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I IntroductionThe conventional de�nition of the minimum achievable �xed-length source coding rate Tfor a source Z [13, De�nition 4] requires the existence of reliable source codes for all su�-ciently large blocklengths. Alternatively, if it is required that reliable codes exist for in�nitelymany blocklengths, a new, more optimistic de�nition of source coding rate (denoted by T )is obtained [13]. Similarly, the optimistic capacity �C is de�ned by requiring the existence ofreliable channel codes for in�nitely many blocklengths, as opposed to the de�nition of theconventional channel capacity C [14, De�nition 1].This concept of optimistic source coding rate and capacity has recently been investigatedby Verd�u et.al for arbitrary (not necessarily stationary, ergodic, information stable, etc.)sources and single-user channels [13, 14]. More speci�cally, they establish an additionaloperational characterization for the optimistic minimum achievable source coding rate (T )by demonstrating that for a given channel, the classical statement of the source-channelseparation theorem1 holds for every channel if T = T [13]. In a dual fashion, they also showthat for channels with �C = C, the classical separation theorem holds for every source. Theyalso conjecture that T and �C do not seem to admit a simple expression.In this work, we demonstrate that T and �C do indeed have a general formula. Thekey to these results is the application of the generalized sup-information rate introduced in[3, 4] to the existing proofs by Verd�u and Han [14, 7] of the direct and converse parts ofthe conventional coding theorems. We also provide a general expression for the optimisticminimum "-achievable source coding rate and the optimistic "-capacity.In Section II, we briey introduce the generalized sup/inf-information/entropy rateswhich will play a key role in proving our optimistic coding theorems. In Section III, weprovide the optimistic source coding theorems. They are shown based on two recent boundsdue to Han [7] on the error probability of a source code as a function of its size. Inter-estingly, these bounds constitute the natural counterparts of the upper bound provided byFeinstein's Lemma and the Verd�u-Han lower bound to the error probability of a channel code.1By the \classical statement of the source-channel separation theorem," we mean the following. Givena source Z with (conventional) source coding rate T (Z) and channel W with capacity C, then Z can bereliably transmitted overW if T (Z) < C. Conversely, if T (Z) > C, thenZ cannot be reliably transmittedoverW . By reliable transmissibility of the source over the channel, we mean that there exits a sequence ofsource-channel codes such that the decoding error probability vanishes as the blocklength n!1 (cf [13]).
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Furthermore, we show that for information stable sources, the formula for T reduces toT = lim infn!1 1nH(Xn):This is in contrast to the expression for T , which is known to beT = lim supn!1 1nH(Xn):The above result leads us to observe that for sources that are both stationary and informationstable, the classical separation theorem is valid for every channel.In Section IV, we present (without proving) the general optimistic channel coding theo-rems, and prove that for the class of information stable channels the expression of �C becomes�C = lim supn!1 supXn 1nI(Xn;Y n);while the expression of C is C = lim infn!1 supXn 1nI(Xn;Y n):Finally, in Section V, we present examples for the computation of C and �C for informationstable as well as information unstable channels.II "-Inf/Sup-Information/Entropy RatesConsider an input process X de�ned by a sequence of �nite dimensional distributions [14]:X4= nXn = �X(n)1 ; : : : ; X(n)n �o1n=1. Denote by Y 4= nY n = �Y (n)1 ; : : : ; Y (n)n �o1n=1 the corre-sponding output process induced byX via the channelW 4=nW n = PY njXn : X n ! Yno1n=1,which is an arbitrary sequence of n-dimensional conditional distributions from X n to Yn,where X and Y are the input and output alphabets respectively. We assume throughoutthis paper that X and Y are �nite.In [8, 14], Han and Verd�u introduce the notions of inf/sup-information/entropy rates andillustrate the key role these information measures play in proving a general lossless (block)source coding theorem and a general channel coding theorem.The inf-information rate I(X ;Y ) (resp. sup-information rate �I(X;Y )) between pro-cesses X and Y is de�ned in [8] as the liminf in probability (resp. limsup in probability) ofthe sequence of normalized information densities (1=n) iXnWn(Xn;Y n), where1niXnWn(an; bn)4=1n log PY njXn(bnjan)PY n(bn) :2



