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Abstract—We investigate the joint source–channel coding
(JSCC) excess distortion exponent �� (the exponent of the prob-
ability of exceeding a prescribed distortion level) for some memo-
ryless communication systems with continuous alphabets. We first
establish upper and lower bounds for �� for systems consisting
of a memoryless Gaussian source under the squared-error distor-
tion fidelity criterion and a memoryless additive Gaussian noise
channel with a quadratic power constraint at the channel input.
A necessary and sufficient condition for which the two bounds
coincide is provided, thus exactly determining the exponent. This
condition is observed to hold for a wide range of source–channel
parameters. As an application, we study the advantage in terms
of the excess distortion exponent of JSCC over traditional tandem
(separate) coding for Gaussian systems. A formula for the tandem
exponent is derived in terms of the Gaussian source and Gaussian
channel exponents, and numerical results show that JSCC often
substantially outperforms tandem coding. The problem of trans-
mitting memoryless Laplacian sources over the Gaussian channel
under the magnitude-error distortion is also carried out. Finally,
we establish a lower bound for�� for a certain class of continuous
source–channel pairs when the distortion measure is a metric.

Index Terms—Continuous memoryless sources and channels,
error exponent, excess distortion exponent, Fenchel duality,
joint source–channel coding, memoryless Gaussian and Lapla-
cian sources, memoryless Gaussian channels, probability of
excess distortion, tandem separate source and channel coding,
squared/magnitude-error distortion, Fenchel transform.

I. INTRODUCTION

I N [9], Csiszár studies the joint source–channel coding
(JSCC) excess distortion exponent under a fidelity crite-

rion for discrete memoryless systems—i.e., the largest rate
of asymptotic decay of the probability that the distortion re-
sulting from transmitting the source over the channel via a
joint source–channel (JSC) code exceeds a certain tolerated
threshold. Specifically, given a discrete memoryless source
(DMS) and a discrete memoryless channel (DMC) (both
with finite alphabets), a transmission rate and a distortion mea-
sure, Csiszár shows that the lower (respectively, upper) bound
of the JSCC excess distortion exponent under
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a distortion threshold is given by the minimum of the sum
of and (respectively, )
over , where is the source excess distortion
exponent with distortion threshold [18], and
and are, respectively, the random-coding and
sphere-packing channel error exponents [13]. If the minimum
of the lower (or upper) bound is attained for an larger than
the critical rate of the channel, then the two bounds coincide
and is determined exactly. The analytical computation of
these bounds has been partially addressed in [26], where the
authors use Fenchel duality [17] to provide equivalent bounds
for a binary DMS and an arbitrary DMC under the Hamming
distortion measure.

Since many real-world communication systems deal with
analog signals, it is important to study the JSCC excess dis-
tortion exponent for the compression and transmission of a
continuous alphabet source over a channel with continuous
input/output alphabets. For instance, it is of interest to deter-
mine the best performance (in terms of the excess distortion
probability) that a source–channel code can achieve if a sta-
tionary memoryless Gaussian source (MGS) is coded and sent
over a stationary memoryless Gaussian channel (MGC), i.e.,
an additive white Gaussian noise channel. To the best of our
knowledge, the JSCC excess distortion exponent for contin-
uous-alphabet systems has not been addressed before. In this
work, we study the JSCC excess distortion exponent for the
following classes of memoryless communication systems.

• MGS–MGC systems with squared-error distortion mea-
sure.

• Laplacian-source and MGC systems with magnitude-error
distortion measure.

• A certain class of continuous source–channel systems
when the distortion is a metric.

For a Gaussian communication system consisting of an MGS
with the squared-error distortion and an MGC with

additive noise and the power input constraint, we show
that the JSCC excess distortion exponent
with transmission rate , under a distortion threshold and
power constraint , is upper-bounded by the minimum of
the sum of the Gaussian source excess distortion exponent

and the sphere-packing upper bound of the
Gaussian channel error exponent ; see Theorem
1. The proof of the upper bound relies on a strong converse
JSCC theorem (Theorem 8) and the judicious construction of
an auxiliary MGS and an auxiliary MGC to lower-bound the
probability of excess distortion. We also establish a lower bound
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for ; see Theorem 2. In fact, we derive the
lower bound for MGSs and general continuous MCs with an
input cost constraint. To prove the lower bound, we employ a
concatenated “quantization-lossless JSCC” scheme as in [2],
use the type covering lemma [10] for the MGS [1], and then
bound the probability of error for the lossless JSCC part, which
involves a memoryless source with a countably infinite alphabet
and the memoryless continuous channel, by using a modified
version of Gallager’s random-coding bound for the JSCC error
exponent for DMS-DMC pairs [13, Problem 5.16] (the mod-
ification is made to allow for input cost constrained channels
with countably infinite input alphabets and continuous output
alphabets). This lower bound is expressed by the maximum of
the difference of Gallager’s constrained-input channel function

and the source function . Note that
when the channel is an MGC with an input power constraint,
a computable but somewhat looser lower bound is obtained by
replacing by Gallager’s Gaussian-input channel
function . Also note that the source function

for the MGS is equal to the guessing exponent [1]
and admits an explicit analytic form.

As in our previous work for discrete systems [26], [27], we
derive equivalent expressions for the lower and upper bounds
by applying Fenchel’s Duality Theorem [17]. We show (in The-
orem 3) that the upper bound, though proved in the form of a
minimum of the sum of source and channel exponents, can also
be represented as a (dual) maximum of the difference of Gal-
lager’s channel function and the source function

. Analogously, the lower bound, which is estab-
lished in Gallager’s form, can also be represented in Csiszár’s
form, as the minimum of the sum of the source exponent and the
lower bound of the channel exponent. In this regard, our upper
and lower bounds are natural extensions of Csiszár’s upper and
lower bounds from the case of (finite alphabet) discrete memo-
ryless systems to the case of memoryless Gaussian systems. We
then compare the upper and lower bounds using their equiva-
lent forms and derive an explicit condition under which the two
bounds coincide; see Theorem 4. We observe numerically that
the condition is satisfied for a large class of source–channel pa-
rameters. We proceed by investigating the advantage of JSCC
over traditional tandem (separate) coding in terms of the excess
distortion exponent. We first derive a formula for the tandem
coding excess distortion exponent when the distortion threshold
is less than of the source variance. Numerical results in-
dicate that the JSCC exponent can be strictly superior to the
tandem exponent for many MGS–MGC pairs.

