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Low-Delay Joint Source-Channel Mappings for the Gaussian MAC
Johannes Kron, Fady Alajaji, and Mikael Skoglund

Abstract—The bivariate Gaussian multiterminal source coding
problem with transmission over the Gaussian multiple-access
channel is studied. We propose the use of low-delay joint source–
channel mappings and show how performance saturation, which
is unavoidable with linear transmission, can be overcome by
optimizing the mappings. The optimized mappings are in general
nonlinear and perform a combination of hard and soft decision
signaling for the error-resilient transmission of analog data.

Index Terms—Joint source-channel coding, low-delay trans-
mission, multi-terminal source coding, Gaussian multiple-access
channel, correlated sources, mean square error.

I. INTRODUCTION

WE study the bivariate Gaussian multiterminal source
coding problem with transmission over the Gaussian

multiple-access channel (MAC). This problem differs from the
chief executive officer (CEO) problem [1], [2] in that, here,
the source variable at each terminal should be estimated; in
contrast to the CEO problem where the terminals have access
to noisy observations of a single underlying source variable
that should be estimated.

For the CEO problem and the Gaussian MAC, it is known
that uncoded, or linear, transmission is optimal [3]. However,
in the multiterminal source coding problem, it has been shown
that linear transmission is optimal only for signal-to-noise
ratios (SNRs) below a certain threshold [4]. Motivated by low-
delay constraints, in for example sensor networks or closed-
loop control applications, we look at analog joint source–
channel mappings. There are several practical examples of
point-to-point communication with this kind of analog source–
channel mappings [5]–[12]. There are not as many results for
multi-user scenarios as considered in this paper; see [13]–[17]
for a few of the existing multi-user results.

In what follows, we explicitly design optimized, low-delay
transmission schemes for the Gaussian multiterminal source
coding problem and the Gaussian MAC. This problem was
also considered recently in [17], however using parametrized
mappings, and in [13], [16], assuming orthogonal channels.
The novel contribution of this paper is to consider numerically
optimized mappings for the interfering Gaussian MAC. We
show that the optimized mappings are in general nonlinear,
performing a combination of hard and soft decision signaling
for the error-resilient transmission of analog data.
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Fig. 1. Overview of the joint source–channel coding scheme for the Gaussian
MAC with correlated sources. (X̂1, X̂2, ) = β(Y ) = (β1(Y ), β2(Y )).

II. PROBLEM FORMULATION

We consider a scenario where two spatially separated sensor
nodes, each measure a Gaussian random variable Xi, which
is to be transmitted to a joint receiver. The Gaussian random
variables, X1 and X2, are identically distributed and have zero
mean and variance σ2

X . Furthermore, they are correlated with
a correlation coefficient defined by ρ � E[X1X2]/σ2

X .
Due to low-delay constraints, we consider transmission on a

sample-by-sample basis where sensor i maps its measurement
directly to the channel space by the mapping αi and transmits
Si = αi(Xi) ∈ R. The transmissions are made over the
Gaussian MAC and the received signal is given by

Y = α1(X1) + α2(X2) + V, (1)

as shown in Fig. 1, where V is additive white Gaussian
noise, independent of X1 and X2, with variance σ2

V . At the
receiver, the source variables (X1,X2) are reconstructed by
the mapping X̂i = βi(Y ), i = 1, 2. The overall objective is
to find the combination of (α1, α2,β1,β2) that minimizes the
average mean squared error, defined according to

MSE � 1

2

2∑
i=1

E[(Xi − X̂i)
2]. (2)

The minimization should be done under the following trans-
mission power constraint:1

1

2

2∑
i=1

E[‖αi(Xi)‖2] ≤ P. (3)

III. ANALYSIS

Using the Lagrange multiplier method [18], we turn the
constrained optimization problem of minimizing (2) subject
to (3) into an unconstrained problem by first forming the
Lagrange cost function

