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A Rate-Distortion Theorem for Arbitrary Discrete Sources

Po-Ning Chen and Fady Alajaji

Abstract—A rate-distortion theorem for arbitrary (not necessarily
stationary or ergodic) discrete-time finite-alphabet sources is given. This
result, which provides the expression of the minimum�-achievable fixed-
length coding rate subject to a fidelity criterion, extends a recent data
compression theorem by Steinberg and Verd́u.

Index Terms—Arbitrary discrete sources, data compression, rate-dis-
tortion theory, Shannon theory.

I. INTRODUCTION

We consider the problem of source coding with a fidelity criterion
for arbitrary (not necessarily stationary or ergodic) discrete-time
finite-alphabet sources. We prove a general rate-distortion theorem
by establishing the expression of the minimum�-achievable block
coding rate subject to a fidelity criterion.

In [3, Theorem 10, part a)], Steinberg and Verd´u demonstrate a
data compression theorem for arbitrary sources under the restriction
that the probability of excessive distortion due to the achievable data
compression codes is asymptotically equal to zero (cf. [3, Definitions
30 and 31]). In this work, we provide a variant of their result by
relaxing the restriction on the probability of excessive distortion (cf.
(3.1)).

II. PRELIMINARIES

Consider a random processXXX defined by a sequence of finite-
dimensional distributions [2]

XXX fXn = (X
(n)
1 ; � � � ; X(n)

n )g1n=1:

Let

YYY fY n = (Y
(n)
1 ; � � � ; Y (n)

n )g1n=1

be the corresponding output process induced byXXX via the channel

WWW fWY jX = PY jX : Xn ! Yng1n=1;

which is an arbitrary sequence ofn-dimensional conditional distri-
butions fromXn to Yn, whereX andY are the input and output
alphabets, respectively. We assume thatX to Y are finite.

Definition 2.1 ([2]): Given a joint distribution PX Y =
WY jX PX on Xn � Yn with marginalsPX and PY , the
information densityis defined by

iX Y (an; bn) = log
WY jX (bn j an)

PY (bn)
:
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Definition 2.2 ([2], [3]): Thesup-information rate�I(XXX;YYY ) of the
joint processXXXYYY is defined as thelimsup in probability1 of the
sequence of normalized information densities1

n
iX Y (Xn;Y n).

Analogously, theinf-information rateI(XXX;YYY ) betweenXXX andYYY
is defined as theliminf in probability of the sequence of normalized
information densities1

n
iX Y (Xn;Y n).

When XXX is equal toYYY , �I(XXX;XXX) (respectively,I(XXX;XXX)) is
referred to as thesup (respectively,inf) entropy rateof XXX and is
denoted by�H(XXX) (respectively,H(XXX)).

Definition 2.3 ([2], [3]): Given a joint distributionPX Y =
WY jX PX , the conditional entropy densityis defined by

iY jX (bn j an) = � logWY jX (bn j an):

The conditional sup-entropy rate�H(YYY j XXX) of YYY given XXX is
defined as the limsup in probability of the sequence of normalized
conditional entropy densities1

n
iY jX (Y n j Xn).

Analogously, theconditional inf-entropy rateH(YYY j XXX) of YYY
givenXXX is defined as the liminf in probability of1

n
iY jX (Y n j

Xn).

III. GENERAL DATA COMPRESSIONTHEOREM

Definition 3.1 (e.g., [1]): Given a finite source alphabetX and a
finite reproduction alphabetY, a block code for data compression
of blocklengthn and sizeM is a mappingfn(�) : Xn ! Yn that
results inkfnk = M codewords of lengthn, where each codeword
is a sequence ofn reproducing letters.

Definition 3.2: A distortion measure�n(�; �) is a mapping

�n : Xn � Yn ! <+ [0;1):

We can view the distortion measure as the cost of representing a
sourcen-tupleXn by a reproductionn-tuple fn(Xn).

Definition 3.3: Let XXX andf�n(�; �)gn�1 be given. Let

fff(XXX) ffn(X
n)g1n=1

denote a sequence of data compression codes forXXX. The distortion
spectrum�XXXfff(XXX)(�) for fff(�) is defined by

�XXXfff(XXX)(�) lim inf
n!1

Pr
1

n
�n(X

n
; fn(X

n)) � � :

Definition 3.4: Fix D > 0 and1 > " > 0. R is an"-achievable
data compression rate at distortionD for a sourceXXX if there exists
a sequence of data compression codesfn(�) with

lim sup
n!1

1

n
log kfnk = R

and

sup[� : �XXXfff(XXX)(�) � "] � D: (3.1)

1If An is a sequence of random variables, then itsliminf in probability is
the largest extended real number� such that for all� > 0,

lim
n!1

Pr [An � �� �] = 0:

Similarly, its limsup in probability is the smallest extended real number�
such that for all� > 0 [2]

lim
n!1

Pr [An � � + �] = 0:
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Fig. 1. �XXXf(XXX)(D + ) > " ) sup [� : �XXXf(XXX)(�) � "] � D + :

Note that (3.1) is equivalent to stating that the limsup of the
probability of excessive distortion (i.e., distortion larger thanD) is
smaller than1 � ".

The infimum"-achievable data compression rate at distortionD
for XXX is denoted byT"(D;XXX).

