Optimistic Shannon Coding Theorems for Arbitrary
Single-User Systems*

Po-Ning Chen' and Fady Alajajit

TDepartment of Communication Engineering
National Chiao-Tung University
HsinChu, Taiwan, R.O.C.

'Department of Mathematics and Statistics
Queen’s University
Kingston, Ontario K7L 3N6, Canada

Abstract

The conventional definitions of the source coding rate and of channel capacity re-
quire the existence of reliable codes for all sufficiently large blocklengths. Alternatively,
if it is required that good codes exist for infinitely many blocklengths, then optimistic
definitions of source coding rate and channel capacity are obtained.

In this work, formulas for the optimistic minimum achievable fixed-length source
coding rate and the minimum e-achievable source coding rate for arbitrary finite-
alphabet sources are established. The expressions for the optimistic capacity and the
optimistic e-capacity of arbitrary single-user channels are also provided. The expres-
sions of the optimistic source coding rate and capacity are examined for the class of
information stable sources and channels, respectively. Finally, examples for the com-

putation of optimistic capacity are presented.
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I Introduction

The conventional definition of the minimum achievable fixed-length source coding rate T’
for a source Z [13, Definition 4| requires the existence of reliable source codes for all suffi-
ciently large blocklengths. Alternatively, if it is required that reliable codes exist for infinitely
many blocklengths, a new, more optimistic definition of source coding rate (denoted by T')
is obtained [13]. Similarly, the optimistic capacity C is defined by requiring the existence of
reliable channel codes for infinitely many blocklengths, as opposed to the definition of the
conventional channel capacity C' [14, Definition 1].

This concept of optimistic source coding rate and capacity has recently been investigated
by Verdu et.al for arbitrary (not necessarily stationary, ergodic, information stable, etc.)
sources and single-user channels [13, 14]. More specifically, they establish an additional
operational characterization for the optimistic minimum achievable source coding rate (I')
by demonstrating that for a given channel, the classical statement of the source-channel
separation theorem' holds for every channel if = T [13]. In a dual fashion, they also show
that for channels with C' = C, the classical separation theorem holds for every source. They
also conjecture that 7" and C' do not seem to admit a simple expression.

In this work, we demonstrate that 7" and C do indeed have a general formula. The
key to these results is the application of the generalized sup-information rate introduced in
[3, 4] to the existing proofs by Verdd and Han [14, 7] of the direct and converse parts of
the conventional coding theorems. We also provide a general expression for the optimistic
minimum e-achievable source coding rate and the optimistic e-capacity.

In Section II, we briefly introduce the generalized sup/inf-information/entropy rates
which will play a key role in proving our optimistic coding theorems. In Section III, we
provide the optimistic source coding theorems. They are shown based on two recent bounds
due to Han [7] on the error probability of a source code as a function of its size. Inter-
estingly, these bounds constitute the natural counterparts of the upper bound provided by

Feinstein’s Lemma and the Verdi-Han lower bound to the error probability of a channel code.

!By the “classical statement of the source-channel separation theorem,” we mean the following. Given
a source Z with (conventional) source coding rate T(Z) and channel W with capacity C, then Z can be
reliably transmitted over W if T'(Z) < C. Conversely, if T'(Z) > C, then Z cannot be reliably transmitted
over W . By reliable transmissibility of the source over the channel, we mean that there exits a sequence of
source-channel codes such that the decoding error probability vanishes as the blocklength n — oo (cf [13]).



Furthermore, we show that for information stable sources, the formula for 1" reduces to
1
T =liminf —H(X").
n—oo n
This is in contrast to the expression for 7', which is known to be

1
T = limsup —H (X™").

n—oo T
The above result leads us to observe that for sources that are both stationary and information
stable, the classical separation theorem is valid for every channel.
In Section IV, we present (without proving) the general optimistic channel coding theo-

rems, and prove that for the class of information stable channels the expression of C' becomes

_ 1
C = limsupsup —I(X"; Y™"),
n—oo Xn T
while the expression of C' is
1
C = lirr_1>infsup —I(X™Y™).

n—00  xn 1

Finally, in Section V, we present examples for the computation of C' and C' for information

stable as well as information unstable channels.