When X is equal to Y , �I(X;X) (respectively, I(X;X)) is referred to as the sup (respec-tively, inf) entropy rate of X and is denoted by �H(X) (respectively, H(X)).The liminf in probability of a sequence of random variables is de�ned as follows [8]: if Anis a sequence of random variables, then its liminf in probability is the largest extended realnumber U such that, limn!1Pr[An < U ] = 0: (1)Similarly, its limsup in probability is the smallest extended real number �U such that,limn!1Pr[An > �U ] = 0: (2)Note that these two quantities are always de�ned; if they are equal, then the sequence ofrandom variables converges in probability to a constant.It is straightforward to deduce that equations (1) and (2) are respectively equivalent tolim infn!1 Pr[An < U ] = lim supn!1 Pr[An < U ] = 0; (3)and lim infn!1 Pr[An < �U ] = lim supn!1 Pr[An > �U ] = 0: (4)We can observe however that there might exist cases of interest where only the liminfsof the probabilities in (3) and (4) are equal to zero, while the limsups do not vanish. Thereare also other cases where both the liminfs and limsups in (3)-(4) do not vanish, but theyare upper bounded by a prescribed threshold ". Furthermore, there are situations where theinterval [U; �U ] does not contain only one point; for e.g., when An converges in distributionto another random variable. This remark constitutes the motivation to the recent work in[3, 4], where generalized versions of the inf/sub-information/entropy rates are established.De�nition 2.1 (Inf/sup spectrums [3, 4]) If fAng1n=1 is a sequence of random variablestaking values in a �nite set A, then its inf-spectrum u(�) and its sup-spectrum �u(�) are de�nedby u(�) 4= lim infn!1 PrfAn � �g;and �u(�) 4= lim supn!1 PrfAn � �g:In other words, u(�) and �u(�) are respectively the liminf and the limsup of the cumulativedistribution function (CDF) of An. Note that by de�nition, the CDF of An { PrfAn � �g {is non-decreasing and right-continuous. However, for u(�) and �u(�), only the non-decreasingproperty remains. 3



De�nition 2.2 (Quantile of inf/sup-spectrum [3, 4]) For any 0 � " � 1, the quantilesU " and �U" of the sup-spectrum and the inf-spectrum are de�ned byU "4=supf� : �u(�) � "g;and �U"4=supf� : u(�) � "g;respectively. It follows from the above de�nitions that U " and �U" are right-continuous andnon-decreasing in ". Note that Han and Verd�u's liminf/limsup in probability of An are specialcases of U " and �U". More speci�cally, the following holdU = U 0 and �U = �U1�;where the superscript \-" denotes a strict inequality in the de�nition of �U1� ; i.e.,�U"�4=supf� : u(�) < "g:Note also that U � U " � �U" � �U: Remark that U " and �U" always exist. For a betterunderstanding of the quantities de�ned above, we depict them in Figure 1. If we replace Anby the normalized information (resp. entropy) density, we get the following de�nitions.De�nition 2.3 ("-inf/sup-information rates [3, 4])The "-inf-information rate I"(X;Y ) (resp. "-sup-information rate �I"(X;Y )) betweenXand Y is de�ned as the quantile of the sup-spectrum (resp. inf-spectrum) of the normalizedinformation density. More speci�cally,I"(X;Y )4=supf� : �iXW (�) � "g;where �iXW (�)4= lim supn!1 Pr � 1niXnWn(Xn;Y n) � �� ; and�I"(X;Y )4=supf� : iXW (�) � "g;where iXW (�)4= lim infn!1 Pr � 1niXnWn(Xn;Y n) � �� :De�nition 2.4 ("-inf/sup-entropy rates [3, 4]) The "-inf-entropy rate H"(X) (resp. "-sup-entropy rate �H"(X)) for a source X is de�ned as the quantile of the sup-spectrum (resp.inf-spectrum) of the normalized entropy density. More speci�cally,H"(X)4=supf� : �hX(�) � "g;4