We next observe that Theorems 1 and 2 can also be proved
for memoryless Laplacian sources (MLSs) under the magni-
tude-error distortion measure. Using a similar approach, we es-
tablish upper and lower bounds for the JSCC excess distortion
exponent for the lossy transmission of MLSs over MGCs (see
Theorem 6). Finally, we considerably modify our approach in
light of the result of [16] to prove a lower bound for some con-
tinuous source–channel pairs when the distortion measure is a
metric. We show that the lower bound for MGSs and contin-
uous memoryless channels (given in Theorem 2), expressed by
the maximum of the difference of source and channel func-
tions, still holds for a continuous source–channel pair if there

exists an element with for all
, where the expectation is taken over the source

distribution defined on (see Theorem 7). Although this condi-
tion does not hold for both MGSs with the squared-error distor-
tion and MLSs with the magnitude-error distortion, it holds for
generalized MGSs with parameters under the distortion

and .
The rest of the paper is organized as follows. In Section II,

we summarize prior results on the source excess distortion and
the channel error exponents, and we define the JSCC excess
distortion exponent. In Section III, we establish upper and
lower bounds for for Gaussian systems. A sufficient and
necessary condition for which the upper and lower bounds
coincide is provided. We also derive the tandem coding expo-
nent and numerically compare it with the JSCC exponent for
Gaussian systems. In Section IV, we extend our results for other
source–channel pairs. Direct extensions without proof of the
bounds for coding MLSs over MGCs are given in Section IV-A.
In Section IV-B, we show a lower bound for for a class
of continuous source–channel pairs with a metric distortion
measure and satisfying a finiteness condition. Finally, we draw
conclusions in Section V.

II. NOTATION AND DEFINITIONS

All logarithms and exponentials throughout this paper are
in the natural base. In the sequel, serves as a generic
notation for a vanishing quantity with respect to such that

. Likewise, serves as a generic
notation for a vanishing quantity with respect to such that

. The expectation of the random variable (RV)
is denoted by .

A. Source Excess Distortion Exponent

Let be a (stationary) memoryless source (MS) with al-
phabet . If the source has a continuous alphabet, stands
for the probability density function (pdf) of the source (we only
consider continuous sources for which a pdf exists). If an MS

is a DMS (with a countable alphabet ), then denotes the
probability mass function (pmf) of the source. Consequently, the
pdf (pmf) of a -length source sequence

is hence given by . Let
be a single-letter distortion function. The distortion mea-

sure on is defined as

for any . Given
a distortion threshold , the rate–distortion function for
the MS is given by (e.g., [5])

(1)

where is the mutual information between the source
input and its representation, and the infimum is taken over all the
conditional distributions defined on for any
subject to the constraint .
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A block source code for an MS is a
pair of mappings: and

. The code rate is defined
by

nats/source symbol

The probability of exceeding a given distortion threshold
for the code is given by

(2)

Note that the integral should be replaced with a summation if
is a DMS. We call the probability of excess

distortion for coding the MS .

Definition 1: For any and , the excess dis-
tortion exponent of the MS is defined as the
supremum of the set of all numbers for which there exists a
sequence of block codes with

and

It has been shown in [15], [16], [28] that the excess distor-
tion exponent for some particular sources can be expressed in
Marton’s form [18]. In other words, we know that

(3)

where is the Kullback–Leibler divergence be-
tween distributions and , and the infimum is taken over
all distributions defined on , holds for the following cases.

1. Finite-alphabet DMSs with arbitrary distortion measures
[18].

2. MGSs with squared-error distortion measure [15].
3. MLSs with magnitude-error distortion measure [28].
4. (Stationary) MSs whose alphabets are complete metric

spaces with a metric distortion measure satisfying
the condition that there exists an element with

for all [16].
Note that Cases 2 and 3 are not included in Case 4 (since the
squared-error distortion is not a metric, and the condition in
Case 4 on the metric and the source distribution does not hold
for both MGSs with squared-error distortion measure and MLSs
with magnitude-error distortion measure). When is an MGS
(respectively, MLS) with a squared-error (respectively, magni-
tude-error) distortion measure, the explicit analytical form of

will be given in Section III (respectively, Sec-
tion IV-A).

B. Channel Error Exponent

Let be a (stationary) memoryless channel (MC) with con-
tinuous input and output alphabets and and
transition pdf . The conditional pdf of receiving

at the channel output given that the
codeword is transmitted is given
by .

Given an input cost function such that
if and only if , and a constraint , the

channel capacity of the MC is given by

(4)

where is the mutual information between the channel
input and channel output, and the supremum is taken over
all channel input distributions subject to the constraint

.
An block channel code for an MC with

an input cost constraint is a pair of mappings:
and ,

where is subject to an (arithmetic average) cost constraint

for all

The code rate is defined as

nats/channel use

The (average) probability of decoding error for the
code is given by

(5)

Definition 2: For any , the channel error exponent
of the channel is defined as the supremum of

the set of all numbers for which there exists a sequence of
block codes with

and

In contrast to the source excess distortion exponent, the
channel error exponent is not known for general MCs (not even
for the binary-symmetric channels); it is partially determined
for high rates for several families of MCs, such as DMCs
with no input constraints and MGCs with an input
quadratic power constraint. For the continuous MC with a
transition pdf , only a lower bound for due
to Gallager [12], [13, Sec. 7.3] is known, which we refer to as
Gallager’s random-coding lower bound for the channel error
exponent

(6)
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where

(7)

is Gallager’s constrained channel function with

and where the supremum in (7) is taken over all pdfs de-
fined on subject to and . The con-
straints are satisfied, for example, when and is a
Gaussian distribution with mean zero and variance . The inte-
grals should be replaced with summations if has discrete al-
phabets. Note that in general we do not have an explicit formula
for this bound, because it is not known whether the supremum in
(7) is achievable or not, and under what distribution it is achiev-
able.