IT e-Inf/Sup-Information/Entropy Rates

Consider an input process X defined by a sequence of finite dimensional distributions [14]:
A n n n e A n n n °
x={xm=(x{" ... Xx{ >)}n:1. Denote by Y= {y" = (v, .. y[ >)}n:1 the corre-

sponding output process induced by X via the channel w2 {W” = Pyn|xn : X" — yn}

which is an arbitrary sequence of n-dimensional conditional distributions from X" to V",

o
)
n=

where X and )Y are the input and output alphabets respectively. We assume throughout
this paper that X and ) are finite.

In [8, 14], Han and Verdi introduce the notions of inf/sup-information/entropy rates and
illustrate the key role these information measures play in proving a general lossless (block)
source coding theorem and a general channel coding theorem.

The inf-information rate I(X;Y) (resp. sup-information rate I(X;Y)) between pro-
cesses X and Y is defined in [8] as the liminf in probability (resp. limsup in probability) of

the sequence of normalized information densities (1/n) ixnpx(X™; Y"), where

1 Al Propxa(b%)a")
nZX w (CL ) ) n 0g Pyn (bn)



When X is equal to Y, I(X; X) (respectively, I(X; X)) is referred to as the sup (respec-
tively, inf) entropy rate of X and is denoted by H(X) (respectively, H(X)).

The liminf in probability of a sequence of random variables is defined as follows [8]: if 4,
is a sequence of random variables, then its liminf in probability is the largest extended real
number U such that,

lim Pr[A, < U] =0. (1)

n—00

Similarly, its limsup in probability is the smallest extended real number U such that,

lim Pr[A, > U] =0. (2)

n—oQ
Note that these two quantities are always defined; if they are equal, then the sequence of
random variables converges in probability to a constant.

It is straightforward to deduce that equations (1) and (2) are respectively equivalent to

liminf Pr[A, < U] = limsup Pr[4, <U] =0, (3)
n—00 n— 00
and
lim inf Pr[A, < U] = limsup Pr[A, > U] = 0. (4)
n—o n—00

We can observe however that there might exist cases of interest where only the liminfs
of the probabilities in (3) and (4) are equal to zero, while the limsups do not vanish. There
are also other cases where both the liminfs and limsups in (3)-(4) do not vanish, but they
are upper bounded by a prescribed threshold . Furthermore, there are situations where the
interval [U, U] does not contain only one point; for e.g., when A, converges in distribution
to another random variable. This remark constitutes the motivation to the recent work in

[3, 4], where generalized versions of the inf/sub-information/entropy rates are established.

Definition 2.1 (Inf/sup spectrums [3, 4]) If {4, }°2, is a sequence of random variables
taking values in a finite set A, then its inf-spectrum u(-) and its sup-spectrum u(-) are defined
by

u(6) = liminf Pr{A, <0},

and
u(0) 2 limsup Pr{A, <6}.

n—o0

In other words, u(-) and @(-) are respectively the liminf and the limsup of the cumulative
distribution function (CDF) of A4,,. Note that by definition, the CDF of A, — Pr{4, <0} -
is non-decreasing and right-continuous. However, for u(-) and u(-), only the non-decreasing

property remains.



Definition 2.2 (Quantile of inf/sup-spectrum [3, 4]) For any 0 < ¢ < 1, the quantiles
U, and U, of the sup-spectrum and the inf-spectrum are defined by

Qgé sup{f : u(f) < ¢},

and
U.2 sup{f : u(9) < e},

respectively. It follows from the above definitions that U, and U, are right-continuous and
non-decreasing in €. Note that Han and Verdi’s liminf/limsup in probability of A,, are special

cases of U, and U,. More specifically, the following hold
Q = QO and [7 — [71*,
where the superscript “-” denotes a strict inequality in the definition of U;-; i.e.,
= A
U.-=sup{f : u(f) < ¢}.

Note also that U < U, < U. < U. Remark that U, and U, always exist. For a better
understanding of the quantities defined above, we depict them in Figure 1. If we replace A,

by the normalized information (resp. entropy) density, we get the following definitions.