where �hX(�)4= lim supn!1 Pr� 1nhXn(Xn) � �� ; and�H"(X)4=supf� : hX(�) � "g;where hX(�)4= lim infn!1 Pr� 1nhXn(Xn) � �� ; and 1nhXn(Xn)4=1n log 1PXn(Xn) :
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U 1��U0 �U"U "Figure 1: The asymptotic CDFs of a sequence of random vari-ables fAng1n=1: �u(�) = sup-spectrum and u(�) = inf-spectrum.III Optimistic Source Coding TheoremsIn [13], Vembu et.al characterize the sources for which the classical separation theorem holdsfor every channel. They demonstrate that for a given sourceX, the separation theorem holdsfor every channel if its optimistic minimum achievable source coding rate (T (X)) coincideswith its conventional (or pessimistic) minimum achievable source coding rate (T (X)); i.e.,if T (X) = T (X).We herein establish a general formula for T (X). We prove that for any source X,T (X) = H1�(X):We also provide the general expression for the optimistic minimum "-achievable source codingrate. We show these results based on two new bounds due to Han (one upper bound andone lower bound) on the error probability of a source code [7, Chapter 1]. The upper bound(Lemma 3.1) consists of the counterpart of Feinstein's Lemma for channel codes (cf for5



example [14, Theorem 1]), while the lower bound (Lemma 3.2) consists of the counterpartof the Verd�u-Han lower bound on the error probability of a channel code ([14, Theorem 4]).As in the case of the channel coding bounds, both source coding bounds (Lemmas 3.1 and3.2) hold for arbitrary sources and for arbitrary �xed blocklength.De�nition 3.5 An (n;M) �xed-length source code for Xn is a collection of M n-tuplesC�n = fcn1 ; : : : ; cnMg. The error probability of the code is P (n)e 4=Pr [Xn 62 C�n] :De�nition 3.6 (Optimistic "-achievable source coding rate) Fix 0 < " < 1. R � 0is an optimistic "-achievable rate if, for every  > 0, there exists a sequence of (n;M)�xed-length source codes C�n such that1n logM < R +  and P (n)e � " for in�nitely many n:The in�mum of all "-achievable source coding rates for source X is denoted by T "(X). Alsode�ne T (X)4=sup0<"<1 T "(X) = lim"#0 T "(X) as the optimistic source coding rate.Lemma 3.1 (Lemma 1.5 in [7]) Fix a positive integer n. There exists an (n;M) sourceblock code C�n for PXn such that its error probability satis�esP (n)e � Pr � 1nhXn(Xn) > 1n logM� :Lemma 3.2 (Lemma 1.6 in [7]) Every (n;M) source block code C�n for PXn satis�esP (n)e � Pr � 1nhXn(Xn) > 1n logM + �� expf�ng;for every  > 0.We next use Lemmas 3.1 and 3.2 to prove general optimistic (�xed-length) source codingtheorems.Theorem 3.1 (Optimistic minimum "-achievable source coding rate formula)Fix 0 < " < 1. For any source X,H"�(X) � T 1�"(X) � H"(X):Note that actually T 1�"(X) = H"(X), except possibly at the points of discontinuities ofH"(X) (which are countable). 6