C. JSCC Excess Distortion Exponent

Given a source distribution measure and a channel
input function , a JSC code with block
length and transmission rate (source symbols/channel use)
for the MS , and the MC with input cost constraint is
a pair of mappings: and ,
where , and

for all (8)

Here is the transmitted source message and
is the corresponding -length codeword. The con-

ditional pdf of receiving at the channel output given that
the message is transmitted is given by

The probability of failing to decode the JSC code
within a prescribed distortion level is

called the probability of excess distortion and defined by

Definition 3: The JSCC excess distortion exponent
for the above MS and MC is defined

as the supremum of the set of all numbers for which there
exists a sequence of source–channel codes
with block length such that

When there is no possibility of confusion, throughout the se-
quel the JSCC excess distortion exponent
will be written as .

III. JSCC EXCESS DISTORTION EXPONENT FOR GAUSSIAN

SYSTEMS

We now focus on the communication system consisting of an
MGS with alphabet , mean zero, variance , and pdf

denoted by , and an MGC with common
input, output, and additive noise alphabets

and described by , where and are
the channel’s output, input, and noise symbols at time . We
assume that and are independent from each other. The
noise admits a zero-mean -variance Gaussian pdf, denoted
by and thus the transition pdf of the channel is
given by

Let the distortion measure be squared-error distortion
and let the an input cost function be a power cost

constraint .
Given a distortion threshold , the rate–distortion func-

tion for MGS is given by (e.g., [13])

(9)

For the MGS with a squared-error distortion measure, the
explicit analytical form of is given by [16]

if

otherwise
(10)

where . Since is not meaningful at ,
we let

if

if

Consequently, is convex strictly increasing in
.

Given a power constraint , the channel capacity of
MGC is given by

(11)

where is the signal-to-noise ratio.
As mentioned before, the error exponent for the MGC

is only partially known. In the last 50 years, the
error exponent for the MGC was actively studied and several
lower and upper bounds were established (see, e.g., [3], [13],
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[22]). The most familiar upper bound is obtained by Shannon
[22], called the sphere-packing upper bound and given by

(12)

where . It can be shown (see Ap-
pendix A for a direct proof) that is convex strictly
decreasing in and vanishes for . It
can also be easily verified that as .
For the lower bound, we specialize Gallager’s random-coding
lower bound for the MGC as follows: choosing the channel
input distribution as the Gaussian distribution

, and replacing by our square cost function yield
the following lower bound for :

(13)

We hereby call Gallager’s Gaussian-input channel
function. Note also that

and the inner function is concave in . Thus, the random-coding
lower bound can be further lower-bounded by [13,
pp. 339–340] (14), shown at the bottom of the page, where

and

is the critical rate of the MGC (obtained by solving for the
where the straight-line of slope is tangent to .
It is easy to show that is convex strictly decreasing
in with a straight-line section of slope
for . It has to be pointed out [13] that
is not the real random-coding bound (as given in (6)) for

, but it admits a computable parametric form and it co-
incides with the upper bound for .
Thus, the channel coding error exponent is deter-
mined for high rates .1

In the following, we establish an upper and a lower bound for
the JSCC excess distortion exponent for the Gaussian system in
Sections III-A and III-B. As will be seen in Section III-C, the
upper bound coincides with the lower bound for a large class of
MGS–MGC pairs, and hence determines the exponent exactly.

A. The Upper Bound for

Theorem 1: For an MGS and an MGC such that
, the JSCC excess distortion exponent

satisfies

(15)

where

(16)

where is the MGS excess distortion exponent
given in (10) and is the sphere-packing bound of
the MGC channel error exponent given in (12).

Proof: See Appendix B.

Since the MGS excess distortion exponent is
convex increasing for and the sphere-packing
bound is convex decreasing in ,
their sum is also convex and there exists a global minimum in
the interval for the upper bound given in
(15). For , setting

gives (cf. Appendix A)

(17)

where is called the source-to-distortion ratio
(i.e., the source variance to distortion threshold ratio), and

. Thus, the minimum of the upper bound is achieved by the
which is the (unique) root of (17).

1In the recent work of [4], the lower bound � ����� �� is improved and is
shown to be tight in a interval slightly below the critical rate, i.e., it is shown
that the error exponent of the MGC is determined by � ����� �� for rates
� � � and � can be less than � �� �.

(14)
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B. The Lower Bound for

Given , for the continuous MS , define source func-
tion

(18)

where the supremum is taken over all the probability distribu-
tions defined on such that and
are well-defined and finite. We remark that (18) is equal to the
guessing exponent for MGSs [1] under the squared-error distor-
tion measure and admits an explicit form

(19)

Theorem 2: For an MGS and a continuous MC with a
cost constraint at the channel input, the JSCC excess distortion
exponent satisfies

(20)

where

(21)
where is Gallager’s constrained channel function
given by (7) and is the source function for the MGS

given by (19). Furthermore, if is an MGC, we have

(22)

where

(23)
where is Gallager’s Gaussian-input channel func-
tion given by (13).

Proof: See Appendix C.

C. Tightness of the Lower and Upper Bounds: When Does
?

In order to evaluate the upper and lower bounds given in The-
orems 1 and 2, we need to briefly review some concepts about
Fenchel transforms. For any function defined on , de-
fine its convex Fenchel transform (conjugate function, Legendre
transform) by

and let be the set .2 It is easy to see from
its definition that is a convex function on . Moreover, if

is convex and continuous, then . More generally,

2With a slight abuse of notation, both � ��� and ���� refer to the Fenchel
transform except when indicated otherwise.

and is the convex hull of , i.e., the largest convex
function that is bounded above by [21, Sec. 3], [11, Sec. 7.1].