Definition 2.3 (e-inf/sup-information rates [3, 4])
The e-inf-information rate I, (X;Y) (resp. e-sup-information rate I.(X;Y)) between X
and Y is defined as the quantile of the sup-spectrum (resp. inf-spectrum) of the normalized

information density. More specifically,
L(X:Y)2sup{s : ixw(d) <=},
where ixw(8)2 limsup,_,._ Pr {%ixnwu (X™Yy" < 5} , and
L(X;Y)2 sup{8 : ixxw (6) < ¢},
where ZXW(é)élim inf,, o Pr {%anWn (XY™ < 5} :

Definition 2.4 (e-inf/sup-entropy rates [3, 4]) The c-inf-entropy rate H.(X) (resp. e-
sup-entropy rate H.(X)) for a source X is defined as the quantile of the sup-spectrum (resp.

inf-spectrum) of the normalized entropy density. More specifically,
H.(X)2sup{s : hx(5) < s},

4



- 1
where h,X((S)élim SUpP,,_y00 PT {—hxn (X" < 6} , and
n

H.(X)Zsup{0 : hx(8) < e},

1 1 1 1
where @X(é)élim inf,, o Pr {ﬁh,Xn(X”) < 5} , and ﬁh’X"(Xn)éﬁ log Prr (X’

U UU Qa UE Q]_— U
Figure 1: The asymptotic CDF's of a sequence of random vari-

ables {A4,}5%,: @(-) = sup-spectrum and u(-) = inf-spectrum.

IIT Optimistic Source Coding Theorems

In [13], Vembu et.al characterize the sources for which the classical separation theorem holds
for every channel. They demonstrate that for a given source X, the separation theorem holds
for every channel if its optimistic minimum achievable source coding rate (I'(X)) coincides
with its conventional (or pessimistic) minimum achievable source coding rate (7'(X)); i.e.,
fT'(X)=T(X).

We herein establish a general formula for 7'(X). We prove that for any source X,

I(X) = H, (X).

We also provide the general expression for the optimistic minimum s-achievable source coding
rate. We show these results based on two new bounds due to Han (one upper bound and
one lower bound) on the error probability of a source code [7, Chapter 1]. The upper bound

(Lemma 3.1) consists of the counterpart of Feinstein’s Lemma for channel codes (cf for

5



example [14, Theorem 1]), while the lower bound (Lemma 3.2) consists of the counterpart
of the Verdi-Han lower bound on the error probability of a channel code ([14, Theorem 4]).
As in the case of the channel coding bounds, both source coding bounds (Lemmas 3.1 and

3.2) hold for arbitrary sources and for arbitrary fixed blocklength.

Definition 3.5 An (n, M) fixed-length source code for X™ is a collection of M n-tuples
€, ={c},...,c%}. The error probability of the code is Pe(”)éPr [X™ & €,].

Definition 3.6 (Optimistic c-achievable source coding rate) Fix 0 <e < 1. R>0
is an optimistic e-achievable rate if, for every v > 0, there exists a sequence of (n, M)

fixed-length source codes ~, such that
1
—logM < R+~ and Pe(n) < ¢ for infinitely many n.
n

The infimum of all e-achievable source coding rates for source X is denoted by 7',(X). Also

define I(X)é SUPgcecy Lo(X) = lim, y T, (X)) as the optimistic source coding rate.

Lemma 3.1 (Lemma 1.5 in [7]) Fix a positive integer n. There exists an (n, M) source

block code G, for Px» such that its error probability satisfies
1 1
P < py [—hxn (X™) > — log M] .
n n

Lemma 3.2 (Lemma 1.6 in [7]) Every (n, M) source block code €, for Pxn satisfies

e

1 1

P™ > pr {—h,Xn(X") > —logM+7] — exp{—n~},
n n

for every v > 0.

We next use Lemmas 3.1 and 3.2 to prove general optimistic (fixed-length) source coding

theorems.

Theorem 3.1 (Optimistic minimum s-achievable source coding rate formula)

Fix 0 < ¢ < 1. For any source X,

H.-(X)<T, .(X) < H(X).

£

Note that actually T, _(X) = H.(X), except possibly at the points of discontinuities of
H_(X) (which are countable).



