
Citation: Veiner, J.; Alajaji, F.;

Gharesifard, B. A Unifying Generator

Loss Function for Generative

Adversarial Networks. Entropy 2024,

26, 290. https://doi.org/10.3390/

e26040290

Academic Editor: Boris Ryabko

Received: 23 February 2024

Revised: 18 March 2024

Accepted: 22 March 2024

Published: 27 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A Unifying Generator Loss Function for Generative
Adversarial Networks
Justin Veiner 1, Fady Alajaji 1,* and Bahman Gharesifard 2

1 Department of Mathematics and Statistics, Queen’s University, Kingston, ON K7L 3N6, Canada;
justin.veiner@queensu.ca

2 Department of Electrical and Computer Engineering, University of California, Los Angeles, CA 90095, USA;
gharesifard@ucla.edu

* Correspondence: fa@queensu.ca

Abstract: A unifying α-parametrized generator loss function is introduced for a dual-objective
generative adversarial network (GAN) that uses a canonical (or classical) discriminator loss function
such as the one in the original GAN (VanillaGAN) system. The generator loss function is based
on a symmetric class probability estimation type function, Lα, and the resulting GAN system is
termed Lα-GAN. Under an optimal discriminator, it is shown that the generator’s optimization
problem consists of minimizing a Jensen- fα-divergence, a natural generalization of the Jensen-
Shannon divergence, where fα is a convex function expressed in terms of the loss function Lα.
It is also demonstrated that this Lα-GAN problem recovers as special cases a number of GAN
problems in the literature, including VanillaGAN, least squares GAN (LSGAN), least kth-order GAN
(LkGAN), and the recently introduced (αD, αG)-GAN with αD = 1. Finally, experimental results are
provided for three datasets—MNIST, CIFAR-10, and Stacked MNIST—to illustrate the performance
of various examples of the Lα-GAN system.

Keywords: generative adversarial networks; deep learning; parameterized loss functions; f -divergence;
Jensen- f -divergence

1. Introduction

Generative adversarial networks (GANs), first introduced by Goodfellow et al. in
2014 [1], have a variety of applications in media generation [2], image restoration [3], and
data privacy [4]. GANs aim to generate synthetic data that closely resemble the original
real data with (unknown) underlying distribution Px. The GAN is trained such that
the distribution of the generated data, Pg, approximates Px well. More specifically, low-
dimensional random noise is fed to a generator neural network G to produce synthetic data.
Real data and the generated data are then given to a discriminator neural network D that
scores the data between 0 and 1, with a score close to 1 meaning that the discriminator thinks
the data belong to the real dataset. The discriminator and generator play a minimax game,
where the aim is to minimize the generator’s loss and maximize the discriminator’s loss.

Since its initial introduction, several variants of GAN have been proposed. Deep
convolutional GAN (DCGAN) [5] utilizes the same loss functions as VanillaGAN (the
original GAN) while combining GANs with convolutional neural networks, which are
helpful when applying GANs to image data as they extract visual features from the data.
DCGANs are more stable than the baseline model but can suffer from mode collapse,
which occurs when the generator learns that a select number of images can easily fool the
discriminator, resulting in the generator only generating those images. Another notable
issue with VanillaGAN is the tendency for the generator network’s gradients to vanish.
In the early stages of training, the discriminator lacks confidence and assigns generated
data values close to zero. Therefore, the objective function tends to zero, resulting in small
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gradients and a lack of learning. To mitigate this issue, a non-saturating generator loss
function was proposed in [1] so that gradients do not vanish early on in training.

In the original (VanillaGAN) problem setup, the objective function, expressed as a
negative sum of two Shannon cross-entropies, is to be minimized by the generator and
maximized by the discriminator. It is demonstrated that if the discriminator is fixed to
be optimal (i.e., as a maximizer of the objective function), the GAN’s minimax game
can be reduced to minimizing the Jensen-Shannon divergence (JSD) between the real
and generated data’s probability distributions [1]. An analogous result was proven in [6]
for RényiGANs, a dual-objective GAN using distinct discriminator and generator loss
functions. More specifically, under a canonical discriminator loss function (as in [1]) and a
generator loss function expressed in terms of two Rényi cross-entropies, it is shown that
the RényiGAN optimization problem reduces to minimizing the Jensen-Rényi divergence,
hence extending VanillaGAN’s results.

Nowozin et al. generalized VanillaGAN by formulating a class of loss functions
in [7] parametrized by a lower semicontinuous convex function f , devising f -GAN. More
specifically, the f -GAN problem consists of minimizing an f -divergence between the true
data distribution and the generator distribution via a minimax optimization of a Fenchel
conjugate representation of the f -divergence, where the VanillaGAN discriminator’s role
(as a binary classifier) is replaced by a variational function estimating the ratio of the true
data and generator distributions. The f -GAN loss function may be tedious to derive, as
it requires computation of the Fenchel conjugate of f . It can be shown that f -GAN can
interpolate between VanillaGAN and HellingerGAN, among others [7].

More recently, α-GAN was presented in [8], for which the aim is to derive a class
of loss functions parameterized by α > 0 and expressed in terms of a class probability
estimation (CPE) loss between a real label y ∈ {0, 1} and predicted label ŷ ∈ [0, 1] [8].
The ability to control α as a hyperparameter is beneficial to be able to apply one sys-
tem to multiple datasets, as two datasets may be optimal under different α values. This
work was further analyzed in [9] and expanded in [10] by introducing the dual-objective
(αD, αG)-GAN, which allowed for the generator and discriminator loss functions to have
distinct α parameters with the aim of improving training stability. When αD = αG, the
α-GAN optimization reduces to minimizing an Arimoto divergence, as originally derived
in [8]. Note that α-GAN can recover several f -GANs, such as HellingerGAN, Vanilla-
GAN, WassersteinGAN, and total variation GAN [8]. Furthermore, in their more recent
work [11] that unifies [8–10], the authors establish, under some conditions, a one-to-one
correspondence between CPE-loss-based GANs (such as α-GANs) and f -GANs that use
a symmetric f -divergence (see Theorems 4–5 and Corollary 1 in [11]). They also prove
various generalization and estimation error bounds for (αD, αG)-GANs and illustrate their
ability to mitigate training instability for synthetic Gaussian data as well as the Celeb-A
and LSUN Classroom image datasets. The various (αD, αG)-GAN equilibrium results do
not provide an analogous result to JSD and Jensen-Rényi divergence minimization for
the VanillaGAN [1] and RényiGAN [6] problems, respectively, as they do not involve
a Jensen-type divergence. More specifically given a divergence measure D(p∥q) between
distributions p and q (i.e., a positive-definite bivariate function: D(p∥q) ≥ 0 with equality
if and only if (iff) p = q almost everywhere (a.e.)), a Jensen-type divergence of D is given by

1
2
D
(

p∥ p + q
2
)
+

1
2
D
(
q∥ p + q

2
)
;

i.e., it is the arithmetic average of two D-divergences: one between p and the mixture
(p + q)/2 and the other between q and (p + q)/2.