Similarly, for any function defined on , define its
concave Fenchel transform by

and let be the set . It is easy to see from
its definition that is a concave function on . Moreover, if

is concave and continuous, then . More generally,
and is the concave hull of , i.e., the smallest

concave function that is bounded below by .

Lemma 1: and are a pair of convex
Fenchel transforms and , i.e.,

for all

and

for all

Proof: See Appendix E.

Lemma 2: and are a pair of con-
cave Fenchel transforms for and , i.e.,

for all

and

for all

Proof: See Appendix F.

Lemma 3: and are a pair of con-
cave Fenchel transforms for and , i.e.,

for all

and

for all

Proof: See Appendix F.

Now assume that and are, respectively, convex and con-
cave functions on the nonempty intervals and in and
assume that has interior points. Suppose further that

is finite. Then Fenchel’s Duality
Theorem [17] asserts that

(24)

Applying Fenchel’s duality (24) to our source and channel
functions and with respect to their
Fenchel transforms in Lemmas 1–3, we obtain the following
equivalent bounds.

Theorem 3: Let . Then

(25)
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Fig. 1. MGS–MGC source–channel pair: the regions for SNR and SDR pairs (both in decibels) for different �. In region ��� (including the boundary between ���
and����� � �; in region ��� (including the boundary between ��� and ���), � is determined exactly; and in region���� � � � is bounded by � and � .

(26)

The proof of the theorem follows from the above argument
regarding Fenchel transforms and Fenchel’s Duality Theorem
(24); for more details, readers may consult [26]. We next provide
a necessary and sufficient condition under which for
the MGS–MGC pair.

Theorem 4: Let . The upper and lower
bounds for given in Theorem 1 and (22) of
Theorem 2 are equal if and only if

(27)

Remark 1: For we have that

Proof: See Appendix G

Example 1: In Fig. 1, we partition the SDR–SNR plane into
three parts for transmission rate and : in region

(including the boundary between and )
and ; in region (including the boundary

between and ), and hence is determined
exactly; and in region is bounded by and .
Fig. 2 shows the two bounds and for different SDR–SNR

pairs and transmission rate . We observe from the two fig-
ures that the two bounds coincide for a large class of SDR–SNR
pairs.

D. JSCC Versus Tandem Coding Exponents for Gaussian
Systems

We herein study the advantage of JSCC over tandem coding
in terms of the excess distortion exponent for Gaussian systems.
A tandem code

with block length and transmission rate (source sym-
bols/channel use) for the MGS and the MGC is com-
posed (see Fig. 3) of two “separately” designed codes:
a block source code with code-
book and source code rate

source code nats per source symbol, and
an block channel code with channel
code rate source code nats per channel use,
where with , assuming that the limit

exists, i.e.,

Here “separately” means that the source code is designed
without the knowledge of the channel statistics, and the channel
code is designed without the knowledge of the source statistics.
However, as long as the source encoder is directly concatenated
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Fig. 2. MGS-MGC source–channel pair: the upper and lower bounds for � with � � �.

Fig. 3. Tandem MGS–MGC coding system.

by a channel encoder, the source statistics would be automat-
ically brought into the channel coding stage. Thus, common
randomization is needed to decouple source and channel coding
(e.g., [14]). We assume that the source coding index
is mapped to a channel index through a permutation mapping

(the index assignment
is assumed to be known at both the transmitter and the

receiver). Furthermore, the choice of is assumed random
and equally likely from all the different possible index
assignments, so that the indices fed into the channel encoder
have a uniform distribution. Hence, common randomization
achieves statistical separation between the source and channel
coding operations.

The (overall) excess distortion probability of the tandem code
is given by

In order to facilitate the evaluation of the tandem excess dis-
tortion probability , we simplify the problem

by making some (natural) assumptions on the component
channel and source codes (which are statistically decoupled
from each other via common randomization).

1. We assume that the channel codes in the
tandem system are “good channel codes (in the weak
sense),” i.e., , where

for all

and is the channel coding probability of
error given by (5).

2. We assume that the source codes in the
tandem system are “good source codes (in the strong
sense),” i.e., , where

where
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and is the source coding excess distortion
probability given by (2).

The converse JSCC theorem (Theorem 8) states that the MGS
cannot be reliably transmitted over the MGC if

, and also note that if then ei-
ther or . Thus, we are only inter-
ested in the case as before. In order to
guarantee the existence of good source and channel codes, we
focus on the sequences of tandem codes with

, where

Definition 4: The tandem coding excess distortion exponent
for the MGS and the MGC is defined

as the supremum of the set of all numbers for which there
exists a sequence of tandem codes composed
by good source and channel codes with block length provided

, such that

When there is no possibility of confusion, throughout
the sequel, the tandem coding excess distortion exponent

will be written as . It can be easily
shown by definition that ; however, we are partic-
ularly interested in investigating the situation where a strict
inequality holds. Indeed, this inequality, when it holds, provides
a theoretical underpinning and justification for JSCC design
as opposed to the widely used tandem approach, since the
former method will yield a faster exponential rate of decay
for the excess distortion probability, which may translate into
substantial reductions in complexity and delay for real-world
communication systems.

We obtain the following formula for the tandem excess distor-
tion exponent for ( 6 dB). Note that this condition
is not too restrictive, since a large distortion threshold is useless
in practice.

Theorem 5: For the tandem MGS–MGC system provided
and

where is the MGS excess distortion exponent
given by (10) and is the MGC error exponent.

Proof: See the proof of [29, Theorem 8].

Remark 2: Since is a strictly increasing
function of for , and is

decreasing function of for , the supremum
must be achieved at their intersection3

with .
We next numerically compare the lower bound of joint expo-

nent and the upper bound of tandem exponent given by

Example 2: For transmission rate , we plot the
SNR–SDR region for which in Fig. 4 obtained from
the inequality . It is seen that for many
SNR–SDR pairs. For example, when SDR 7 dB,
holds for 10 dB SNR 24 dB (approximately). We also
compute the two bounds of and , and we see from Fig. 5
that when SDR 8 dB, (or its lower bound) almost double

(or its upper bound) for 8 dB SNR 15 dB. It is also
observed that for the same exponent (e.g., 0.2–1.1), the gain of
JSCC over tandem coding could be as large as 2 dB in SNR.
Similar results are observed for other parameters, see Figs. 6
and 7 for . We conclude that JSCC considerably outper-
forms tandem coding in terms of excess distortion exponent for
a large class of MGS–MGC pairs.