J(α1, α2,β1,β2) =

2∑
i=1

{1

2
E[(Xi − X̂i)

2] + λE[‖αi(Xi)‖2]
}

(4)

1It is possible to have individual power constraints on each transmitter;
the only minor modification that needs to be made in the analysis is to have
individual Lagrange multipliers (i.e., λ1 and λ2 instead of λ). Note that
individual power constraints are more restrictive and hence give higher MSE.
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and next expressing the problem as

min
α1,α2,β1,β2

J(α1, α2,β1,β2). (5)

Here λ ≥ 0 is a Lagrange multiplier that is used to control the
average power. If for a given λ, we solve the unconstrained
problem in (5) and find that the power constraint in (3) is
fulfilled with equality, the solution we have obtained is also a
solution to the constrained optimization problem [18].

The minimization problem in (5) is still very hard to solve
due to interdependencies between the components that are
optimized and since the problem is nonconvex. To get around
these difficulties we proceed as in vector quantization (VQ)
optimization [19], [20] and state necessary conditions for
the optimality of each component. Based on these necessary
conditions, we optimize the system iteratively, one component
at a time while keeping the other components fixed.

A. Necessary Conditions for Optimality

Beginning with α1, if we assume that (α2,β1,β2) are fixed,
the optimal α1 is given by

α1 = arg min
α1

J(α1, α2,β1,β2)

= arg min
α1

{ 2∑
i=1

(1

2
E[(Xi − X̂i)

2]︸ ︷︷ ︸
MSEi

)
+ λE[‖α1(X1)‖2]︸ ︷︷ ︸

P1

}
.

(6)

Using Bayes’ rule, the MSE of user i can be expressed as

MSEi =

∫
p(x1)

∫
p(x2|x1)×∫

p(y|α1(x1), α2(x2))(xi − βi(y))2dydx2dx1, (7)

where p(·) and p(·|·) denote probability densities and condi-
tional densities, respectively. The average power of user i is
given by

Pi =

∫
p(xi)‖αi(xi)‖2dxi. (8)

Looking at (7) and (8), we can see that the objective function
in (6) can be expressed as an integration over x1 with an
integrand of the form p(x1)f(x1). Since p(x1) by definition
is nonnegative for all x1, we can find the optimal α1 by
minimizing f(x1) for each value of x1 in the following way:

α1(x1) = arg min
s1∈R

{∫
p(x2|x1)

∫
p(y|s1, α2(x2))×

1

2

(
(x1 − β1(y))2 + (x2 − β2(y))2

)
dydx2 + λ‖s1‖2

}
.

(9)

This equation is a necessary condition for α1 to be part of
the optimal solution and if (α2,β1,β2) are given beforehand
it provides the optimal mapping α1. In a similar way, α2 can
be found by assuming that (α1,β1,β2) are fixed.

If we move on to the receiving side and assume that α1

and α2 are given, we can find the optimal estimators. Since
we are using the MSE as our cost function, βi is given by the
conditional expected mean

x̂i = βi(y) = E[Xi|y]. (10)

B. Design Algorithm

Based on the necessary conditions for optimality, we now
propose a design algorithm that iterates between optimizing
the mappings at the sensor nodes and the receiver. This kind
of iterative optimization does not in general guarantee conver-
gence to the global optimum. Nevertheless, it has successfully
been used in many applications such as VQ design [19], [20]
and design of joint source–channel mappings for different
scenarios, see for example [6], [15], [21]. For a fixed SNR
� P/σ2

V and source correlation ρ, the design procedure is
stated in Algorithm 1.

Algorithm 1 Design Algorithm

Require: Initial mappings of α1 and α2, the SNR and corre-
lation for which the system should be optimized and the
threshold δ that determines when to stop the iterations.

Ensure: Locally optimized (α1, α2,β1,β2).