The main objective of our work is to present a unifying approach that provides an
axiomatic framework to encompass several existing GAN generator loss functions so that
GAN optimization can be simplified in terms of a Jensen-type divergence. In particular, our
framework classifies the set of α-parameterized CPE-based loss functions Lα, generalizing
the α-loss function in [8–11]. We then propose Lα-GAN: a dual-objective GAN that uses
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a function from this class for the generator and uses any canonical discriminator loss
function that admits the same optimizer as VanillaGAN [1]. We show that under some
regularity (convexity/concavity) conditions on Lα, the minimax game played with these
two loss functions is equivalent to the minimization of a Jensen- fα-divergence: a Jensen-type
divergence and another natural extension of the Jensen-Shannon divergence (in addition
to the Jensen-Rényi divergence [6]), where the generating function fα of the divergence
is directly computed from the CPE loss function Lα. This result recovers various prior
dual-objective GAN equilibrium results, thus unifying them under one parameterized
generator loss function. The newly obtained Jensen- fα-divergence, which is noted to belong
to the class of symmetric f -divergences with different generating functions (see Remark 1),
is a useful measure of dissimilarity between distributions as it requires a convex function
f with a restricted domain given by the interval [0, 2] (see Remark 2) in addition to its
symmetry and finiteness properties.

The rest of the paper is organized as follows. In Section 2, we review f -divergence
measures and introduce the Jensen- f -divergence as an extension of the Jensen-Shannon
divergence. In Section 3, we establish our main result regarding the optimization of our
unifying generator loss function (Theorem 1) and show that it can be applied to a large class
of known GANs (Lemmas 2–4). We conduct experiments in Section 4 by implementing
different manifestations of Lα-GAN on three datasets: MNIST, CIFAR-10, and Stacked
MNIST. Finally, we conclude the paper in Section 5.

2. Preliminaries

We begin by presenting key information measures used throughout the paper. Let
f : [0, ∞) → (−∞, ∞] be a convex continuous function that is strictly convex at 1 (i.e.,
f (λu1 + (1 − λ)u2) < λ f (u1) + (1 − λ) f (u2) for all u1, u2 ≥ 0, u1 ̸= u2, and λ ∈ (0, 1)
such that λu1 + (1 − λ)u2 = 1) and satisfying

f (1) = 0.

Note that the convexity of f already implies its continuity on (0, ∞). Here, the continuity
of f at 0 is extended, setting f (0) = limu↓0 f (u), which may be infinite. Otherwise, f (u) is
assumed to be finite for u > 0.

Definition 1 ([12–14]). The f -divergence between two probability densities p and q with common
support R ⊆ Rd on the Lebesgue measurable space (R,B(R), µ) is denoted by D f (p∥q) and
given by

D f (p∥q) =
∫
R

q f
(

p
q

)
dµ, (1)

where we have used the shorthand
∫
R g dµ :=

∫
R g(x) dµ(x), where g is a measurable function;

we follow this convention from now on. Here, f is referred to as the generating function of D f (p∥q).

For simplicity, we consider throughout densities with common supports. A compre-
hensive definition of f -divergence for arbitrary distributions can be found in Section III
of [15]. We require that f is strictly convex around 1 and that it satisfies the normalization
condition f (1) = 0 to ensure positive-definiteness of the f -divergence, i.e., D f (p∥q) ≥ 0
with equality holding iff p = q (a.e.). We present examples of f -divergences under various
choices of their generating function f in Table 1. We will be invoking these divergence
measures in different parts of the paper.
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Table 1. Examples of f -divergences.

f -Divergence Symbol Formula f (u)

Kullback–Leiber [16] KL
∫
R p log

(
p
q

)
dµ u log u

Jensen-Shannon [17] JSD 1
2 KL

(
p
∣∣∣∣ p+q

2

)
+ 1

2 KL
(

q
∣∣∣∣ p+q

2

)
1
2

(
u log u − (u + 1) log u+1

2

)
Pearson χ2 [18] χ2

∫
R

(q−p)2

p dµ
(√

x − 1√
x

)2

Pearson–Vajda (k > 1) [18] |χ|k
∫
R

|q−p|k
pk−1 dµ u1−k|1 − u|k

Arimoto (α > 0, α ̸= 1) [15,19,20] Aα
α

α−1

(∫
R(pα + qα)

1
α dµ − 2

1
α

)
α

α−1

(
(1 + u)

1
α − (1 + u)− 2

1
α + 2

)
Hellinger (α > 0, α ̸= 1) [15,21,22] Hα

1
α−1
(∫

R pαq1−α dµ − 1
) uα−1

α−1

The Rényi divergence of order α (α > 0, α ̸= 1) between densities p and q with
common support R is used in [6] in the RényiGAN problem; it is given by [23,24]

Dα(p∥q) =
1

α − 1
log
(∫

R
pαq1−α dµ

)
. (2)

Note that the Rényi divergence is not an f -divergence; however, it can be expressed as a
transformation of the Hellinger divergence (which is itself an f -divergence):

Dα(p∥q) =
1

α − 1
log(1 + (α − 1)Hα(p∥q)). (3)

We now introduce a new measure, the Jensen- f -divergence, which is analogous to the
Jensen-Shannon and Jensen-Rényi divergences.

Definition 2. The Jensen- f -divergence between two probability distributions p and q with
common support R ⊆ Rd on the Lebesgue measurable space (R,B(R), µ) is denoted by JD f (p∥q)
and given by

JD f (p∥q) =
1
2

D f

(
p
∣∣∣∣∣∣∣∣ p + q

2

)
+

1
2

D f

(
q
∣∣∣∣∣∣∣∣ p + q

2

)
, (4)

where D f (·∥·) is the f -divergence.

We next verify that the Jensen-Shannon divergence is a Jensen- f -divergence.

Lemma 1. Let p and q be two densities with common support R ⊆ Rd, and consider the function
f : [0, ∞) → (−∞, ∞] given by f (u) = u log u. Then we have that

JD f (p∥q) = JSD(p∥q). (5)

Proof. As f is convex (and continuous) on its domain with f (1) = 0, we have that

JSD(p∥q) =
1
2

KL
(

p
∣∣∣∣∣∣∣∣ p + q

2

)
+

1
2

KL
(

q
∣∣∣∣∣∣∣∣ p + q

2

)
=

1
2

∫
R

p log
(

2p
p + q

)
dµ +

1
2

∫
R

q log
(

2q
p + q

)
dµ

=
1
2

∫
R

p + q
2

(
2p

p + q
log
(

2p
p + q

))
dµ

+
1
2

∫
R

p + q
2

(
2q

p + q
log
(

2q
p + q

))
dµ

= JD f (p∥q).
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Remark 1 (Jensen- f -divergence is a symmetric f -divergence). Note that JD f (p∥q) is itself a
symmetric f -divergence (with a modified generating function). Indeed, given the continuous convex
function f that is strictly convex around 1 with f (1) = 0, consider the functions

f1(u) :=
u + 1

2
f
( 2u

u + 1

)
, u ≥ 0,

and
f2(u) :=

u + 1
2

f
( 2

u + 1

)
, u ≥ 0,

which are both continuous convex, strictly convex around 1, and satisfy f1(1) = f2(1) = 0. Now,
direct calculations yield that

D f

(
p
∣∣∣∣∣∣∣∣ p + q

2

)
= D f1(p∥q)

and

D f

(
q
∣∣∣∣∣∣∣∣ p + q

2

)
= D f2(p∥q).