IV. EXTENSIONS

In this section, we provide extensions of the upper and/or
lower bounds for the JSCC excess distortion exponent for other
memoryless continuous source–channel pairs.

A. Laplacian Sources With the Magnitude-Error Distortion
Over MGCs

In image coding applications, the Laplacian distribution
is well known to provide a good model to approximate the
statistics of transform coefficients such as discrete cosine and
wavelet transform coefficients [20], [24]. Thus, it is of interest
to study the theoretical performance for the lossy transmission
of MLSs, say, over an MGC. Due to the striking similarity
between the Laplacian source and the Gaussian source, the
results of the previous section (especially regarding the bounds
for ) can be easily extended to a system
composed by an MLS under the magnitude-error distortion
measure and an MGC.

Consider an MLS with alphabet , mean zero,
, and pdf

denoted by . We assume that the distortion mea-
sure is the magnitude-error distortion given by
for any . For the MLS and distortion

3Unlike the discrete case in [26], the intersection always exists since source
exponent is continuous and increasing in � � �.
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Fig. 4. The regions for the MGS–MGC pairs with � � �. Note that the region for � � � does not include the boundary.

Fig. 5. MGS–MGC source–channel pair: � versus � for � � �.
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Fig. 6. The regions for the MGS–MGC pairs with � � ���. Note that the region for � � � does not include the boundary.

Fig. 7. MGS–MGC source–channel pair: � versus � for � � ���.
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threshold , the source excess distortion exponent is given by
[28]

if
otherwise.

(28)

The upper and lower bounds for can be derived in an
analogous method to the one used for the Gaussian systems.

Theorem 6: For the MLS and the MGC with transmis-
sion rate

and

where and are given by (12) and
(14), respectively.

Proof: See Appendix H.

B. Memoryless Systems With a Metric Source Distortion

In this subsection, we consider the transmission of a class of
continuous MSs with alphabet over continuous MCs
when the source distortion function is a metric; i.e., for
1) with equality if and only if ; 2)

; 3) the triangle inequality holds, i.e., for any
. We still assume that for any

Theorem 7: For the continuous MS with a distortion being
a metric and the continuous MC with a cost constraint
at the channel input, if there exists an element with

for all , the JSCC excess
distortion exponent satisfies

(29)

where is Gallager’s constrained channel function
given by (7) and is the source function for given
by (18). Furthermore, if is an MGC, we have

(30)
where is Gallager’s Gaussian-input channel func-
tion given by (13).

Proof: See Appendix I.

Although Theorem 7 does not apply to MGSs under the
squared-error distortion (which is not a metric) and MLSs
under the magnitude-error distortion (which does not sat-
isfy the finiteness condition), it applies to MGSs under the
magnitude-error distortion, and more generally, it applies to
generalized MGSs with parameters under the distortion

function for any , whenever
and ; see the following example.

Example 3: The Gaussian and Laplacian distributions belong
to the class of generalized Gaussian distributions, which are
widely used in image coding applications. It is well known that
the distribution of image subband coefficients is well approxi-
mated by the generalized Gaussian distribution [6], [24]. A gen-
eralized MGS with parameters has alphabet ,
mean zero, variance , and pdf

where is the Gamma function and

Note that the pdf reduces to the Gaussian and Laplacian pdfs
for and , respectively. When , the distortion

is a metric. If we choose , then
would have the form

where and are independent of . Clearly, the
above integral is finite for any . If , and is
provided, the integral can be bounded by

which is also finite, where satisfies .

V. CONCLUSION

In this work, we investigate the JSCC excess distortion
exponent for some memoryless communication systems
with continuous alphabets. For the Gaussian system with the
squared-error source distortion measure and a power channel
input constraint, we derive upper and lower bounds for the
excess distortion exponent. The bounds extend our earlier work
for discrete systems [26] in such a way that the lower/upper
bound can be expressed by Csiszár’s form [8] in terms of the
sum of source and channel exponents. They can also be ex-
pressed in equivalent parametric forms as differences of source
and channel functions. We then extend these bounds to Lapla-
cian–Gaussian source–channel pairs with the magnitude-error
distortion. By employing a different technique, we also derive
a lower bound (of similar parametric form) for for a class
of memoryless source–channel pairs under a metric distortion
measure and some finiteness condition.

For the Gaussian system, a sufficient and necessary condition
for which the two bounds of coincide is provided. It is ob-
served that the two bounds are tight in many cases, thus exactly
determining . We also derive an expression for the tandem
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coding exponent for Gaussian source–channel pairs provided
that ( 6 dB). The tandem Gaussian exponent has a
similar form as the discrete tandem error exponent. As in the dis-
crete cases, the JSCC exponent is observed to be considerable
larger than the tandem exponent for a large class of Gaussian
source–channel pairs.

APPENDIX I

A. The Properties of

Proof of Monotonicity: Since is a differen-
tiable function for , we have (31) at the bottom of the
page, where and

Now solving

yields

Particularly, we have

and

Hence, is a strictly decreasing function in
with a slope ranging from to .

Proof of Convexity: It follows from (31) that for

(32)

This demonstrates the (strict) convexity of .

B. Proof of Theorem 1

We first derive a strong converse JSCC theorem under the
probability of excess distortion criterion for the Gaussian
system. We use later this result to obtain an upper bound for the
excess distortion exponent .

Theorem 8: (Strong Converse JSCC Theorem) For an
MGS and an MGC , if , then

for any sequence of JSC codes
.

Proof: Assume that , where
is a positive number. For some , define

where and are the -dimensional product dis-
tributions corresponding to

(33)

and

(34)

respectively, and is the -dimensional product distribution
corresponding to

(35)

Here, note that is the pdf that achieves the infimum of
(9) provided that is the marginal pdf of

is the marginal pdf of where achieves
the channel capacity (11).