1: Find the optimal receivers (β1,β2) by using (10).
2: Set the iteration index k = 0 and J (0) = ∞.
3: repeat
4: Set k = k + 1
5: Find the optimal source mapping α1 by using (9).
6: Find the optimal receivers (β1,β2) by using (10).
7: Find the optimal source mapping α2 by using (9).
8: Find the optimal receivers (β1,β2) by using (10).
9: Evaluate the cost function J (k) according to (4).

10: until (J (k−1) − J (k))/J (k−1) < δ

In our simulations we have used δ = 10−4 to determine
when to stop the iteration. It is clear that the algorithm will
converge since the cost function is bounded from below and
reduced by each iteration. We use a combination of two
methods to avoid poor local minimums. We first choose a
good initialization in the first step of the design algorithm,
see Section VI-A. We also use a post-processing step sim-
ilar to noisy channel relaxation [22]. Assume that we have
designed systems for a range of SNR points, for example
{10, 15, 20, 25} dB. We now initialize the algorithm with the
system designed for the smallest SNR and optimize for the
second smallest SNR. If the new system performs better than
the system that was previously optimized for this SNR point
we keep it. This process is repeated for each SNR point.
Once we reach the largest SNR point we repeat the process
backwards until we reach the smallest SNR. By stepping back
and forward a couple of times, we can avoid that a system
designed for a particular SNR performs much worse than any
other system. This process was also used in [21].

IV. LINEAR TRANSMISSION AND DISTORTION BOUND

The distortion region of this problem is in general unknown.
Since the sources are correlated and the communication is over
the Gaussian MAC, the source–channel separation theorem
does not hold. For the purpose of evaluating the performance
of our optimized solutions we compare the results to linear
transmission and the distortion lower bound from [4]. The
lower bound is tight for SNR = P/σ2

V ≤ ρ/(1−ρ2) in which
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case linear transmission is optimal. In [4], a joint source–
channel code is constructed that performs close to the lower
bound for high SNRs. However, both the lower bound and the
joint source–channel code rely on infinite block lengths.

V. IMPLEMENTATION ASPECTS

For the actual implementation of the formulas in (9)
and (10), we need to make some modifications and approxi-
mations. First, we restrict the output of αi to a finite set of
modulation points S given by

S =

{
−Δ

M − 1

2
,−Δ

M − 3

2
, . . . , Δ

M − 3

2
, Δ

M − 1

2

}
,

(11)

where Δ determines the resolution of the modulation points
and M is the number of points in S. As M and Δ approach
infinity and zero, respectively, we have analog modulation.2

We have kept Δ(M − 1)/2 = 4 and used an M in the
range [321, 1281] depending on the SNR. The M we have
chosen is such that there is no significant improvement in
using a larger value. The minimization in (9) is thus made
over s1 ∈ S. Similarly, the received signal y is pre-quantized
by a nearest neighbor quantizer to a finite set Y = {y : y =
s1 + s2, ∀s1, s2 ∈ S}. The receiver needs thus only to be
defined for a finite input set. Our final modification is to use
Monte–Carlo samples for (X1,X2); this allows us to write
discretized versions of (9) and (10). The value of the Lagrange
multiplier λ depends on the scenario; typical values that we
have used range from 4 · 10−6 to 0.1. In general, λ should be
decreased (increased) if the SNR or correlation is increased
(decreased). Better control of the final power consumption can
be achieved by increasing or decreasing λ in each iteration if
the total power is too low or too high, respectively. This is
particularly useful, if (as in this paper) the modulation points
are finite, P is fixed, and σ2

V is changed to give certain SNR.