Proof :1. Forward part (achievability): T 1�"(X) � H"(X)We need to prove the existence of a sequence of block codes f C�ngn�0 such that, for every > 0, (1=n) log j C�nj < H"(X)+ and P (n)e � 1�" for in�nitely many n: Lemma 3.1 ensuresthe existence (for any  > 0) of a source block code C�n = (n; expfn(H" + =2)g) with errorprobability P (n)e � Pr � 1nhXn(Xn) > H" + 2� :Therefore, lim infn!1 P (n)e � lim infn!1 Pr� 1nhXn(Xn) > H" + 2�= 1� lim supn!1 Pr � 1nhXn(Xn) � H"(X) + 2�< 1� "; (5)where (5) follows from the de�nition of H"(X). Hence, P (n)e � 1� " for in�nitely many n.2. Converse part: T 1�"(X) � H"�(X)Assume without loss of generality that H"�(X) > 0. We will prove the converse by contra-diction. Suppose that T 1�"(X) < H"�(X). Then (9  > 0) T 1�"(X) < H"�(X)� 3. Byde�nition of T 1�"(X), there exists a sequence of codes C�n such that1n log j C�nj < [H"�(X)� 3] + and lim infn!1 P (n)e � 1� ": (6)By Lemma 3.2, P (n)e � Pr � 1nhXn(Xn) > 1n log j C�nj+ �� e�n� Pr � 1nhXn(Xn) > (H"�(X)� 2) + �� e�n:Therefore, lim infn!1 P (n)e � 1� lim supn!1 Pr �1nhXn(Xn) � H"�(X)� � > 1� ";where the last inequality follows from the de�nition of H"�(X). Thus, a contradiction to(6) is obtained. 7



3. Equality: H"(X) is a non-decreasing function of "; hence the number of discontinuouspoints is countable. For any continuous point ", we have that H"(X) = H"�(X); and thusT "(X) = H"(X): 2Theorem 3.2 (Optimistic minimum achievable source coding rate formula)For any source X, T (X) = H1�(X):Proof :By de�nition, T (X)4= sup0<"<1T "(X) � sup0<"<1H"�(X) � H1�(X):On the other hand, suppose that H1�(X) < T (X). Then 9  > 0 such thatH1�(X) < T (X)� :But by de�nition of T (X), there exists 0 < " = "() < 1 such thatT (X)�  < T "(X):Therefore, H1�(X) < T (X) �  < T "(X) � H1�"(X) � H1�(X); and a contradiction isobtained. 2We conclude this section by examining the expression of T (X) for information stablesources. It is already known (cf for example [13]) that for an information stable source X,T (X) = lim supn!1 1nH(Xn):We herein prove a parallel expression for T (X).De�nition 3.7 (Information stable sources [13]) A source X is said to be informationstable if H(Xn) > 0 for n su�ciently large, and hXn(Xn)=H(Xn) converges in probabilityto one as n!1, i.e.,lim supn!1 Pr "�����hXn(Xn)H(Xn) � 1����� > # = 0 8 > 0;where H(Xn) = E[hXn(Xn)] is the entropy of Xn.Lemma 3.3 Every information source X satis�esT (X) = lim infn!1 1nH(Xn):8



Proof :1. [T (X) � lim infn!1(1=n)H(Xn)]Fix " > 0 arbitrarily small. Using the fact that hXn(Xn) is a (�nite-alphabet) non-negative bounded random variable, we can write the normalized block entropy as1nH(Xn) = E �1nhXn(Xn)� = E �1nhXn(Xn) 1�0 � 1nhXn(Xn) � H1�(X) + "��+ E � 1nhXn(Xn) 1� 1nhXn(Xn) > H1�(X) + "�� : (7)From the de�nition of H1�(X), it directly follows that the �rst term in the right hand sideof (7) is upper bounded by H1�(X)+", and that the liminf of the second term is zero. ThusT (X) = H1�(X) � lim infn!1 1nH(Xn):2. [T (X) � lim infn!1(1=n)H(Xn)]Fix " > 0. Then for in�nitely many n,Pr(hXn(Xn)H(Xn) � 1 > ") = Pr � 1nhXn(Xn) > (1 + ")�1nH(Xn)��� Pr � 1nhXn(Xn) > (1 + ")�lim infn!1 1nH(Xn) + "�� :Since X is information stable, we obtain thatlim infn!1 Pr � 1nhXn(Xn) > (1 + ")�lim infn!1 1nH(Xn) + "�� = 0:By the de�nition of H1�(X), the above implies thatT (X) = H1�(X) � (1 + ")�lim infn!1 1nH(Xn) + "� :The proof is completed by noting that " can be made arbitrarily small. 2Observations:� If the source X is both information stable and stationary, the above Lemma yieldsT (X) = T (X) = limn!1 1nH(Xn):This implies that given a stationary and information stable source X, the classicalseparation theorem holds for every channel.9



