-
sions (recall Lemma 3). Alternately, and more succinctly, we
can prove (24) and (25) using Fenchel duality [14]; the reader
may consult [26, Theorem 1] for details. When the source
and channel are discrete memoryless, the right-hand side
of (24) and (25) reduce to Csiszár’s lower and upper bounds
for [5]. In fact, Csiszár establishes the upper bound for
for a DMS–DMC pair in terms of the exact source and
channel exponents and [5]

(26)

Meanwhile, he points out that if we replace the channel expo-
nent in (26) by its sphere-packing bound , we can
obtain a (possibly) looser but computable upper bound

(27)

which is called the sphere-packing bound to by the authors
in [26]. In Appendix III, we show that the bound (26) still ap-
plies for SEM source–channel pairs, i.e., is upper-bounded
by the minimum of the sum of the SEM source exponent

and the SEM channel exponent , by which
we prove that the JSC exponent can at most double the tandem
coding exponent (see Theorem 5). However, the bound in
terms of and , though tighter than the
sphere-packing type bound (24), is not computable in general,

since the behavior of the SEM channel error exponent
is unknown for rates smaller than the critical rate .

We point out that the parametric expressions of these bounds
(the left-hand side of (24) and (25)) facilitate the computation
of , while the bounds in Csiszár’s form are instrumental for
the comparison of JSC and tandem coding exponents, a subject
studied in Section V.

V. JSC VERSUS TANDEM CODING ERROR EXPONENTS

A. Tandem Coding Exponent for Systems With Memory

A tandem code for a dis-
crete source and a discrete channel is composed “indepen-
dently” of a block source code defined by

and
with source code rate

source code bits/source symbol

and an block channel code defined by
and with

channel code rate

source code bits/channel use

where “ ” denotes composition, and we assume that the limit
exists, i.e.,

Here “independently” means that the source code is designed
without the knowledge of the channel statistics, and the channel
code is designed without the knowledge of the source statistics.

The error probability of the tandem code is hence
given by

(28)

Definition 2: The tandem coding error exponent
for source and channel is defined as the

supremum of all numbers for which there exists a sequence
of tandem codes with
transmission rate block length such that

(24)

(25)
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In the sequel, we sometimes refer to by
when there is no possibility of confusion. Since tandem coding
exponent results from separately performing and concatenating
optimal source and channel coding, it can be shown5 (e.g., [5],
[27]) that

(29)

where and are the source and channel
error exponents, respectively. To evaluate for a SEM
source–channel pair , we recall that is for

, strictly increasing in
and infinity for ([15], [21]), while
is nonincreasing and positive in , and vanishes at

.
Therefore, if the graphs of and have an

intersection at , then it immediately follows from (29) that

If there is no intersection between and
then

by (29).
Note that ; meanwhile, if

for SEM source–channel pairs. We are hence
interested in determining the conditions for which
when . Although both and are not
always determined, we can still provide some sufficient condi-
tions for which . Before we proceed, we first show
that for SEM source–channel pairs, the JSC coding exponent
can at most double the tandem coding exponent. Note that the
same result holds for DMS–DMC pairs, as shown in [26].

Theorem 5: For a SEM source and a SEM channel ,
the JSC coding exponent is upper-bounded by twice the tandem
coding exponent

To prove this result, we need two steps. The first is to establish
another upper bound for , as we discussed in the end of the
last section, in terms of and by using the
technique of Markov types ([8], [9], [15]), and the second is to
justify that the bound is at most equal to twice . Although the
approach for the first step is analogous to the one that Csiszár
used for DMS–DMC pairs [5], we still give a self-contained
proof in Appendix III for the sake of completeness.

B. Sufficient Conditions for Which

When the entropy rate of the SEM source is equal to
, the source error exponent would be zero for

and infinity otherwise. In this case, the source

5To prove (29), one needs to assume that the source and channel coding op-
erations are decoupled via common randomization (by applying a randomly se-
lected permutation map, e.g., see [13]) at their interface in both the transmitter
and the receiver. This is a natural assumption needed to achieve total (statistical)
separation between source and channel coding; see [27] for the details.

is incompressible and only channel coding is performed in both
JSC coding and tandem coding; as a result

by (24), (25), and (29). Note that might not be equal
to by Lemma 1, as compared with the DMS. Thus, we
assume in the rest of the section that (such
that the source is compressible) and that (such
that both and are positive). We also assume in the sequel
that all the sources and channels are SEM.

Theorem 6: Let be defined by (8). If , i.e.,

then .
Proof: Since we assumed that or equiv-

alently (see Lemma 4), if now , then there
exists some such that by the conti-
nuity of . Let be the smallest one satisfying .
According to Theorem 3, the JSC coding error exponent is de-
termined exactly by . On the other hand,
we know from (24) that

Suppose the above minimum is achieved by some , i.e.,

It can be shown (cf. [26]) that is related to as follows:

Since is positive, from the above we know

by the monotonicity of and . In

the following, we first assume that and
intersect at , i.e., there exists an such
that

If , then

If , then

If , then

We next assume that there is no intersection between
and , i.e.,

for all
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If , then

since is assumed. If , then

since the source error exponent is positive at .