Recalling that

(36)

(31)
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where the probability is with respect to the joint distribution
, it suffices to show that the probability

approaches asymptotically for any
sequence of JSC codes . We first decompose

as follows:

(37)

where stands for the complement of . For the first proba-
bility in (37), we can bound it by using the property of set

(38)

It remains to bound the second probability in (37). Using the
expressions of the pdfs, we have

Hence

(39)

It suffices to show that

(40)

(41)

and

(42)

Clearly, (41) and (42) follow by the weak law of large numbers
(WLLN), noting that and are memoryless sequences. To
derive (40), we write, as in the proof of [19, Lemma 4])

(43)

where the first inequality follows from the power constraint (8),
the first probability in (43) converges to zero as by the
WLLN, and the second probability in (43) converges to zero as

by the WLLN, the fact the ’s have zero mean, and the
independence of and . Thus, (40)–(42) yield

(44)

On account of (38), (44), and (36), we complete the proof.

Note that the above theorem also holds for a slightly wider
class of MGCs with scaled inputs, described by
( and are independent from each other), and with transition
pdf

where is a nonzero constant. We next apply this result to
prove the upper bound of . It follows from Theorem 8
that the JSCC excess distortion exponent is if the source
rate–distortion function is larger than the channel capacity, i.e.,

. We thus confine our attention to the
case of in the following proof.
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Proof of Theorem 1: For any sufficiently small , fix
an . Define an auxiliary MGS for
this with alphabet and distribution ,
where , so that the rate–distortion function of
is given by

Also, it can be easily verified that the Kullback–Leibler diver-
gence between the auxiliary MGS and the original source

is

Next we define for an auxiliary MGC with
scaled inputs associated with the original MGC with the
alphabets and transition pdf

where the parameter is uniquely determined by
and SNR as shown in (45) at the bottom of the page and is
given in (46), also at the bottom of the page. It can be verified
that the capacity of the MGC is given by

where the supremum is achieved by the Gaussian distribution
.

For some , define the set

Consequently, we can use to lower-bound the probability of
excess distortion of any sequence of JSC codes

(47)

and the last integration can be decomposed as

(48)

where the probabilities are with respect to the joint distribution
. Note that the first term in the right-hand

side of (48) is exactly the probability of excess distortion for the
joint source–channel system consisting of the auxiliary MGS

and the auxiliary MGC with transmission , and, ac-
cording to our setting, with

Thus, this quantity converges to as goes to infinity according
to the strong converse JSCC theorem. It remains to show that the
second term in the right-hand side of (48) vanishes asymptoti-
cally. Note that

(49)

It follows by the WLLN that as

in Prob.

which implies that

(50)

For the second term of (49), setting , we can write

(45)

and

(46)
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On the other hand, recalling that is given in (45) and is

given in (46), and noting that is given in the expression at

the top of the page, where , we see that

which is exactly the sphere-packing bound , and
where the derivation of is provided in [29, Appendix B].
Therefore, it suffices to show that

converges to as goes to infinity. This is true (as before) since
the above probability is less than

(51)

by the power constraint (8), and and
in probability . This yields

(52)

On account of (47), (48), (50), and (52), we obtain

Since the above inequality holds for any rate in the region
and and can be arbitrarily small,

we obtain that

(53)

C. Proof of Theorem 2

Before we start to prove Theorem 2, let us introduce the
Gaussian-type class and the type covering lemma for MGSs [1].
For a DMS with finite alphabet and a given rational pmf ,
the type- class of -length sequences
is the set of sequences that have single-symbol empirical dis-
tribution equal to . Thus, the probability of a particular event
(the probability of error, say) can be obtained by summing
the probabilities of intersections of various type classes which
decay exponentially as the length of sequence approaches
infinity [10]. Unfortunately, most of the properties of type
classes, as well as the bounding technique of types, do not hold
any more for sequences with continuous alphabets. When is
continuous, we need to find a counterpart to the type classes
which partition the whole source space , while keeping an
exponentially small probability in the length of sequence.

In [1, Sec. VI. A], a continuous-alphabet analog to the
method of types was studied for the MGS by introducing the
notion of Gaussian-type classes. Given and ,
the Gaussian-type class, denoted by , is the set of all

-length sequences such that

(54)

where is the transpose operation. Based on a sequence of pos-
itive parameters , the Euclidean space can be parti-
tioned using (54), and it can be shown that for the zero-mean
MGS, the probability of each type defined by (54) decays ex-
ponentially in [1]. Specifically, the probability of the type

under the Gaussian distribution decays exponen-
tially in at the rate of within a term that tends to
zero as , where , i.e.,

(55)

where

(56)

is the Kullback–Leibler divergence between the two MGSs
and , and . The following
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type covering lemma is an important tool which we will later
employ to derive the lower bound for the JSCC excess distortion
exponent.

Lemma 4 (Covering Lemma for Gaussian-Type Classes [1]):
Given and , for sufficiently small and for
sufficiently large , there exists a set of size

with

if and otherwise, such that every sequence
is contained, for some , in the ball of size

where is the rate–distortion function of MGS
.

Now we are ready to prove Theorem 2.

Proof of Theorem 2: Fix . In the sequel, we let
and assume that (and hence ) is sufficiently large.

For a given small enough, we construct a sequence
of Gaussian-type classes by

. That is

(57)

Also, we define the set such that all
these type classes together with partition the
whole space . For this special set , we shall use the trivial
bound and by definition is covered by the
ball ; thus, we say that satisfies the type covering
lemma in the sense that there exists a set of size

such that every is covered
by the ball of size , where we let and hence

.
Based on the above setup, we claim that, first, for all

, the probability of under the -dimensional
Gaussian pdf , denoted by , decays exponentially at
the rate of in , where is a zero-mean
Gaussian source with variance , and

(58)

is a vanishing term independent of (cf. (55)). Second, the type
covering lemma is applicable for all . Note that
when in the type covering lemma can be
bounded by

(59)

and is also independent of . In the sequel, we will denote,
without loss of generality, that all these vanishing terms
and by .