� Recall that both Lemmas 3.1 and 3.2 hold not only for arbitrary sources X, but alsofor arbitrary �xed blocklength n. This leads us to conclude that they can analogouslybe employed to provide a simple proof to the conventional source coding theorems [8]:T (X) = �H(X);and �H"�(X) � T1�"(X) � �H"(X):IV Optimistic Channel Coding TheoremsIn this section, we state without proving the general expressions for the optimistic "-capacity2( �C") and for the optimistic capacity ( �C) of arbitrary single-user channels. The proofs of theseexpressions are straightforward once the right de�nition (of �I"(X;Y )) is made. They employFeinstein's Lemma and the Verd�u-Han lower bound ([14, Theorem 4]), and follow the samearguments used in [14] to show the general expressions of the conventional channel capacityC = supX I0(X;Y ) = supX I(X;Y );and the conventional "-capacitysupX I"�(X;Y ) � C" � supX I"(X;Y ):We close this section by proving the formula of �C for information stable channels.De�nition 4.8 (Channel block code) An (n;M) code for channel W n with input alpha-bet X and output alphabet Y is a pair of mappingsf : f1; 2; : : : ;Mg ! X nand g : Yn ! f1; 2; : : : ;Mg:Its average error probability is given byP (n)e 4= 1M MXm=1 Xfyn :g(yn)6=mgW n(ynjf(m)):2The authors would like to point out that the expression of �C" was also separately obtained in [11,Theorem 7]. 10



De�nition 4.9 (Optimistic "-achievable rate) Fix 0 < " < 1. R � 0 is an optimistic"-achievable rate if, for every  > 0, there exists a sequence of (n;M) channel block codessuch that logMn > R�  and P (n)e � " for in�nitely many n:De�nition 4.10 (Optimistic "-capacity �C") Fix 0 < " < 1. The supremum of optimistic"-achievable rates is called the optimistic "-capacity, �C".De�nition 4.11 (Optimistic capacity �C) The optimistic channel capacity �C is de�nedas the supremum of the rates that are optimistic "-achievable for all 0 < " < 1. It followsimmediately from the de�nition that �C = inf0<"<1 �C" = lim"#0 �C" and that �C is the supremumof all the rates R for which, for every  > 0, there exists a sequence of (n;M) channel blockcodes such that 1n logM > R�  and lim infn!1 P (n)e = 0:Theorem 4.3 (Optimistic "-capacity formula)Fix 0 < " < 1. The optimistic "-capacity �C" satis�essupX �I"�(X;Y ) � �C" � supX �I"(X;Y ): (8)Note that actually �C" = supX �I"(X;Y ), except possibly at the points of discontinuities ofsupX �I"(X;Y ) (which are countable).Theorem 4.4 (Optimistic capacity formula)The optimistic capacity �C satis�es�C = supX �I0(X;Y ):We next investigate the expression of �C for information stable channels. The expressionfor the capacity of information stable channels is already known (cf for example [13])C = lim infn!1 supXn 1nI(Xn;Y n);where Cn4=supXn 1nI(Xn;Y n):We prove a dual formula for �C. 11