Theorem 3.1 (General Data Compression Theorem):Fix D > 0
and1 > " > 0. Let XXX andf�n(�; �)gn�1 be given. Then

T"(D;XXX) = R"(D)

where

R"(D) inf
fWWW :sup[�:� (�)�"]�Dg

�I(XXX;YYY )

where the infimum is taken over all conditional distributions
WWW = fPY jX g1n=1 for which the joint distributionPXXXYYY = PXXXWWW

satisfies the distortion constraint.
Proof:

1) Forward part (achievability):Choose > 0. We will prove the
existence of a sequence of data compression codes with

lim sup
n!1

1

n
kfnk � R"(D) + 2

and

sup[� : �XXXfff(XXX)(�) � "] � D + :

Step 1: Let ~WWW be the channel distribution achievingR"(D), and
let P ~YYY be theYYY -marginal ofPXXX ~WWW .

Step 2: Let R = R"(D) + 2. ChooseM = enR n-blocks
independently according toP ~YYY , and denote the resulting
random set byCn.

Step 3: For a givenCn, we denote byA(Cn) the set of sequences
xn 2 Xn such that there existsyn 2 Cn with

1

n
�n(x

n; yn) � D + :

Step 4: Claim:

lim sup
n!1

E~YYY [PX (Ac(Cn))] < 1� ":

The proof of this claim is provided in the Appendix.
Therefore, there exists (a sequence of)C�n such that

lim sup
n!1

PX (Ac(C�n)) < 1� ":

Step 5: Define a sequence of codesffng by

fn(x
n) =

arg miny 2C �n(x
n; yn); if xn 2 A(C�n)

0; otherwise

where0 is a fixed defaultn-tuple inYn.
Then

xn 2 Xn :
1

n
�n(x

n; fn(x
n)) � D +  � A(C�n)

since (8xn 2 A(C�n)) there existsyn 2 C�n such that
(1=n)�n(x

n; yn) � D + , which by definition offn
implies that(1=n)�n(xn; fn(xn)) � D + .

Step 6: Consequently,

�XXXfff(XXX)(D + )

= lim inf
n!1

PX xn 2 Xn :
1

n
�n(x

n; f(xn)) � D + 

� lim inf
n!1

PX (A(C�n))

= 1� lim sup
n!1

PX (Ac(C�n))

> ":

Hence

sup[� : �XXXfff(XXX)(�) � "] � D + 

where the last step is clearly depicted in Fig. 1.

This proves the forward part.
2) Converse part:We show that for any sequence of encoders

ffn(�)g
1
n=1, if

sup [� : �XXXfff(XXX)(�) � "] � D

then

lim sup
n!1

1

n
log kfnk � R"(D):

Let

Ŵn(yn j xn)
1; if yn = fn(x

n)
0; otherwise:

Let Ŷ n denote the output corresponding to inputXn and
channel Ŵn. Then to evaluate the statistical properties of the
random sequencef(1=n)�n(Xn; fn(X

n)g1n=1 under distribution
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PX is equivalent to evaluating those of the random sequence
f(1=n)�n(X

n; Ŷ n)g1n=1 under distributionPX Ŵn. Therefore,

R"(D) inf
fWWW :sup[�:� (�)�"]�Dg

�I(XXX;YYY )

� �I(XXX; ŶYY )

� �H(ŶYY )�H(ŶYY j XXX)

� �H(ŶYY )

� lim sup
n!1

1

n
log kfnk;

where the second inequality follows from [4, Theorem 8, property (d)]
and the third inequality follows from the fact thatH(ŶYY j XXX) � 0.

APPENDIX

Claim (cf. Proof of Theorem 3.1):

lim sup
n!1

E~YYY [PX (Ac(C�n))] < 1� ":

Proof:

Step 1: Let

D(") supf� : �XXX ~YYY (�) � "g:

Define

A(")
n; (xn; yn) :

1

n
�n(x

n; yn) � D(") + 

and
1

n
iX Y (xn; yn) � �I(XXX; ~YYY ) +  :

Since

lim inf
n!1

Pr D
1

n
�n(X

n; ~Y n) � D(") +  > "

and

lim inf
n!1

Pr E
1

n
iX ~Y (Xn; ~Y n)

� �I(XXX; ~YYY ) +  = 1

we have

lim inf
n!1

Pr A(")
n; = lim inf

n!1
Pr (D \ E)

� lim inf
n!1

Pr (D) + lim inf
n!1

Pr (E)� 1

> "+ 1� 1 = ":

Step 2: Let K(xn; yn) be the indicator function ofA(")
n;

K(xn; yn) =
1; if (xn; yn) 2 A

(")
n;

0; otherwise:

Step 3: By following a similar argument in [3, Eqs. (9)–(12)], we
obtain

E~YYY [PX (Ac(C�n))]

=
C

P ~Y (C�n)
x 62A(C )

PX (xn)

=
x 2X

PX (xn)
C :x 62A(C )

P ~Y (C�n)

=
x 2X

PX (xn) 1�
y 2Y

P ~Y (yn)K(xn; yn)

M

�
x 2X

PX (xn) 1� e�n(
�I(XXX; ~YYY )+)

�
y 2Y

P ~Y jX (yn j xn)K(xn; yn)

M

� 1�
x 2X y 2Y

PX (xn)P~Y jX (xn; yn)K(xn; yn)

+ expf�en(R�R (D)�)g:

Therefore,

lim sup
n!1

E~Y [PX (An(C�n))] � 1� lim inf
n!1

Pr A(")
n;

< 1� ":
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On One Useful Inequality in Testing of Hypotheses

Marat V. Burnashev

Abstract—A simple proof of one probabilistic inequality is presented.

Index Terms—Error probabilities, testing of hypotheses.

I. MAIN INEQUALITY

Let P andQ be two given probability measures on a measurable
space(X ;A). We consider testing of hypothesesP and Q using
one observation. For an arbitrary decision rule, let� and� denote
the two kinds of error probabilities. If both error probabilities have
equal costs (or we want to minimize the maximum of them) then it
is natural to investigate the minimal possible suminff� + �g for
the best decision rule.
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