Proof:
1. Forward part (achievability): T,_.(X) < H.(X)
We need to prove the existence of a sequence of block codes {-€,},>o such that, for every
v >0, (1/n)log|€,| < H.(X)+~v and P™ < 1—¢ for infinitely many n. Lemma 3.1 ensures
the existence (for any v > 0) of a source block code €, = (n,exp{n(H,. + v/2)}) with error
probability

P™ < Pr {%hxn(X") > H, + %} :

Therefore,

1
liminf P < liminf Pr {_th (X™) > H. +
n— 00 n—00 n

Do [ =2

}

1
= 1 —limsup Pr {—hxn(Xn) < H (X)+ %}
n

n—0o0

< 1—¢, (5)
where (5) follows from the definition of H,(X). Hence, P{") < 1 — ¢ for infinitely many n.

2. Conwverse part: T, (X) > H.-(X)
Assume without loss of generality that H.-(X) > 0. We will prove the converse by contra-
diction. Suppose that T'; . (X) < H, (X). Then (37 >0) 7, . (X) < H. (X) — 3y. By

definition of T',_, (X)), there exists a sequence of codes €, such that

1
ﬁlog%@nl <[H-(X) =37+~

and
liminf P <1 —¢. (6)
n— o0
By Lemma 3.2,
(n) 1 ny < 1 n
P > Pr |:—th(X )>—log|f€n|+7] —e ™
n n
1
> Pr {_hxn (X™) > (H._(X) - 27) + 7] — e,
n
Therefore,

1
lim inf ™ > 1 — lim sup Pr {—hm (X") < H. (X) - 7] S 1,
n

n—oo n—00

where the last inequality follows from the definition of H, (X). Thus, a contradiction to
(6) is obtained.



3. Fquality: H.(X) is a non-decreasing function of ; hence the number of discontinuous
points is countable. For any continuous point ¢, we have that H,(X) = H. (X)), and thus
T.(X)=H.(X). O

Theorem 3.2 (Optimistic minimum achievable source coding rate formula)

For any source X,

Proof:
By definition,
I(X)2 sup T.(X) > sup H.-(X) > H,-(X).

- 0<e<1 0<e<1l

On the other hand, suppose that H, (X) < T'(X). Then 3 v > 0 such that
H,-(X) < T(X) 7.

But by definition of 7'(X), there exists 0 < ¢ = ¢(-y) < 1 such that
I(X)—v < I(X).

Therefore, H,-(X) < T'(X) — v < T.(X) < H, . (X) < H,-(X), and a contradiction is
obtained. O
We conclude this section by examining the expression of 7T'(X) for information stable
sources. It is already known (cf for example [13]) that for an information stable source X,
T(X) = limsup ~ H(X™).
n—oo 1

We herein prove a parallel expression for 7'(X).

Definition 3.7 (Information stable sources [13]) A source X is said to be information
stable if H(X"™) > 0 for n sufficiently large, and hx»(X™)/H(X™) converges in probability

to one as n — o0, l.e.,

hyn(X™)
H(X™)

where H(X™) = E[hx~»(X™)] is the entropy of X™.

-1

lim sup Pr l =0 Vy > 0,

— 00

>

Lemma 3.3 Every information source X satisfies

1
T(X) = liminf —H(X").

n—oo n



Proof:
1. [I(X) > liminf, o (1/n)H(X")]
Fix ¢ > 0 arbitrarily small. Using the fact that hx»(X™) is a (finite-alphabet) non-

negative bounded random variable, we can write the normalized block entropy as

%H(X”) =FE Ehxn(xn)] = F Ehxn(X”) 1 {0 < %hxn (X") <H,-(X) + €H

Y E Eth(X”) 1 {%th(X”) > H, (X)+ a}] ()

From the definition of H,-(X), it directly follows that the first term in the right hand side
of (7) is upper bounded by H, (X)) +¢, and that the liminf of the second term is zero. Thus

T(X) = H, (X) > liminf - H(X").