Thus,

JD f (p∥q) =
1
2

D f1(p∥q) +
1
2

D f2(p∥q) = D f̄ (p∥q),

where f̄ := 1
2 ( f1 + f2), i.e.,

f̄ (u) =
u + 1

4

(
f
( 2u

u + 1

)
+ f

( 2
u + 1

))
, u ≥ 0, (6)

is also continuous convex, strictly convex around 1, and satisfies f̄ (1) = 0. Since by (4),

JD f (p∥q) = JD f (q∥p),

we conclude that the Jensen- f -divergence is a symmetric f̄ -divergence. An equivalent argument
is to note that f̄ = f̄ ⋆, where f̄ ⋆(u) := u f̄ ( 1

u ), u ≥ 0 (with f̄ ⋆(0) = limt→∞ f̄ (t)/t), which is a
necessary and sufficient condition for the f̄ -divergence to be symmetric (see p. 4399 in [15]).

Remark 2 (Domain of f ). Examining (4), we note that the Jensen- f -divergence between p and q
involves the f -divergences between either p or q and their mixture (p + q)/2. In other words, to
determine JD f (p∥q), we only need f

( 2p
p+q
)

and f
( 2q

p+q
)

when taking the expectations in (1). Thus,
it is sufficient to restrict the domain of the convex function f to the interval [0, 2].

3. Main Results

We now present our main theorem that unifies various generator loss functions under
a CPE-based loss function Lα for a dual-objective GAN, Lα-GAN, with a canonical discrim-
inator loss function that is optimized as in [1]. Under some regularity conditions on the loss
function Lα, we show that under the optimal discriminator, our generator loss becomes a
Jensen- f -divergence.

Let (X ,B(X ), µ) be the measured space of n × n × m images (where m = 1 for black
and white images and m = 3 for RGB images), and let (Z ,B(Z), µ) be a measured space
such that Z ⊆ Rd. The discriminator neural network is given by D : X → [0, 1], and the
generator neural network is given by G : Z → X . The generator’s noise input is sampled
from a multivariate Gaussian distribution Pz : Z → [0, 1]. We denote the probability
distribution of the real data by Px : X → [0, 1] and the probability distribution of the
generated data by Pg : X → [0, 1]. We also set Px and Pg as the densities corresponding to
Px and Pg, respectively. We begin by introducing the Lα-GAN system.
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Definition 3. Fix α ∈ A ⊆ R and let Lα : {0, 1} × [0, 1] → [0, ∞) be a loss function such
that ŷLα

(
1, ŷ

2
)

is a continuous function that is either convex or concave in ŷ ∈ [0, 2] with strict
convexity (respectively, strict concavity) around ŷ = 1 and such that Lα is symmetric in the sense
that

Lα(1, ŷ) = Lα(0, 1 − ŷ), ŷ ∈ [0, 1]. (7)

Then the Lα-GAN system is defined by (VD, VLα ,G), where VD : X ×Z → R is the discriminator
loss function, and VLα ,G : X ×Z → R is the generator loss function, which is given by

VLα ,G(D, G) = EA∼Px [−Lα(1, D(A))] +EB∼Pg [−Lα(0, D(B))]. (8)

Moreover, the Lα-GAN problem is defined by

sup
D

VD(D, G) (9)

inf
G

VLα ,G(D, G). (10)

We now present our main result about the Lα-GAN optimization problem.

Theorem 1. For a fixed α ∈ A ⊆ R and Lα : {0, 1} × [0, 1] → [0, ∞), let (VD, VLα ,G) be the loss
functions of Lα-GAN and consider joint optimization in (9)–(10). If VD is a canonical loss function
in the sense that it is maximized at D = D∗, where

D∗ =
Px

Px + Pg
, (11)

then (10) reduces to

inf
G

VLα ,G(D∗, G) = inf
G

2aJD fα
(Px∥Pg)− 2ab, (12)

where JD fα
(·∥·) is the Jensen- fα-divergence, and fα : [0, 2] → R is a continuous convex function

that is strictly convex around 1 and is given by

fα(u) = −u
(1

a
Lα

(
1,

u
2

)
− b
)

, (13)

where a and b are real constants chosen so that fα(1) = 0 with a < 0 (respectively, a > 0) if
uLα

(
1, u

2
)

is convex (respectively, concave). Finally, (12) is minimized when Px = Pg (a.e.).

Proof. Under the assumption that VD is maximized at D∗ = Px
Px+Pg

, we have that

VLα ,G(D∗, G) = EA∼Px [−Lα(1, D∗(A))] +EB∼Pg [−Lα(0, D∗(B))]

= −
∫
X

PxLα(1, D∗) dµ −
∫
X

PgLα(0, D∗) dµ

= −
∫
X

PxLα

(
1,

Px

Px + Pg

)
dµ −

∫
X

PgLα

(
0,

Px

Px + Pg

)
dµ

= −2
∫
X

(
Px + Pg

2

)
Px

Px + Pg
Lα

(
1,

Px

Px + Pg

)
dµ

− 2
∫
X

(
Px + Pg

2

)
Pg

Px + Pg
Lα

(
0,

Px

Px + Pg

)
dµ

(a)
= −2

∫
X

(
Px + Pg

2

)
Px

Px + Pg
Lα

(
1,

Px

Px + Pg

)
dµ

− 2
∫
X

(
Px + Pg

2

)
Pg

Px + Pg
Lα

(
1,

Pg

Px + Pg

)
dµ



Entropy 2024, 26, 290 7 of 24

(b)
= −2

∫
X

(
Px + Pg

2

)
Px

Px + Pg

−a fα

(
2Px

Px+Pg

)
2Px

Px+Pg

+ ab

 dµ

− 2
∫
X

(
Px + Pg

2

)
Pg

Px + Pg

−a fα

(
2Pg

Px+Pg

)
2Pg

Px+Pg

+ ab

 dµ

= 2a
(

1
2

∫
X

Px + Pg

2
fα

(
2Px

Px + Pg

)
dµ

+
1
2

∫
X

Px + Pg

2
fα

(
2Pg

Px + Pg

)
dµ

)
− 2ab

= 2a JD fα
(Px∥Pg)− 2ab,

where:

• (a) holds since Lα(1, u) = Lα(0, 1 − u) by (7), where u = Px
Px+Pg

.

• (b) holds by solving for Lα(1, u) in terms of fα(2u) in (13), where u = Px
Px+Pg

in the first

term and u =
Pg

Px+Pg
in the second term.

The constants a and b are chosen so that fα(1) = 0. Finally, the continuity and convexity
of fα (as well as its strict convexity around 1) directly follow from the corresponding
assumptions imposed on the loss function Lα in Definition 3 and on the condition imposed
on the sign of a in the theorem’s statement.

Remark 3. Note that not only D∗ given in (11) is an optimal discriminator of the (original)
VanillaGAN discriminator loss function, but it also optimizes the LSGAN/LkGAN discriminators
loss functions when their discriminators’ labels for fake and real data, γ and β, respectively satisfy
γ = 1 and β = 0 (see Section 3.3).

We next show that the Lα-GAN of Theorem 1 recovers as special cases a number of
well-known GAN generator loss functions and their equilibrium points (under an optimal
classical discriminator D∗).