We next employ a concatenated “quantization-lossless JSCC”
scheme [2] to show the existence of a sequence of JSC codes
for the source–channel pair such that its probability of
excess distortion is upper-bounded by

for sufficiently large.
First Stage Coding: -Admissible Quantization: It follows

from the above setup and the type covering lemma (Lemma 4)
that for each , there exists a code
with codebook size
that covers . Recall that we also have, trivially, that a code

with which covers . Therefore, we can
employ a -admissible quantizer via the sets
as follows:

such that for every , the output of with respect to
has a distortion less than . We denote the DMS at the output
of by with alphabet and pmf

Second Stage Coding and Decoding: Lossless JSCC With
Power Constraint : For the DMS and the continuous MC

, a pair of (asymptotically) lossless JSC code

and

is applied, where the encoder is subject to a cost constraint ,
i.e., . Note that the decoder creates an approxima-
tion of based upon the sequence received at the
channel output. According to a modified version of Gallager’s
JSCC random-coding bound (which is derived in Appendix D),
there exists a sequence of lossless JSC codes with
bounded probability of error

where is Gallager’s constrained channel function
given in (7) and is Gallager’s source function (see
Appendix D) here given by
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Probability of Excess Distortion: According to the -admis-
sible quantization rule, if the distortion between the source mes-
sage and the reproduced sequence is larger than , then we
must have . This implies that

(60)

Next we bound in terms of for (also ) suffi-
ciently large and when goes to zero (when goes to infinity).
Rewrite

where

is the normalized probability over for each . By
Jensen’s inequality [7] and the type covering lemma, the sum
over each can be bounded by

for sufficiently large and sufficiently small. Recalling that

we have

(61)

for sufficiently large and sufficiently small, by noting that
. Recall that denotes the Gaussian source with mean

zero and variance . Consequently, using
the fact [1] that if the exponential rate of each term, as a function
of , is of the form , where and are

positive reals, then the term with the largest exponent dominates
the exponential behavior of the summation, i.e.,

(62)

we obtain

(63)

Note also that the sequence

is nonincreasing after some finite , which means that the max-
imum of (63) is achieved for some finite . Letting go to
zero, it follows by the continuity of and

as functions of that

where the maximum is taken over all the MGS with mean
zero and variance . Therefore

(64)

Finally, on account of (60) and (64), we may claim that there
exists a sequence of JSC codes , where

and , such that for sufficiently large

by which we establish the lower bound
given in (21). Furthermore, when is an MGC, the bound
(22) holds trivially since is a lower bound of

.

D. Gallager’s Lower Bound for Lossless JSCC Error Exponent

In this appendix, we modify Gallager’s upper bound for the
error probability of JSCC for discrete memoryless systems, so
that it is applicable to a JSCC system consisting of a DMS and
a continuous MC with cost constraint .

A JSC code [26] for a DMS and a continuous
MC with transition pdf is a pair of mappings

and , where . That is, each
source message with pmf is encoded as blocks

of symbols from of length , transmitted, received as
blocks of symbols from of length , and decoded as source
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symbol . Denote the codebook for the codewords be
. The probability of decoding error is

where is the indicator function.
We next recast Gallager’s random-coding bound for the JSCC

probability of error [13, Problem 5.16] for DMSs and contin-
uous MCs and we show the following bound.

Proposition 1: For each , given pdf defined on
, there exists a sequence of JSC codes such

that for any the probability of error is upper-bounded
by

(65)

Proof: The proof is very similar to Gallager’s random-
coding bound for discrete systems and appears in [29].

Next, we need a small modification of (65) for the DMS
and the MC to incorporate the channel input cost constraint
(8). Let be an arbitrary pdf of the channel input on sat-
isfying and (these restrictions are
made to make the term in (66) grow subexponentially
with respect to ) and let be the corresponding -dimen-
sional pdf on sequences of channel inputs, i.e., the product pdf
of . We then adopt the technique of Gallager [13, Ch. 7], by
setting , where

if
otherwise

in which is arbitrary, and is a
normalizing constant. Thus, is a valid probability density
that satisfies the constraint (8). We thus have, for any

Substituting the above into (65) for the MC , changing the
summation to integration, and denoting the probability of error
under constraint by , we have

(66)

We remark that grows with as and does not
affect the exponential dependence of the bound on [12], [13,
pp. 326–333]. Thus, applying the upper bound for the DMS
and the MC with cost constraint, and noting that is an
arbitrary pdf satisfying and , we
obtain

(67)

where is the Gallager’s constraint channel function
given by (7), has the form for some constants

and , and is Gallager’s source function

E. Proof of Lemma 1

By definition

where

Since

it is seen that is concave and

if , and is concave decreasing with

if . The above facts imply that is the
convex Fenchel transform of , i.e.,

Finally, is also the convex Fenchel transform of
since is convex in .
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F. Proof of Lemmas 2 and 3

Proof of Lemma 2: Note that

which implies that is the concave transform of
on

Thus, the transform

is the concave hull of in . We next show
by definition. Now if we set

we have (refer to Appendix A)

(68)

where . Substituting (68) back into
and using (12) yield

(69)

where is determined by (68), which can be equivalently
written by

(70)

subject to according to (69). In this range, the
left-hand side of (70) is decreasing in and ranges from to
the negative number , which means there is a unique

satisfying (70). Solving the function (70) for the stationary
point we obtain

(71)

On the other hand, we can replace

in the expression of given by (13) and obtain

Maximizing the above over (see [13, p. 339] for details),
we see that has the same parametric form as (69),
which implies

and hence is the concave transform of
.

Proof of Lemma 3: Recall that by Gallager [13, Ch. 7]

which means that is the concave transform of

on

Thus, the transform

is the concave hull of in . Lemma 2
implies that is concave in . Thus, we have

for all .

G. Proof of Theorem 4

By comparing (25) and (26) we observe that the two bounds
are identical if and only if the minimum of (25) (or (26)) is
achieved at a rate no less than the channel critical rate, i.e.,

where is the solution of (17). Let

which is a strictly increasing function of (refer to (32)), where
. In order to ensure that the root of is no less

than , we only need . This reduces to
the condition (27).