De�nition 4.12 (Information stable channels [6, 9]) A channelW is said to be infor-mation stable if there exists an input process X such that 0 < Cn < 1 for n su�cientlylarge, and lim supn!1 Pr "����� iXnWn(Xn;Y n)nCn � 1����� > # = 0 8 > 0:Lemma 4.4 Every information stable channel W satis�es�C = lim supn!1 supXn 1nI(Xn;Y n):Proof :1. [ �C � lim supn!1 supXn(1=n)I(Xn;Y n)]By using a similar argument as in the proof of [14, Theorem 8, property h)], we have�I0(X;Y ) � lim supn!1 supXn 1nI(Xn;Y n):Hence, �C = supX �I0(X;Y ) � lim supn!1 supXn 1nI(Xn;Y n):2. [ �C � lim supn!1 supXn(1=n)I(Xn;Y n)]Suppose ~X is the input process that makes the channel information stable. Fix " > 0.Then for in�nitely many n,P ~XnWn � 1ni ~XnWn( ~Xn;Y n) � (1� ")(lim supn!1 Cn � ")�� P ~XnWn " i ~XnWn( ~Xn;Y n)n < (1� ")Cn#= P ~XnWn " i ~XnWn( ~Xn;Y n)nCn � 1 < �"# :Since the channel is information stable, we get thatlim infn!1 P ~XnWn � 1ni ~XnWn( ~Xn;Y n) � (1� ")(lim supn!1 Cn � ")� = 0:By the de�nition of �C, the above immediately implies that�C = supX �I0(X;Y ) � �I0( ~X;Y ) � (1� ")(lim supn!1 Cn � "):Finally, the proof is completed by noting that " can be made arbitrarily small. 212



Observations:� It is know that for discrete memoryless channels, the optimistic capacity �C is equalto the (conventional) capacity C [14, 5]. The same result holds for modulo � q addi-tive noise channels with stationary ergodic noise. However, in general, �C � C since�I0(X;Y ) � I(X;Y ) [3, 4].� Remark that Theorem 11 in [13] holds if and only ifsupX I(X;Y ) = supX �I0(X;Y ):Furthermore, note that, if �C = C and there exists an input distribution PX̂ thatachieves C, then PX̂ also achieves �C.V ExamplesWe provide four examples to illustrate the computation of C and �C. The �rst two exam-ples present information stable channels for which �C > C. The third example shows aninformation unstable channel for which �C = C. These examples indicate that informationstability is neither necessary nor su�cient to ensure that �C = C or thereby the validity ofthe classical source-channel separation theorem. The last example illustrates the situationwhere 0 < C < �C < CSC < log2 jYj, where CSC is the channel strong capacity3. We assumein this section that all logarithms are in base 2 so that C and �C are measured in bits.A. Information Stable ChannelsExample 5.1 Consider a nonstationary channel W such that at odd time instances n =1; 3; � � �, W n is the product of the transition distribution of a binary symmetric channel withcrossover probability 1/8 (BSC(1/8)), and at even time instances n = 2; 4; 6; � � �, W n is theproduct of the distribution of a BSC(1/4). It can be easily veri�ed that this channel isinformation stable. Since the channel is symmetric, a Bernoulli(1/2) input achieves Cn =supXn(1=n)I(Xn;Y n); thus Cn = ( 1� hb(1=8); for n odd;1� hb(1=4); for n even,3The strong (or strong converse) capacity CSC is de�ned [2] as the in�mum of the numbers R for whichthere exits  > 0 such that for all (n;M) codes with (1=n) logM > R�; lim infn!1 P (n)e = 1: This de�nitionof CSC implies that for any sequence of (n;M) codes with lim infn!1(1=n) logM > CSC , P (n)e > 1� " forevery " > 0 and for n su�ciently large. It is shown in [2] that CSC = lim""1 �C" = supX �I(X ;Y ):13