- n—oo n,

2. [L(X) <liminf, ,(1/n)H(X™)]
Fix € > 0. Then for infinitely many n,

Pr{% —-1> 5} = Pr{%hxn(Xn) > (1+eg) <%H(Xn)>}

> pr {%hxn (X") > (1+¢) <lim inf LH(X") + e> } .

n—oo n,

Since X is information stable, we obtain that
. 1 n | n
lim inf Pr {Ehm (X") > (1+¢) <11T£g£fﬁH(X )+ a)} — 0.
By the definition of H;- (X)), the above implies that
1
T(X) = H, (X) < (1+¢) (lirginf SH(X") + a) .
n oo n
The proof is completed by noting that € can be made arbitrarily small. O

Observations:

e If the source X is both information stable and stationary, the above Lemma yields

T(X) = T(X) = lim ~H(X™).

n—oon

This implies that given a stationary and information stable source X, the classical

separation theorem holds for every channel.

9



e Recall that both Lemmas 3.1 and 3.2 hold not only for arbitrary sources X, but also
for arbitrary fixed blocklength n. This leads us to conclude that they can analogously

be employed to provide a simple proof to the conventional source coding theorems [8]:

and

IV Optimistic Channel Coding Theorems

In this section, we state without proving the general expressions for the optimistic e-capacity?

(C;) and for the optimistic capacity (C') of arbitrary single-user channels. The proofs of these
expressions are straightforward once the right definition (of I.(X;Y")) is made. They employ
Feinstein’s Lemma and the Verdd-Han lower bound ([14, Theorem 4]), and follow the same

arguments used in [14] to show the general expressions of the conventional channel capacity
C =sup [y(X;Y) =sup L(X;Y),
X X
and the conventional e-capacity
sup .- (X;Y) < C. <sup L(X;Y).
X
We close this section by proving the formula of C' for information stable channels.

Definition 4.8 (Channel block code) An (n, M) code for channel W™ with input alpha-
bet X and output alphabet ) is a pair of mappings

fAL2,... M} - X"
and
g:Y"—=A{1,2,...,M}.

Its average error probability is given by

1 M

2SO Wl m),

m=1 {yn:g(y")#m}

2The authors would like to point out that the expression of C. was also separately obtained in [11,
Theorem 7].

10



Definition 4.9 (Optimistic s-achievable rate) Fix 0 < ¢ < 1. R > 0 is an optimistic
e-achievable rate if, for every v > 0, there exists a sequence of (n, M) channel block codes

such that
log M

>R—v and Pe(") < ¢ for infinitely many n.

Definition 4.10 (Optimistic s-capacity C.) Fix0 < ¢ < 1. The supremum of optimistic

g-achievable rates is called the optimistic e-capacity, C..

Definition 4.11 (Optimistic capacity C') The optimistic channel capacity C is defined
as the supremum of the rates that are optimistic e-achievable for all 0 < £ < 1. It follows
immediately from the definition that C' = infyc.«q C. = lim, o C. and that C is the supremum
of all the rates R for which, for every v > 0, there exists a sequence of (n, M) channel block
codes such that

%logM >R—v and li71£r_1>iorolfP§”) =0.

Theorem 4.3 (Optimistic e-capacity formula)

Fix 0 < € < 1. The optimistic e-capacity C. satisfies
sup .- (X;Y) < C. <supL(X;Y). (8)
X

Note that actually C. = supx I.(X;Y), except possibly at the points of discontinuities of

supx I.(X;Y) (which are countable).

Theorem 4.4 (Optimistic capacity formula)

The optimistic capacity C' satisfies
C =sup [H(X;Y).
X

We next investigate the expression of C' for information stable channels. The expression
for the capacity of information stable channels is already known (cf for example [13])

1
C = liﬁr_l)infsup —I(X™;Y™"),

X xn N

where

1
C, 2 sup —I(X™Y™).

Xn n

We prove a dual formula for C.

11



Definition 4.12 (Information stable channels [6, 9]) A channel W is said to be infor-
mation stable if there exists an input process X such that 0 < C,, < oo for n sufficiently

large, and

—1
nC,

>0 =0 Vv > 0.

n—0o0

lim sup Pr l

Lemma 4.4 Every information stable channel W satisfies

= 1
C = limsupsup —I(X"; Y™").

n—oo Xn T
Proof:
1. [C <limsup,,_, ., supx.(1/n)[(X";Y™)]

By using a similar argument as in the proof of [14, Theorem 8, property h)], we have

1
I)(X;Y) < limsupsup —1(X"; Y™").

n—oo Xn 1

Hence,
n—oo xn 1

_ - 1
C =sup [H(X;Y) < limsupsup —I(X"; Y™").
X

2. [C > limsup,_,. supx.(1/n)I (X" Y™)]
Suppose X is the input process that makes the channel information stable. Fix & > 0.