Theorem 6 states that if is determined exactly (i.e., its
upper and lower bounds coincide), no matter whether is
known or not, then the JSC coding exponent is larger than the
tandem exponent. Conversely, if is determined exactly, irre-
spective of whether is determined or not, the strict inequality
between and also holds, as shown by the following re-
sults.

Theorem 7:
(a) If then .
(b) Otherwise, if and ,

there must exist some satisfying . Let
be the smallest one satisfying such equation. If

then .

Remark 6: By the monotonicity of , can be
solved numerically.

Proof: Recall that is

the critical rate of the channel such that the channel
exponent is determined for , i.e.,

if . We first show that
if , and then we show

that if and only if (a) or (b) holds.
Now if , then is

determined exactly. There are two cases to consider.
1) If and intersect at such that

, then

On the other hand, (17) and (18) yield

where and recall that is the
smallest positive number satisfying . It follows
from (25) that

Fig. 2. The regions for the ternary SEM source and the binary SEM channel of
Example 2 with t = 0:5.

Similar to in the last proof, it can be shown (cf. [26])
that the above minimum is achieved by some such that

If , then

If , then

If , likewise, we have

2) If and have no intersection, we still
have, as in the last proof, if , then

otherwise, if , then

Finally, we point out that the sufficient and necessary
conditions for is that (a)

such that ; or (b)
but . Using

the fact that

we obtain Condition (b) and complete the proof.

Example 2: We next examine Theorems 6 and 7 for the fol-
lowing simple example. Consider a ternary SEM source and
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Fig. 3. Comparison of E and E for the ternary SEM source and the binary SEM channel of Example 2 with t = 0:5.

a binary SEM channel , both with symmetric transition ma-
trices given by

and

such that . Suppose now the transmission rate
. If satisfies any one of the conditions of Theo-

rems 6 and 7, then . The range
for which the inequality holds is summarized in Fig. 2. For the
channel with and , we plot the JSC coding
and tandem coding error exponents against the source parameter

whenever they are exactly determined, see Fig. 3. We note that
for these source–channel pairs, substantially outper-
forms (indeed ) for a
large class of pairs. We then plot the two exponents under
the transmission rate whenever they are determined
exactly, and obtain similar results, see Fig. 4. In fact, for many
other SEM source–channel pairs (not necessarily binary SEM
sources or ternary SEM channels) with other transmission rates,
we observe similar results; this indicates that the JSC coding ex-
ponent is strictly better than the tandem coding exponent for a
wide class of SEM systems.

VI. SYSTEMS WITH ARBITRARY MARKOVIAN ORDERS

Suppose that the SEM source with alphabet has a
Markovian order . Define process obtained by

-step blocking the Markov source ; i.e.,

Then

and the source is a first-order SEM source with states.
Therefore, all the results in this paper can be readily extended to
SEM systems with arbitrary order by converting the th-order
SEM source to a first-order SEM source of larger alphabet. Also,
if the additive SEM noise of the channel has Markovian
order , we can similarly convert it to a first-order SEM
noise with expanded alphabet. In the following, we present an
example for the system consisting of a SEM source (of order

) and the queue-based channel (QBC) [24] with memory
, as the QBC approximates well for a certain range of

channel conditions the Gilbert–Elliott channel [24] and hard-
decision-demodulated correlated fading channels [25].

Example 3 (Transmission of a SEM Source Over the QBC
[24]): A QBC is a binary additive channel whose noise process

(where ) is generated ac-
cording to a mixture mechanism of a finite queue and a Bernoulli
process [24]. At time , the noise symbol is chosen either
from the queue described by a sequence of random variables

with prob-
ability or from a Bernoulli process with probability such
that

• if is chosen from the queue process, then
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Fig. 4. Comparison of E and E for the ternary SEM source and the binary SEM channel of Example 2 with t = 0:75.

if and is arbitrary; otherwise
if ;

• if is chosen from the Bernoulli process, then
and .

At time , we first shift the queue from left to right by the
following rule

then we generate the noise symbol according to the same
mechanism. It can be shown [24] that the QBC is actually an

th-order SEM channel characterized only by four parameters
, , , and .

Now we consider transmitting the first-order SEM source
with transition matrix

under transmission rate over the QBC with such
that the noise process is a second-order SEM process. After
two-step blocking , we obtain a first-order SEM process

with transition matrix shown at the bottom of the page.
We next compute and for the ternary SEM source and

the QBC given above. When , , , and are

both determined exactly if . We plot the two
exponents by varying . We see from Fig. 5 that
for all the . When we choose ,

for which and are both determined exactly
if , we have similar results, see Fig. 5. It is
interesting to note that when gets smaller, and ap-
proach the exponents resulting from the SEM source and
the binary-symmetric channel (BSC) with crossover probability

. This is indeed expected since the QBC reduces to the
BSC when [24].

VII. CONCLUDING REMARKS

In this work, we establish a computable upper bound for the
JSC coding error exponent of SEM source–channel systems.
We also examine Gallager’s lower bound for for the same
systems. It is shown that can be exactly determined by the
two bounds for a large class of SEM source–channel pairs.