VI. PERFORMANCE EVALUATION

A. Initialization

After running the design algorithm a couple of times, it
became clear that staircase functions are good starting points
for the iterative design procedure. We therefore initialize α1

with a staircase function with L steps. For |x1| ≤ 4, this can
be expressed as

α1(x1) =

⌊
QL(x1)

2

L − 1
max
s1∈S

s1

⌉
S

, (12)

where

QL(x1) =

⌊
x1

4

L − 1

2
− even(L)

2

⌉
Z

+
even(L)

2
, (13)

even(L) =

{
1 if L is even
0 otherwise,

(14)

and �·	S returns the closest point (in terms of Euclidean
distance) in the set S. The best choice of L typically depends
on both the correlation and the SNR. In our simulations we
have used L in the range from 2 to 20. The mapping α2 has
been initialized identical to zero for all inputs.

2Of course one has to make sure that 1/Δ does not grow faster than M
in which case the product ΔM → 0.

B. Numerical Results

In Fig. 2, we plot the results for two different source
correlations, namely, ρ = 0.5 and ρ = 0.9. The results
are plotted as SDR � 10 log10 σ2

X/MSE versus SNR. The
curves show practical systems where the encoders have been
optimized for certain SNR points that are marked by circles
in the figures. We assume that the true SNR is known by the
receiver and that the decoder is updated accordingly.

We can see that the optimized systems perform very well
and overcome the saturation that is unavoidable with linear
transmission. The systems are robust against SNR mismatch
on the transmitting side. The system performs about 0.6 −
1 dB better than the scalar quantizer linear coder (SQLC)
constructed in [17] for ρ = 0.5. When looking at ρ = 0.9 the
gain is about the same for low SNR but only slightly better at
high SNR where in fact the optimized encoders are similar to
SQLC. As predicted by the theoretical results in Section IV,
linear transmission works well in the low-SNR region. In a
real system where there are time variations, a feedback link
could be utilized to ensure that the best performing encoders
are always used. Since we are plotting the results as SDR,
the distortion lower bound mentioned in Section IV become
an SDR upper bound. It should be emphasized that the upper
bound is an asymptotic result in the sense of infinite block
lengths of the source samples as well as in the channel coding
part. The gap between the upper bound and our low-delay
system is therefore not surprising.

C. Encoders and Decoders

We shall now take a closer look at the encoder–decoder
structure. In Fig. 3, we show encoders (left) and decoders
(right) for different correlations and SNRs. The interaction
between the two encoders is easiest understood by looking
at the corresponding joint decoders to the right in Fig. 3.
The staircase-like encoder mappings perform a combination of
hard and soft decision signaling, which makes the reconstruc-
tion points fill the source space in an efficient way. This is the
reason why the optimized mappings perform better than linear
transmission where the decoder would be the straight line
X̂2 ≡ X̂1 regardless of the SNR and correlation. The power
allocated to the second user is in general decreased as the SNR
is increased and increased as the correlation is increased; for
example, given that ρ = 0.9, (P1, P2) = (1.54P, 0.46P ) at an
SNR of 20 dB and (P1, P2) = (1.94P, 0.06P ) at an SNR of
30 dB. An overall equal power allocation can be achieved by
means of time sharing.

VII. CONCLUSIONS

We have proposed the use of optimized source–channel
mappings for the bivariate Gaussian multiterminal source
coding problem with transmission over the Gaussian MAC.
The optimized nonlinear mappings fill a gap between linear
transmission and existing upper bounds. The main advantage
of the optimized mappings is their low-delay properties, due
to their operation on a sample-by-samples basis. Although we
focused on the matched bandwidth system (where one source
symbol is sent per channel use), similar results can be obtained
for the unequal bandwidth case.
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Fig. 2. Simulation results. Circles mark the points where the mappings are optimized. The results of [17] was kindly provided by P.A. Floor.
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(a) SNR = 15 dB, ρ = 0.5. P1 = 1.7P , P2 = 0.3P .
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Fig. 3. Encoders (left) and their corresponding decoders (right) optimized for different SNRs and correlations. In the figures to the right, the dotted lines
show reconstruction points (x̂1, x̂2) and the small dots are samples from the distribution of (X1,X2).
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