3.1. VanillaGAN

VanillaGAN [1] uses the same loss function VVG for the both generator and discrimi-
nator, which is

VVG(D, G) = EA∼Px [− log D(A)] +EB∼Pg [− log(1 − D(B))] (14)

and can be cast as a saddle point optimization problem:

inf
G

sup
D

VVG(D, G). (15)

It is shown in [1] that the optimal discriminator for (15) is given by D∗ = Px
Px+Pg

, as in (11).
When D = D∗, the optimization reduces to minimizing the Jensen-Shannon divergence:

inf
G

VVG(D∗, G) = inf
G

2JSD(Px∥Pg)− 2 log 2. (16)

We next show that (16) can be obtained from Theorem 1.

Lemma 2. Consider the optimization of VanillaGAN given in (15). Then we have that

VVG(D∗, G) = 2JSD(Px∥Pg)− 2 log 2 = VLα ,G(D∗, G),

where Lα(y, ŷ) = −y log(ŷ)− (1 − y) log(1 − ŷ) for all α ∈ A = R.
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Proof. For any fixed α ∈ R, let the function Lα in (8) be as defined in the statement:

Lα(y, ŷ) = −y log(ŷ)− (1 − y) log(1 − ŷ).

Note that Lα is symmetric, since for ŷ ∈ [0, 1], we have that

Lα(1, ŷ) = − log(ŷ) = Lα(0, 1 − ŷ).

Instead of showing the continuity and convexity/concavity conditions imposed on ŷLα

(
1, ŷ

2
)

in Definition 3, we implicitly verify them by directly deriving fα from Lα using (13) and
showing that it is continuous convex and strictly convex around 1. Setting a = 1 and
b = log 2, we have that

fα(u) = −u
(

1
a
Lα

(
1,

u
2

)
− b
)

= −u
(
− log

u
2
− log 2

)
= u log u.

Clearly, f is convex (actually strictly convex on (0, ∞) and hence strictly convex around
1) and continuous on its domain (where f (0) = limu→0 u log(u) = 0). It also satisfies
f (1) = 0. By Lemma 1, we know that under the generating function f (u) = u log(u), the
Jensen- f divergence reduces to the Jensen-Shannon divergence. Therefore, by Theorem 1,
we have that

VLα ,G(D∗, G) = 2aJD fα
(Px∥Pg)− 2ab

= 2JSD(Px∥Pg)− 2 log 2

= VVG(D∗, G),

which finishes the proof.

3.2. α-GAN

The notion of α-GANs is introduced in [8] as a way to unify several existing GANs
using a parameterized loss function. We describe α-GANs next.

Definition 4 ([8]). Let y ∈ {0, 1} be a binary label, ŷ ∈ [0, 1], and fix α > 0. The α-loss between
y and ŷ is the map ℓα : {0, 1} × [0, 1] → [0, ∞) given by

ℓα(y, ŷ) =


α

α − 1

(
1 − yŷ

α−1
α + (1 − y)(1 − ŷ)

α−1
α

)
, α ∈ (0, 1) ∪ (1, ∞)

−y log ŷ − (1 − y) log(1 − ŷ), α = 1.
(17)

Definition 5 ([8]). For α > 0, the α-GAN loss function is given by

Vα(D, G) = EA∼Px [−ℓα(1, D(A))] +EB∼Pg [−ℓα(0, D(B))]. (18)

Joint optimization of the α-GAN problem is given by

inf
G

sup
D

Vα(D, G). (19)

It is known that α-GAN recovers several well-known GANs by varying the α param-
eter: notably, VanillaGAN (α = 1) [1] and HellingerGAN (α = 1

2 ) [7]. Furthermore, as
α → ∞, Vα recovers a translated version of the WassersteinGAN loss function [25]. We now
present the solution to the joint optimization problem presented in (19).

Proposition 1 ([8]). Let α > 0 and consider joint optimization of the α-GAN presented in (19).
The discriminator D∗ that maximizes the loss function is given by
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D∗ =
Px

α

Px
α + Pg

α . (20)

Furthermore, when D = D∗ is fixed, the problem in (19) reduces to minimizing an Arimoto
divergence (as defined in Table 1) when α ̸= 1:

inf
G

Vα(D∗, G) = inf
G

Aα(Px∥Pg) +
α

α − 1

(
2

1
α − 2

)
(21)

and a Jensen-Shannon divergence when α = 1:

inf
G

V1(D∗, G) = inf
G

JSD(Px∥Pg)− 2 log 2, (22)

where (21) and (22) achieve their minima iff Px = Pg (a.e.).

Recently, α-GAN was generalized in [10] to implement a dual-objective GAN, which
we describe next.

Definition 6 ([10]). For αD > 0 and αG > 0, the (αD, αG)-GAN’s optimization is given by

sup
D

VαD (D, G) (23)

inf
G

VαG (D, G) (24)

where VαD and VαG are defined in (18), with α replaced by αD and αG, respectively.

Proposition 2 ([10]). Consider the joint optimization in (23) and (24). Let parameters αD, αG > 0
satisfy (

αD ≤ 1, αG >
αD

αD + 1

)
or
(

αD > 1,
αD
2

< αG ≤ αD

)
. (25)

The discriminator D∗ that maximizes VαD is given by

D∗ =
Px

αD

Px
αD + Pg

αD
. (26)

Furthermore, when D = D∗ is fixed, the minimization of VαG in (24) is equivalent to the following
f -divergence minimization:

inf
G

VαG (D∗, G) = inf
G

D fαD ,αG
(Px∥Pg) +

α

α − 1

(
2

1
α − 2

)
, (27)

where fαD ,αG : [0, ∞) → R is given by

fαD ,αG (u) =
αG

αG − 1

uαD

(
1− 1

αG

)
+1

+ 1

(uαD + 1)1− 1
αG

. (28)

We now apply the (αD, αG)-GAN to our main result in Theorem 1 by showing that (12)
can recover (27) when αD = 1 (which corresponds to a VanillaGAN discriminator loss
function).

Lemma 3. Consider the (αD, αG)-GAN given in Definition 6. Let αD = 1 and αG = α > 1
2 . Then,

the solution to (24) presented in Proposition 2 is equivalent to minimizing a Jensen- fα-divergence:
specifically, if D∗ is the optimal discriminator given by (26), which is equivalent to (11) when
αD = 1, then Vα,G(D∗, G) in (27) satisfies
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Vα,G(D∗, G) = 2
1
α JD fα

(Px∥Pg) +
α

α − 1
(2

1
α − 2) = VLα ,G(D∗, G), (29)

where Lα(y, ŷ) = ℓα(y, ŷ), and

fα(u) =
α

α − 1

(
u2− 1

α − u
)

, u ≥ 0. (30)

Proof. We show that Theorem 1 recovers Proposition 2 by setting Lα(y, ŷ) = ℓα(y, ŷ). Note
that ℓα is symmetric since

ℓα(1, ŷ) =
α

α − 1
(1 − ŷ1− 1

α ) = ℓα(0, 1 − ŷ).

As in the proof of Lemma 2, instead of proving the conditions imposed on ŷLα

(
1, ŷ

2
)

in
Definition 3, we derive fα directly from Lα using (13) and show that it is continuous convex
and strictly convex around 1. From Lemma 2, we know that when α = 1, fα(u) = u log u
(which is strictly convex and continuous). For α ∈ (0, 1) ∪ (1, ∞), setting a = 2

1
α −1

and b = α
α−1

(
21− 1

α − 1
)

in (13), we have that

fα(u) = −u
(

1
a
Lα

(
1,

u
2

)
− b
)

= −u

(
21− 1

α
α

α − 1

(
1 −

(u
2

)1− 1
α

)
− α

α − 1
(21− 1

α − 1)

)
=

α

α − 1
(−u)[21− 1

α − u1− 1
α − (21− 1

α − 1)]

=
α

α − 1
(u2− 1

α − u).