Then for infinitely many n,

L. YN Ve ) ;
Pgoyyn [ﬁzxnwn(X ;Y") < (1 —¢)(limsupC,, —¢)

n—00
ey (XY
S PXan [ZX w (n ) < (1 —€)Cn]
i (X7 YT
= Piye [ZX Wn(C ) 1|

Since the channel is information stable, we get that

1 .
liminf Pgnyyn [ﬁzXan (X™"Y") < (1—¢)(limsupC,, — 5)] =0.

n—00 n—00

By the definition of C, the above immediately implies that
C=suply(X;Y) > I)(X;Y) > (1 —¢)(limsupC, —&).
X

n—0o0

Finally, the proof is completed by noting that ¢ can be made arbitrarily small. O

12



Observations:

e It is know that for discrete memoryless channels, the optimistic capacity C is equal
to the (conventional) capacity C' [14, 5]. The same result holds for modulo — ¢ addi-
tive noise channels with stationary ergodic noise. However, in general, C > C' since
L(X;Y) > [(X;Y) [3, 4].

e Remark that Theorem 11 in [13] holds if and only if
sup L(X;Y) = sup [y(X;Y).
X X

Furthermore, note that, if C = C and there exists an input distribution Py that

achieves C, then Px also achieves C.

V Examples

We provide four examples to illustrate the computation of C and C. The first two exam-
ples present information stable channels for which C' > C. The third example shows an
information unstable channel for which C = C. These examples indicate that information
stability is neither necessary nor sufficient to ensure that C' = C' or thereby the validity of
the classical source-channel separation theorem. The last example illustrates the situation
where 0 < C < C < Cg¢ < log, | V|, where Cgsc is the channel strong capacity®. We assume

in this section that all logarithms are in base 2 so that C' and C are measured in bits.

A. Information Stable Channels

Example 5.1 Consider a nonstationary channel W such that at odd time instances n =
1,3,---, W™ is the product of the transition distribution of a binary symmetric channel with
crossover probability 1/8 (BSC(1/8)), and at even time instances n = 2,4,6,---, W™ is the
product of the distribution of a BSC(1/4). It can be easily verified that this channel is
information stable. Since the channel is symmetric, a Bernoulli(1/2) input achieves C,, =
sup xn(1/n)1(X™;Y™); thus

1 —hy(1/8), for n odd;
" { 1 — hy(1/4), for n even,

3The strong (or strong converse) capacity Csc is defined [2] as the infimum of the numbers R for which
there exits v > 0 such that for all (n, M) codes with (1/n)log M > R—+, liminf, P™ = 1. This definition
of Cg¢ implies that for any sequence of (n, M) codes with liminf, ,.(1/n)log M > Csc, Pe(") >1—¢ for
every € > 0 and for n sufficiently large. It is shown in [2] that Csc = lim.4 C: = supx I(X;Y).

13



where hb(a)é — alogya — (1 — a)logy(1 — a) is the binary entropy function. Therefore,
C =liminf, ,o, C,, = 1 — hy(1/4) and C = limsup,,_,,, C,, =1 — hy(1/8) > C.

Example 5.2 Here we use the information stable channel provided in [13, Section III] to
show that C' > C. Let N be the set of all positive integers. Define the set J as

T 2 (neN: 2% <n<2it2 12012}
= {2,3,8,9,10,11,12,13,14,15,32,33,-- -, 63,128,129, - - -, 255, - - -}

Consider the following nonstationary symmetric channel W. At times n € J, W, is a
BSC(0), whereas at times n ¢ J, W, is a BSC(1/2). Put W™ =W, x W, x --- x W,,. Here
again C,, is achieved by a Bernoulli(1/2) input X”. We then obtain

Co= = 1KY = = [J() - (1) + (0= T () - (0)) = =2,

1 n n

SN

n

)

where J(n)é|J N{1,2,---,n}. It can be shown that

9 9llogan] 1
J(n) 1- 3% + 3 for |log, n| odd;

3 3. for |log, n| even.