As a result, we can systematically compare the JSC coding
exponent with the tandem exponent for such systems with
memory and study the advantages of JSC coding over the tradi-
tional tandem coding. We first show by deriving an
upper bound for in terms of the source and channel expo-
nents. We then provide sufficient (computable) conditions for
which . Numerical results indicate that the inequality
holds for most SEM source–channel pairs, and that
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Fig. 5. Comparison of E and E for the SEM source and the QBC of Example 3 with t = 1.

in many cases even though is upper-bounded by twice ,
which means that for the same error probability , JSC coding
would require around half the delay of tandem coding, that is

for sufficiently large. Finally, we note that our results directly
carry over for SEM source–channel pairs of arbitrary Markovian
order.

APPENDIX I
PROOF OF LEMMA 1

Let be the matrix with all components equal to ,
i.e., . Clearly, is the unique normal-
ized positive eigenvector (Perron vector) of with associated
positive eigenvalue ; thus, when , .
We next show by contradiction that if there are
zero components in matrix . We assume that there exist some

and . Then

where the last equality holds since and are both normal-
ized vectors. We thus have

Now summing all the components of the vectors on both sides,
we obtain

where is the th component of the matrix such
that if and if . This contradicts

with the fact that all ’s are positive and thus
if has zero components. We also conclude that
is the sufficient and necessary condition for .

APPENDIX II
PROOF OF LEMMA 2

Since is a SEM source under and , it follows
by the Ergodic Theorem [1] that the normalized log-likelihood
ratio between and converges to their Kullback–Leibler
divergence rate almost surely, i.e.,

almost surely under as , where

Note that for any , we can write

(30)

Recalling that is described by the initial stationary dis-
tribution and transition matrix

, and that is described by the initial
stationary distribution
and transition matrix given by (2), we
have
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(31)

for all . Consequently, using (30) and (31), we have

(32)

Taking the limit on both sides of (32), and noting that the last
term approaches since

where , , and are all positive for SEM sources (ac-
cording to the Perron–Frobenius theorem [18]). We hence ob-
tain

APPENDIX III
PROOF OF THEOREM 5

Step 1: We first set up some notations and basic facts re-
garding Markov types adopted from [8] and [15]. Given a source
sequence , let be
the number of transitions from to in with the
cyclic convention that follows . We denote the matrix

by and call it the Markov type (empirical matrix) of
, where and it is easily seen that

for all . In other words, the ( -length) sequence of
type has the empirical matrix which is equal to .
The set of all types of -length sequences will be denoted by

. Next we introduce a class of matrices that includes for
all as a dense subset. Let

and

for all

Note that as in the sense that for any ,
there exists a sequence of , such that
uniformly.

For and any transition (stochastic) matrix
(such that for all ), define

to be the conditional entropy of and

be the conditional divergence of over . Let be
a Markov type, and let be a
Markov type class. We define

Clearly, partitions the entire type class over
, and all sequences in are equiprobable

under .

Lemma 5: [8] Let be a first-order finite-alphabet irre-
ducible Markov source with transition matrix
and arbitrary initial distribution . Let . Then
we have the following bounds.

1) For any and such that ,
.

2) .

Remark 7: Note that in [8], the authors assume both irre-
ducibility and aperiodicity for the Markov source and also de-
rive an upper bound for the probability of type classes .
Here we only need the lower bound above for ; thus,
the aperiodicity assumption is not required.

Note also that and are quantities independent of , and
that for SEM sources, the stationary distribution (which is the
initial distribution) is unique and positive.

Step 2: Set . Rewrite the probability of error given
in (1) as a sum of probabilities of types and lower bound it by
the expression (33) at the top of the following page, where

We note that is actually the (average) probability
of error of the -block channel code with message set
(source) and channel . Recall that the channel error
exponent is the largest exponential rate such that the
probability of error decays to zero [7] over all channel codes of
rate no larger than . Then is lower-bounded by

where the second inequality follows from the monotonicity of
and Lemma 5 (1), and is a term that tends to

zero as goes to infinity. The second equation at the top of the
following page is the result of (33) and Lemma 5 (2), and it holds
for any source–channel codes , where denotes
the smallest component in the stationary distribution, which is
independent of . Since when , (recalling that

and is a constant). By the definition of JSC coding
error exponent, we obtain (34) also at the top of the following
page . In (34), we used the facts that

(35)
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(33)

(34)

is an equivalent representation of given in Corol-
lary 1 (cf. [15]), and that actually determines the
source error exponent , where the second equality
of (35) follows from the strict monotonicity of in

.
Step 3: We recall that is a strictly increasing

function when and is infinity
when , and is a nonincreasing
function of . We thereby denote to be the rate satisfying

if any; otherwise, we just let
be . Thus, according to (29) we can always write
that and is a rate in the interval

. To avoid triviality, we assume that
(or ) is finite, which also implies that
is finite by (34). Suppose now the minimum of

(34) is attained at . We then have
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