Clearly, fα(1) = 0. Furthermore for α ̸= 1, we have that

f ′′α (u) =
(2α − 1)u

−1
α

α
, u ≥ 0,

which is positive for α > 1
2 , and fα is convex for α > 1

2 (as well as continuous on its domain
and strictly convex around 1). Thus, by Theorem 1, we have that

VLα ,G(D∗, G) = 2aJD fα
(Px∥Pg)− 2ab

= 2 · 2
1
α −1JD fα

(Px∥Pg)− 2
α

α − 1
2

1
α −1(21− 1

α − 1)

= 2
1
α JD fα

(Px∥Pg) +
α

α − 1
(2

1
α − 2).

We now show that the above Jensen- fα-divergence is equal to the f1,α-divergence originally
derived for the (1, α)-GAN problem of Proposition 2 (note from Proposition 2 that if αD = 1,
then αG = α > 1

2 , so the range of α concurs with the range required above for the convexity
of fα). For any two distributions p and q with common support X , we have that

D f1,α(p∥q) =
α

α − 1

∫
X

q

(
p
q

)2− 1
α
+ 1(

p
q + 1

)1− 1
α

dµ − α

α − 1
2

1
α

=
α

α − 1

∫
X

q

(
p
q

)2− 1
α
+ 1(

p+q
q

)1− 1
α

dµ − α

α − 1
2

1
α
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=
α

α − 1

∫
X

(
(p + q)

(
p

p + q

)2− 1
α

+ (p + q)
(

q
p + q

)2− 1
α

)
dµ

− α

α − 1
2

1
α

=
α

α − 1
2

22− 1
α

∫
X

(
p + q

2

(
2p

p + q

)2− 1
α

+
p + q

2

(
2q

p + q

)2− 1
α

)
dµ

− α

α − 1
2

1
α

=
α

α − 1
2

1
α −1

∫
X

(
p + q

2

((
2p

p + q

)2− 1
α

− 2p
p + q

)
+ p

)
dµ

+
α

α − 1
2

1
α −1

∫
X

(
p + q

2

((
2q

p + q

)2− 1
α

− 2q
p + q

)
+ q

)
dµ

− α

α − 1
2

1
α

=
α

α − 1
2

1
α

1
2

(∫
X

p + q
2

((
2p

p + q

)2− 1
α

− 2p
p + q

)
dµ + 1

)

+
α

α − 1
2

1
α

1
2

(∫
X

p + q
2

((
2q

p + q

)2− 1
α

− 2q
p + q

)
dµ + 1

)
− α

α − 1
2

1
α

= 2
1
α JD fα

(p∥q) +
α

α − 1
2

1
α −1(2)− α

α − 1
2

1
α

= 2
1
α JD fα

(p∥q).

Therefore, VLα ,G(D∗, G) = Vα(D∗, G).

Note that this lemma generalizes Lemma 2; VanillaGAN is a special case of (1, α)-GAN
for α = 1.

3.3. Shifted LkGANs and LSGANs

Least squares GAN (LSGAN) was proposed in [26] to mitigate the vanishing gradient
problem with VanillaGAN and to stabilize training performance. LSGAN’s loss function
is derived from the squared error distortion measure, whereby we aim to minimize the
distortion between the data samples and a target value we want the discriminator to assign
the samples to. LSGAN was generalized with LkGAN in [6] by replacing the squared error
distortion measure with an absolute error distortion measure of order k ≥ 1, therefore
introducing an additional degree of freedom to the generator’s loss function. We first state
the general LkGAN problem. We then apply the result of Theorem 1 to the loss functions of
LSGAN and LkGAN.

Definition 7 ([6]). Let γ, β, c ∈ [0, 1], and let k ≥ 1. LkGAN’s loss functions, denoted by
VLSGAN,D and Vk,G, are given by

VLSGAN,D(D, G) = −1
2
EA∼Px [(D(A)− β)2]− 1

2
EB∼Pg [(D(B)− γ)2] (31)

Vk,G(D, G) = EA∼Px [|D(A)− c|k] +EB∼Pg [|D(B)− c|k]. (32)

The LkGAN problem is the joint optimization

sup
D

VLSGAN,D(D, G) (33)
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inf
G

Vk,G(D, G). (34)

We next recall the solution to (33), which is a minimization of the Pearson–Vajda
divergence |χ|k(·∥·) of order k (as defined in Table 1).

Proposition 3 ([6]). Consider the joint optimization for LkGAN presented in (33). Then the
optimal discriminator D∗ that maximizes VLSGAN,D in (31) is given by

D∗ =
γPx + βPg

Px + Pg
. (35)

Furthermore, if D = D∗ and γ − β = 2(c − β), the minimization of Vk,G in (32) reduces to

inf
G

Vk,G(D, G) = inf
G

|c − β|k|χ|k(Px + Pg∥2Pg). (36)

Note that LSGAN [26] is a special case of LkGAN, as we recover LSGAN when
k = 2 [6].

By scrutinizing Proposition 3 and Theorem 1, we observe that the former cannot be
recovered from the latter. However, we can use Theorem 1 by slightly modifying the
LkGAN generator’s loss function. First, for the dual-objective GAN proposed in Theorem 1,
we need D∗ = Px

Px+Pg
. By (35), this is achieved for γ = 1 and β = 0. Then, we define the

intermediate loss function

Ṽk,G(D, G) = EA∼Px [|D(A)− c1|k] +EB∼Pg [|D(B)− c2|k]. (37)

Comparing the above loss function with (8), we note that setting c1 = 0 and c2 = 1 in (37)
satisfies the symmetry property of Lα. Finally, to ensure the generating function fα satisfies
fα(1) = 0, we shift each term in (37) by 1. Putting these changes together, we propose a
revised generator loss function denoted by V̂k,G and given by

V̂k,G(D, G) = EA∼Px [|D(A)|k − 1] +EB∼Pg [|1 − D(B)|k − 1]. (38)

We call a system that uses (38) as a generator loss function a Shifted LkGAN (SLkGAN).
If k = 2, we have a shifted version of the LSGAN generator loss function, which we call
Shifted LSGAN (SLSGAN). Note that none of these modifications alter the gradients
of Vk,G in (32), since the first term is independent of G, the choice of c1 is irrelevant,
and translating a function by a constant does not change its gradients. However, from
Proposition 3, for γ = 0, β = 1, and c = 1, we do not have that γ − β = 2(c − β), and as a
result, this modified problem does not reduce to minimizing a Pearson–Vajda divergence.
Consequently, we can relax the condition on k in Definition 7 to just k > 0. We now show
how Theorem 1 can be applied to Lα-GAN using (38).

Lemma 4. Let k > 0. Let VD be a discriminator loss function, and let V̂k,G be the generator’s loss
function defined in (38). Consider the joint optimization

sup
D

VD(D, G) (39)

inf
G

V̂k,G(D, G) (40)

If VD is optimized at D∗ = Px
Px+Pg

(i.e., VD is canonical), then we have that

V̂k,G(D∗, G) =
1

2k−1 JD fk
(Px∥Pg) +

1
2k−1 − 1

2
,

where fk is given by
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fk(u) = u(uk − 1), u ≥ 0.