where hb(a)4= � a log2 a � (1 � a) log2(1 � a) is the binary entropy function. Therefore,C = lim infn!1Cn = 1� hb(1=4) and �C = lim supn!1Cn = 1� hb(1=8) > C.Example 5.2 Here we use the information stable channel provided in [13, Section III] toshow that �C > C. Let N be the set of all positive integers. De�ne the set J asJ 4= fn 2 N : 22i+1 � n < 22i+2; i = 0; 1; 2; : : :g= f2; 3; 8; 9; 10; 11; 12; 13; 14; 15; 32; 33; � � � ; 63; 128; 129; � � � ; 255; � � �g:Consider the following nonstationary symmetric channel W . At times n 2 J , Wn is aBSC(0), whereas at times n 62 J , Wn is a BSC(1/2). Put W n = W1 �W2 � � � � �Wn. Hereagain Cn is achieved by a Bernoulli(1/2) input X̂n. We then obtainCn = 1n nXi=1 I(X̂i;Yi) = 1n [J(n) � (1) + (n� J(n)) � (0)] = J(n)n ;where J(n)4=jJ \ f1; 2; � � � ; ngj. It can be shown thatJ(n)n = 8>>><>>>: 1� 23 � 2blog2 ncn + 13n; for blog2 nc odd;23 � 2blog2 ncn � 23n; for blog2 nc even:Consequently, C = lim infn!1Cn = 1=3 and �C = lim supn!1Cn = 2=3.B. Information Unstable ChannelsExample 5.3 The Polya-contagion channel: Consider a discrete additive channel with bi-nary input and output alphabet f0; 1g described byYi = Xi � Zi; i = 1; 2; � � � ;where Xi, Yi and Zi are respectively the i-th input, i-th output and i-th noise, and � repre-sents modulo-2 addition. Suppose that the input process is independent of the noise process.Also assume that the noise sequence fZngn�1is drawn according to the Polya contagion urnscheme [1, 10], as follows: an urn originally contains R red balls and B black balls withR < B; the noise just make successive draws from the urn; after each draw, it returns tothe urn 1 + � balls of the same color as was just drawn (� > 0). The noise sequence fZigcorresponds to the outcomes of the draws from the Polya urn: Zi = 1 if ith ball drawn is14



red and Zi = 0, otherwise. Let �4=R=(R+B) and �4=�=(R+B). It is shown in [1] that thenoise process fZig is stationary and nonergodic; thus the channel is information unstable.From Lemma 2 and Section IV in [4, Part I], we obtain1� �H1�"(Z) � C" � 1� �H(1�")�(Z);and 1�H1�"(Z) � �C" � 1�H(1�")�(Z):It has been shown [1] that �(1=n) logPZn(Zn) converges in distribution to the continuousrandom variable V 4=hb(U), where U is beta-distributed (�=�; (1 � �)=�), and hb(�) is thebinary entropy function. Thus�H1�"(Z) = �H(1�")�(Z) = H1�"(Z) = H(1�")�(Z) = F�1V (1� ");where FV (a)4=PrfV � ag is the cumulative distribution function of V , and F�1V (�) is itsinverse [1]. Consequently, C" = �C" = 1�F�1V (1�"); and C = �C = lim"#0 1�F�1V (1�") = 0.Example 5.4 Let ~W1; ~W2; : : : consist of the channel in Example 5.2, and let Ŵ1; Ŵ2; : : :consist of the channel in Example 5.3. De�ne a new channel W as follows:W2i = ~Wi and W2i�1 = Ŵi for i = 1; 2; � � � :As in the previous examples, the channel is symmetric, and a Bernoulli(1/2) input maximizesthe inf/sup information rates. Therefore for a Bernoulli(1/2) input X, we havePr( 1n log PWn(Y njXn)PY n(Y n) � �)= 8>>>><>>>>: Pr( 12i "log P ~W i(Y ijX i)PY i(Y i) + log PŴ i(Y ijX i)PY i(Y i) # � �) ; if n = 2i;Pr( 12i+ 1 "log P ~W i(Y ijX i)PY i(Y i) + log PŴ i+1(Y i+1jX i+1)PY i+1(Y i+1) # � �) ; if n = 2i+ 1;= 8>><>>: 1� Pr ��1i logPZi(Zi) < 1� 2� + 1i J(i)� ; if n = 2i;1� Pr �� 1i + 1 logPZi+1(Zi+1) < 1� �2� 1i + 1� � + 1i+ 1J(i)� ; if n = 2i+ 1:The fact that �(1=i) log[PZi(Zi)] converges in distribution to the continuous random variableV 4=hb(U), where U is beta-distributed (�=�; (1� �)=�), and the fact thatlim infn!1 (1=n)J(n) = 1=3 and lim supn!1 (1=n)J(n) = 2=315
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