Consequently, C' = lim inf, ,,, C, = 1/3 and C' = limsup,,_,,, C,, = 2/3.

B. Information Unstable Channels

Example 5.3 The Polya-contagion channel: Consider a discrete additive channel with bi-

nary input and output alphabet {0, 1} described by
}/;:Xz@Zz; i:1727"'7

where X;, Y; and Z; are respectively the ¢-th input, i-th output and i-th noise, and @ repre-
sents modulo-2 addition. Suppose that the input process is independent of the noise process.
Also assume that the noise sequence {Z,},>1is drawn according to the Polya contagion urn
scheme [1, 10], as follows: an urn originally contains R red balls and B black balls with
R < B; the noise just make successive draws from the urn; after each draw, it returns to
the urn 1 + A balls of the same color as was just drawn (A > 0). The noise sequence {Z;}

corresponds to the outcomes of the draws from the Polya urn: Z; = 1 if ith ball drawn is

14



red and Z; = 0, otherwise. Let péR/(R—I- B) and 5éA/(R+ B). It is shown in [1] that the
noise process {Z;} is stationary and nonergodic; thus the channel is information unstable.

From Lemma 2 and Section IV in [4, Part I], we obtain
1- ﬁlfs(Z) < CE <1- H(lfs)— (Z)7

and
1-H, (Z2)<C.<1-Hy .-(2).

It has been shown [1] that —(1/n)log Pzn(Z™) converges in distribution to the continuous
random variable Véhb(U), where U is beta-distributed (p/d, (1 — p)/J), and hy(-) is the

binary entropy function. Thus
HI—E(Z) - H(lfa)_ (Z) = ﬂle(Z) = ﬂ(lfa)* (Z) = F\;l(l - 6)7

where Fv(a)éPr{V < a} is the cumulative distribution function of V', and Fy/*(-) is its

inverse [1]. Consequently, C. = C. =1—F;'(1—¢),and C = C = lim. g1 — F;'(1—¢) = 0.

Example 5.4 Let Wi, W, ... consist of the channel in Example 5.2, and let Wl,WQ, .

consist of the channel in Example 5.3. Define a new channel W as follows:
ng:Wi and WQi_l :Vifz for ¢ = 1,2,"'.

As in the previous examples, the channel is symmetric, and a Bernoulli(1/2) input maximizes

the inf/sup information rates. Therefore for a Bernoulli(1/2) input X, we have

1. Pya(Y7|X7)
Prizlog L M) <y
T{n ©°8 Pyn(Yn) -

( 1 [ P (YV|X) Py (Y|X)
Pri— |log 22 2 ) 4 pg il 2 ) g
_ T{Qzlog Pr(Y P TRy | T
Pr{ 1 ll Py (Yi]X)
2t +1

, if n = 2

PAi Yi+1 Xi+1
Pyi (YZ) Pyi+1 (YH_ )

ge}, ifno=2i+1;

1 . 1
1 —Pr{——,logPZi(ZZ) <1-20+ —,J(i)}, if n = 2i;
7 (3

\

| | 1
1—Pr{— log Pyics (Z71) < 1 — (2— >9+ J(i)}, it =2i+1.

1+ 1 1+ 1 1+1

The fact that —(1/4) log[Pz:(Z")] converges in distribution to the continuous random variable
Véhb(U), where U is beta-distributed (p/d, (1 — p)/d), and the fact that

ligg%gf(l/n)](n) =1/3 and linmﬁs;}p(l/n)c](n) =2/3
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imply that

_ Al . 1 Py (Y™ X™) <5 )
0)=1 fPr{—log——————=> <60, =1—Fy (= —20
ixw(0) 1 1n T{n 0g Prn(Yn) = Vi3 )

and
_ AL 1. Pya(Y"X") <4 )
0)=1 Pr{iZlog—————2 <O, =1—-F,(=—20).
bxow (0)2 lim sup Pr {n og M < v (5
Consequently,
= o 1 2 1
L= - S F(L- d L= - SFM -
C ) (1—¢) an C ) (1—¢)
Thus 1
0<C:6<C_':—<Cgc——<log2|y|—1
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