Examples of VD(D, G) that satisfy the requirements of Lemma 4 include the LkGAN
discriminator loss function given by (31) with γ = 1 and β = 0 and the VanillaGAN
discriminator loss function given by (14).

Proof. Let k > 0. We can restate SLkGAN’s generator loss function in (38) in terms of VLα ,G
in (8): we have that VLα ,G(D∗, G) = V̂k,G(D∗, G), where α = k, and Lk : {0, 1} × [0, 1] →
[0, ∞) is given by

Lk(y, ŷ) = −(y(ŷk − 1) + (1 − y)((1 − ŷ)k − 1)). (41)

We have that Lk is symmetric, since

Lk(1, ŷ) = −(ŷk − 1) = Lk(0, 1 − ŷ).

We derive fα from Lα via (13) and directly check that it is continuous convex and strictly
convex around 1. Setting a = 1

2k and b = 2k − 1 in (13), we have that

fk(u) = −u
(

1
a
Lk

(
1,

u
2

)
− b
)

= −u
(

2k
(

1 −
(u

2

)k
)
− (2k − 1)

)
= −u(2k − uk − 2k + 1)

= u(uk − 1).

We clearly have that fk(1) = 0 and that fk is continuous. Furthermore, we have that
f ′′k (u) = k(k + 1)u, which is non-negative for u ≥ 0. Therefore, fk is convex (as well as
strictly convex around 1). As a result, by Theorem 1, we have that

V̂k,G(D∗, G) =
1

2k−1 JD fk
(Px∥Pg)−

1
2k−1 (2

k − 1)

=
1

2k−1 JD fk
(Px∥Pg) +

1
2k−1 − 1

2
.

We conclude this section by emphasizing that Theorem 1 serves as a unifying result
recovering the existing loss functions in the literature and, moreover, provides a way for
generalizing new ones. Our aim in the next section is to demonstrate the versatility of this
result in experimentation.

4. Experiments

We perform two experiments on three different image datasets that we describe below.

Experiment 1: In the first experiment, we compare (α, α)-GAN with (1, α)-GAN while
controlling the value of α. Recall that αD = 1 corresponds to the canonical VanillaGAN (or
DCGAN) discriminator. We aim to verify whether or not replacing an α-GAN discriminator
with a VanillaGAN discriminator stabilizes or improves the system’s performance depend-
ing on the value of α. Note that the result of Theorem 1 only applies to the (αD, αG)-GAN
for αD = 1. We herein confine the comparison of (1, α)-GAN with (α, α)-GAN only so that
both systems have the same tunable free parameter α. The results obtained in [10] for the
Stacked MNIST dataset show that (αD, αG)-GAN provides consistently robust performance
when αD = αG. Other experiments illustrating the performance of (αD, αG)-GAN with
αD ̸= 1 are carried for the Celeb-A and LSUN Classroom image datasets in [11] and show
improved training stability for αD < 1 values.
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Experiment 2: We train two variants of SLkGAN with the generator loss function as
described in (38) and parameterized by k > 0. We then utilize two different canonical dis-
criminator loss functions to align with Theorem 1. The first is the VanillaGAN discriminator
loss given by (14); we call the resulting dual-objective GAN Vanilla-SLkGAN. The second
is the LkGAN discriminator loss given by (31), where we set γ = 1 and β = 0 such that the
optimal discriminator is given by (11). We call this system Lk-SLkGAN. We compare the
two variants to analyze how the value of k and choice of discriminator loss impacts the
system’s performance.

4.1. Experimental Setup

We run both experiments on three image datasets: MNIST [27], CIFAR-10 [28], and
Stacked MNIST [29]. The MNIST dataset is a dataset of black and white handwritten
digits between 0 and 9 and with a size of 28 × 28 × 1. The CIFAR-10 dataset is an RGB
dataset of small images of common animals and modes of transportation with a size of
32× 32× 3. The Stacked MNIST dataset is an RGB dataset derived from the MNIST dataset
and constructed by taking three MNIST images, assigning each to one of the three color
channels, and stacking the images on top of each other. The resulting images are then
padded so that each one of them has a size of 32 × 32 × 3.

For Experiment 1, we use α values of 0.5, 5.0, 10.0, and 20.0. For each value of α, we
train (α, α)-GAN and (1, α)-GAN. We additionally train DCGAN, which corresponds to
(1, 1)-GAN. For Experiment 2, we use k values of 0.25, 1.0, 2.0, 7.5, and 15.0. Note that
when k = 2, we recover LSGAN. For the MNIST dataset, we run 10 trials with the random
seeds 123, 500, 1600, 199,621, 60,677, 20,435, 15,859, 33,764, 79,878, and 36,123 and train
each GAN for 250 epochs. For the RGB datasets (CIFAR-10 and Stacked MNIST), we run
five trials with the random seeds 123, 1600, 60,677, 15,859, and 79,878 and train each GAN
for 500 epochs. All experiments utilize an Adam optimizer for the stochastic gradient
descent algorithm with a learning rate of 2 × 10−4 and parameters β1 = 0.5, β2 = 0.999,
and ϵ = 10−7 [30]. We also experiment with the addition of a gradient penalty (GP); we
add a penalty term to the discriminator’s loss function to encourage the discriminator’s
gradient to have a unit norm [31].

The MNIST experiments were run on one 6130 2.1 GHz 1xV100 GPU, 8 CPUs, and
16 GB of memory. The CIFAR-10 and Stacked MNIST experiments were run on one Epyc
7443 2.8 GHz GPU, 8 CPUs, and 16 GB of memory. For each experiment, we report the best
overall Fréchet inception distance (FID) score [32], the best average FID score amongst all
trials and its variance, and the average epoch the best FID score occurs and its variance.
The FID score for each epoch was computed over 10,000 images. For each metric, the
lowest numerical value corresponds to the model with the best metric (indicated in bold
in the tables). We also report how many trials we include in our summary statistics, as it
is possible for a trial to collapse and not train for the full number of epochs. The neural
network architectures used in our experiments are presented in Appendix A. The training
algorithms are presented in Appendix B.

4.2. Experimental Results

We report the FID metrics for Experiment 1 in Tables 2–4 and for Experiment 2 in
Tables 5–7. We report only on those experiments that produced meaningful results. Models
that utilize a simplified gradient penalty have the suffix “-GP”. For (αD, αG)-GANs, we
display the output of the best-performing systems in Figure 1 and plot the trajectories of the
FID scores throughout the training epochs in Figure 2. Similarly for SLKGANs, outputs of
the best-performing systems and FID scores vs. epochs trajectories are provided in Figures 3
and 4, respectively.
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(a) (b)

(c)
Figure 1. Generated images for the best-performing (αD, αG)-GANs. (a) (αD, αG)-GAN for MNIST,
αD = 1.0, αG = 5.0, FID: 1.125. (b) (αD, αG)-GAN-GP for CIFAR-10, αD = 1.0, αG = 20.0, FID = 8.466.
(c) (αD, αG)-GAN-GP for Stacked MNIST, αD = 1.0, αG = 0.5, FID = 4.833.

Table 2. (αD, αG)-GAN results for MNIST.