H. Proof of Theorem 6

The upper bound can be established as in a similar manner
as the proof of Theorem 1 and is hence omitted. To establish
the lower bound, we need to extend the Gaussian-type classes
and the type covering lemma to MLSs. For given and

, a Laplacian-type class is defined as the set
of all -vectors such that , i.e.,
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Fig. 8. “Quantization plus lossless JSCC” scheme used in the proof of Theorem 7.

It can also be shown that the probability of the type class
, for , under the Laplacian distribution

is bounded by the exponential function

where . We next introduce the type
covering lemma for Laplacian-type classes.

Lemma 5 (Covering Lemma for Laplacian-Type Classes
[28]): Given and , for sufficiently small
and for sufficiently large , there exists a set of size

with

such that every sequence in is contained, for some ,
in the ball (cube)

of size , where is the rate distortion function of
Laplacian source .

Consequently, using Lemma 5, the lower bound can be de-
duced by employing a similar proof of Theorem 2 and using
Fenchel Duality Theorem.

I. Proof of Theorem 7

For general continuous MSs, unfortunately, we do not have
counterparts to the type class and the type covering results of
Lemmas 4 and 5 (for MGSs and MLSs, respectively). Hence, to
establish the lower bound for the JSCC excess distortion expo-
nent, we need to modify the proof of Theorem 2. We will use
a different approach based on the technique introduced in [16]
and the type covering lemma [10] for finite alphabet DMSs.

Since the lower bound (30) immediately follows from (29),
we only show the existence of a sequence of JSC codes for the
source–channel pair such that its probability of excess
distortion is upper-bounded by

for sufficiently large. We shall employ a concatenated “scalar
discretization—vector quantization—lossless JSCC” scheme as
shown in Fig. 8. Throughout the proof, we let , where

is finite, and set and .
First Stage Coding: -Neighborhood Scalar Quantization:

As in [16], we approximate the continuous MS by a DMS
with countably infinite alphabet via an -neighborhood scalar
quantization scheme. In particular, for any given ,
there exists a countable set
with corresponding mutually disjoint subsets

, such that . Specifi-
cally, the subsets partition ; for example, a specific par-
tition could be and

and for any

for . Consequently, we can employ a scalar quantizer
to discretize the original MS , such that

if . Therefore, the first stage coding can be described as
a mapping

where . We denote the
source obtained at the output of by with alphabet and
pmf

Lemma 6: For any and
.

Proof: see [29, Appendix E].

Second Stage Coding: Truncating Source Alphabet: We
next truncate the alphabet to obtain a finite-alphabet source.
Without loss of generality, assuming that
such that then for
sufficiently large, we take be the set of the first elements,
i.e., . For define
function

if
otherwise.

Then, the second stage coding is a mapping
where . We denote

Authorized licensed use limited to: Fady Alajaji. Downloaded on March 2, 2009 at 21:33 from IEEE Xplore.  Restrictions apply.



ZHONG et al.: JOINT SOURCE–CHANNEL CODING EXCESS DISTORTION EXPONENT 1317

the finite-alphabet DMS at the output of by with al-
phabet and pmf

We now have the following results (Lemma 7 is proved in a
similar manner as Lemma 6 and Lemma 8 is proved in [16]).

Lemma 7: For any and
for large enough.

Lemma 8: [16, Lemma 1] For any such that

if there exists an element with for
all , then

such that as , where the expectations are
taken under , and the probability is taken under .

Remark 3: Note also that
as . Equivalently, Lemma 8 states that for any

and

for sufficiently large.

Third Stage Coding: -Admissible Quantization:
Consider transmitting the DMS over the continuous MC .
Since has a finite alphabet , we now can
employ a similar method as used in the proof of Theorem 2. In
the sequel, we need to introduce the notation of types and the
type covering lemma for DMSs with finite alphabets [10].

Let the set of all probability distributions on be .
We say that the type of a -length sequence is

in the sense that the empirical distribution of
is equal to , where is the collection of all types of

sequences in . For any , the set of all
with type is denoted by , called type class .

Now we partition the -dimensional source space by a
sequence of type classes .

Lemma 9 (Covering Lemma for Discrete Type Classes [10]):
Given , for each sufficiently large depending only on

and , for every type class there exists a set
of size such that every

sequence is contained, for some , in the ball
of size

where is the rate–distortion function of the DMS .
Let be a number satisfying

. Setting in

the type covering lemma, we can employ a -admis-
sible quantizer via the sets as follows:

such that for every , the output of with respect
to has a distortion less that and each is bounded
by for sufficiently large . We
denote the finite DMS at the output of by with al-
phabet and pmf

Fourth Stage Coding and Decoding: Lossless JSCC With Cost
Constraint : For the DMS and the continuous MC , a pair
of (asymptotically) lossless JSC code

and

is applied, where the encoder is subject to a cost constraint ,
i.e., . Note that the decoder creates an approxima-
tion of based on the sequence . According to
a modified version of Gallager’s JSCC random-coding bound
(which is derived in Appendix D), there exists a sequence of
lossless JSC codes with bounded probability of error

Analysis of the Probability of Excess Distortion: For the sake
of simplicity, let (see Fig. 8)

Since
, we have

where the probabilities are taken under the joint distribution
. According to the -admissible

quantization rule, implies that ,
therefore, we can further bound
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for sufficiently large. It follows from Lemma 8 (also see the
remark after it) that

as . When we take the sum of two exponential functions
that both converge to , the one with a smaller convergence rate
would dominate the exponential behavior of the sum. Therefore,
for sufficiently large which only depends on , noting that

, we have

(72)

Consequently, it can be shown by using the method of types
(in a similar manner as the proof of Theorem 2) that for
sufficiently large

Using Lemmas 7 and 6 successively, we can approximate
by

(73)

Finally, substituting (73) back into (72), and letting and
, we complete the proof of Theorem 7.
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