(αD , αG)-GAN Best FID Score Average Best FID
Score

Best FID Score
Variance Average Epochs Epoch Variance

Number of
Successful Trials

(/10)

(1,0.5)-GAN 1.264 1.288 2.979 × 10−4 227.25 420.25 4
(0.5,0.5)-GAN 1.209 1.265 0.001 234.5 156.7 6

(1,5)-GAN 1.125 1.17 8.195 × 10−4 230.3 617.344 10

(1,10)-GAN 1.147 1.165 7.984 × 10−4 225.6 253.156 10
(10,10)-GAN 36.506 39.361 16.312 1.5 0.5 2

(1,20)-GAN 1.135 1.174 0.001 237.5 274.278 10
(20,20)-GAN 33.23 33.23 0.0 1.0 0.0 1

DCGAN 1.154 1.208 0.001 231.3 357.122 10

Table 3. (αD, αG)-GAN results for CIFAR-10.

(αD , αG)-GAN Best FID Score Average Best FID
Score

Best FID Score
Variance Average Epochs Epoch Variance

Number of
Successful Trials

(/5)

(1,0.5)-GAN-GP 10.551 14.938 12.272 326.2 1808.7 5
(0.5,0.5)-GAN-GP 13.734 14.93 0.517 223.6 11,378.3 5

(1,5)-GAN-GP 10.772 11.635 0.381 132.0 1233.5 5
(5,5)-GAN-GP 20.79 21.72 0.771 84.8 1527.2 5

(1,10)-GAN-GP 9.465 10.187 0.199 182.6 1096.3 5
(10,10)-GAN-GP 19.99 21.095 0.434 131.8 13,374.7 5

(1,20)-GAN-GP 8.466 10.217 1.479 216.2 6479.7 5
(20,20)-GAN-GP 19.378 21.216 2.315 138.2 29,824.2 5

DCGAN-GP 25.731 28.378 3.398 158.0 2510.5 5
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(a) (1, α)-GANs for MNIST. (b) (α, α)-GANs for MNIST.

(c) (1, α)-GAN-GPs, for CIFAR-10. (d) (α, α)-GAN-GPs for CIFAR-10.

(e) (1, α)-GAN-GPs for Stacked MNIST. (f) (α, α)-GAN-GPs for Stacked MNIST.

Figure 2. Average FID scores vs. epochs for various (αD, αG)-GANs.

Table 4. (αD, αG)-GAN results for Stacked MNIST.

(αD , αG)-GAN Best FID Score Average Best FID
Score

Best FID Score
Variance Average Epochs Epoch Variance

Number of
Successful Trials

(/5)

(1,0.5)-GAN-GP 4.833 4.997 0.054 311.5 23,112.5 2
(0.5,0.5)-GAN-GP 6.418 6.418 0.0 479.0 0.0 1

(1,5)-GAN-GP 7.98 7.988 1.357 × 10−4 379.5 11,704.5 2
(5,5)-GAN-GP 12.236 12.836 0.301 91.5 387.0 4

(1,10)-GAN-GP 7.502 7.528 0.001 326.5 14,280.5 2
(10,10)-GAN-GP 14.22 14.573 0.249 95.0 450.0 2

(1,20)-GAN-GP 8.379 8.379 0.0 427.0 0.0 1
(20,20)-GAN-GP 16.584 16.584 0.0 94.0 0.0 1

DCGAN-GP 7.507 7.774 0.064 303.4 11,870.8 5
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(a) (b)

(c)
Figure 3. Generated images for best-performing SLkGANs. (a) Vanilla-SLkGAN-0.25 for MNIST,
FID = 1.112. (b) Vanilla-SLkGAN-2.0 for CIFAR-10, FID = 4.58. (c) Vanilla-SLkGAN-15.0-GP for
Stacked MNIST, FID = 3.836.

Table 5. SLkGAN results for MNIST.

Variant-SLkGAN-k Best FID Score Average Best
FID Score

Best FID Score
Variance Average Epochs Epoch Variance

Number of
Successful Trials

(/10)

Lk-SLkGAN-0.25 1.15 1.174 6.298 × 10−4 224.3 940.9 10
Vanilla-SLkGAN-0.25 1.112 1.162 0.001 237.0 124.0 10

Lk-SLkGAN-1.0 1.122 1.167 8.857 × 10−4 233.0 124.0 10
Vanilla-SLkGAN-1.0 1.126 1.17 9.218 × 10−4 226.2 1182.844 10

Lk-SLkGAN-2.0 1.148 1.198 5.248 × 10−4 237.2 288.4 10
Vanilla-SLkGAN-2.0 1.124 1.184 8.933 × 10−4 237.8 138.4 10

Lk-SLkGAN-7.5 1.455 1.498 4.422 × 10−4 229.0 322.222 10
Vanilla-SLkGAN-7.5 1.439 1.511 0.001 212.2 1995.067 10

Lk-SLkGAN-15.0 1.733 1.872 0.005 198.8 1885.733 10
Vanilla-SLkGAN-15.0 1.773 1.876 0.005 171.6 3122.267 10

DCGAN 1.154 1.208 0.001 231.3 357.122 10

Table 6. SLkGAN results for CIFAR-10.

Variant-SLkGAN-k Best FID Score Average Best
FID Score

Best FID Score
Variance Average Epochs Epoch Variance Number of Suc-

cessful Trials (/5)

Lk-SLkGAN-1.0 4.727 118.242 10,914.643 60.8 1897.2 5
Vanilla-SLkGAN-1.0 4.821 5.159 0.092 88.0 506.5 5

Lk-SLkGAN-2.0 4.723 145.565 7492.26 73.2 3904.2 5
Vanilla-SLkGAN-2.0 4.58 5.1 0.261 105.4 740.8 5

Lk-SLkGAN-7.5 6.556 155.497 7116.521 254.6 18,605.3 5
Vanilla-SLkGAN-7.5 6.384 48.905 8698.195 72.2 1711.7 5

Lk-SLkGAN-15.0 8.576 145.774 5945.097 263.0 36,463.0 5
Vanilla-SLkGAN-15.0 7.431 50.868 8753.002 82.6 3106.8 5

DCGAN 4.753 5.194 0.117 88.6 462.8 5
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Table 6. Cont.

Variant-SLkGAN-k Best FID Score Average Best
FID Score

Best FID Score
Variance Average Epochs Epoch Variance Number of Suc-

cessful Trials (/5)

Lk-SLkGAN-0.25-GP 17.366 18.974 2.627 87.8 1897.2 5
Vanilla-SLkGAN-0.25-GP 16.013 17.912 1.961 189.0 9487.5 5

Lk-SLkGAN-1.0-GP 10.771 12.567 1.083 77.8 239.2 5
Vanilla-SLkGAN-1.0-GP 8.569 9.588 0.749 197.6 2690.3 5

Lk-SLkGAN-2.0-GP 23.11 25.013 1.924 75.4 658.8 5
Vanilla-SLkGAN-2.0-GP 28.215 29.69 1.242 232.0 20,438.5 5

Lk-SLkGAN-7.5-GP 33.304 41.48 49.187 82.8 1081.2 5
Vanilla-SLkGAN-7.5-GP 33.085 34.799 1.597 290.8 12,714.7 5

Lk-SLkGAN-15.0-GP 9.157 12.504 3.839 310.4 6976.8 5
Vanilla-SLkGAN-15.0-GP 7.283 8.568 1.535 185.6 5978.3 5

DCGAN-GP 25.731 28.378 3.398 158.0 2510.5 5

(a) Lk-SLkGANs for MNIST. (b) Vanilla-SLkGANs for MNIST.

(c) Lk-SLkGAN-GPs for CIFAR-10. (d) Vanilla-SLkGAN-GPs for CIFAR-10.

(e) Lk-SLkGAN-GPs for Stacked MNIST. (f) Vanilla-SLkGAN-GPs, Stacked MNIST.

Figure 4. FID scores vs. epochs for various SLkGANs.
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Table 7. SLkGAN results for Stacked MNIST.

Variant-SLkGAN-k Best FID Score Average Best
FID Score

Best FID Score
Variance Average Epochs Epoch Variance

Number of
Successful
Trials (/5)

Lk-SLkGAN-0.25-GP 10.541 11.824 0.678 113.6 356.3 5
Vanilla-SLkGAN-0.25-GP 5.197 5.197 0.0 496.0 0.0 1

Lk-SLkGAN-1.0-GP 11.545 12.046 0.291 89.0 238.5 5
Vanilla-SLkGAN-1.0-GP 7.475 7.626 0.045 177.0 3528.0 2

Lk-SLkGAN-2.0-GP 10.682 12.782 2.12 180.2 28,484.7 5
Vanilla-SLkGAN-2.0-GP 6.023 7.096 0.991 416.667 12,244.333 3

Lk-SLkGAN-7.5-GP 8.912 9.906 0.577 239.0 35,663.5 5
Vanilla-SLkGAN-7.5-GP 6.074 6.43 0.164 238.0 21,729.5 5

Lk-SLkGAN-15.0-GP 4.458 4.74 0.029 253.4 11,512.3 5
Vanilla-SLkGAN-15.0-GP 3.836 3.873 0.002 485.0 354.667 4

DCGAN-GP 7.507 7.774 0.064 303.4 11,870.8 5

4.3. Discussion
4.3.1. Experiment 1

From Table 2, we note that 37 of the 90 trials collapse before 250 epochs have passed
without a gradient penalty. The (5,5)-GAN collapses for all five trials, and hence, it is not
displayed in Table 2. This behavior is expected, as (α,α)-GAN is more sensitive to exploding
gradients when α does not tend to 0 or +∞ [8]. The addition of a gradient penalty could
mitigate the discriminator’s gradients diverging in the (5,5)-GAN by encouraging gradients
to have a unit norm. Using a VanillaGAN discriminator with an α-GAN generator (i.e.,
(1,α)-GAN) produces better quality images for all tested values of α compared to when
both networks utilize an α-GAN loss function. The (1,10)-GAN achieves excellent stability,
converging in all 10 trials, and also achieves the lowest average FID score. The (1,5)-GAN
achieves the lowest FID score overall, marginally outperforming DCGAN. Note that when
the average best FID score is very close to the best FID score, the resulting best FID score
variance is quite small (of the order of 10−3), indicating little statistical variability over the
trials.

Likewise, for the CIFAR-10 and Stacked MNIST datasets, (1,α)-GAN produces lower
FID scores than (α, α)-GAN (see Tables 3 and 4). However, both models are more stable
with the CIFAR-10 dataset. With the exception of DCGAN, no model converged to its best
FID score for all five trials with the Stacked MNIST dataset. Comparing the trials that
did converge, both (α, α)-GAN and (1, α)-GAN performed better on the Stacked MNIST
dataset than the CIFAR-10 dataset. For CIFAR-10, the (1,10)- and (1,20)-GANs produced
the best overall FID score and the best average FID score, respectively. On the other hand,
the (1,0.5)-GAN produced the best overall FID score and the best average FID score for the
Stacked MNIST dataset. We also observe a tradeoff between speed and performance for the
CIFAR-10 and Stacked MNIST datasets: the (1, α)-GANs arrive at their lowest FID scores
later than their respective (α, α)-GANs but achieve lower FID scores overall.

Comparing Figure 2c and Figure 2d, we observe that (α, α)-GAN-GP provides more
stability than (1, α)-GAN for lower values of α (i.e., α = 0.5), while (1, α)-GAN-GP exhibits
more stability for higher α values (α = 10 and α = 20). Figure 2e,f show that the two α-
GANs trained on the Stacked MNIST dataset exhibit unstable behavior earlier into training
when α = 0.5 or α = 20. However, both systems stabilize and converge to their lowest FID
scores as training progresses. The (0.5,0.5)-GAN-GP system in particular exhibits wildly
erratic behavior for the first 200 epochs then finishes training with a stable trajectory that
outperforms DCGAN-GP.

A future direction is to explore how the complexity of an image dataset influences the
best choice of α. For example, the Stacked MNIST dataset might be considered to be less
complex than CIFAR-10, as images in the Stacked MNIST dataset only contain four unique
colors (black, red, green, and blue), while the CIFAR-10 dataset utilizes significantly more
colors.
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4.3.2. Experiment 2

We see from Table 5 that all Lk-LkGANs and Vanilla-SLkGANs have FID scores com-
parable to the DCGAN. When k = 15, Vanilla-SLkGAN and Lk-SLkGAN arrive at their
lowest FID scores slightly earlier than DCGAN and other SLkGANs.

The addition of a simplified gradient penalty is necessary for Lk-SLkGAN to achieve
overall good performance on the CIFAR-10 dataset (see Table 6). Interestingly, Vanilla-
SLkGAN achieves lower FID scores without a gradient penalty for lower k values (k = 1, 2)
and with a gradient penalty for higher k values (k = 7.5, 15). When k = 0.25, both SLkGANs
collapsed for all five trials without a gradient penalty.

Table 7 shows that Vanilla-SLkGANs achieve better FID scores than their respective
Lk-LkGAN counterparts. However, Lk-LkGANs are more stable, as no single trial collapsed,
while 10 of the 25 Vanilla-SLkGAN trials collapsed before 500 epochs had passed. While all
Vanilla-SLkGANs outperform the DCGAN with a gradient penalty, Lk-SLkGAN-GP only
outperforms DCGAN-GP when k = 15. Except for when k = 7.5, we observe that the Lk-
SLkGAN system takes fewer epochs to arrive at its lowest FID score. Comparing Figure 4e
and Figure 4f, we observe that Lk-SLkGANs exhibit more stable FID score trajectories than
their respective Vanilla-SLkGANs. This makes sense, as the LkGAN loss function aims to
increase the GAN’s stability compared to DCGAN [6].

5. Conclusions

We introduced a parameterized CPE-based generator loss function for a dual-objective
GAN termed Lα-GAN that, when used in tandem with a canonical discriminator loss
function that achieves its optimum in (11), minimizes a Jensen- fα-divergence. We showed
that this system can recover VanillaGAN, (1, α)-GAN, and LkGAN as special cases. We
conducted experiments with the three aforementioned Lα-GANs on three image datasets.
The experiments indicate that (1, α)-GAN exhibits better performance than (α, α)-GAN
with α > 1. They also show that the devised SLkGAN system achieves lower FID scores
with a VanillaGAN discriminator compared with an LkGAN discriminator.

Future work consists of unveiling more examples of existing GANs that fall under our
result as well as applying Lα-GAN to novel, judiciously designed CPE losses Lα and evalu-
ating the performance (in terms of both quality and diversity of generated samples) and the
computational efficiency of the resulting models. Another interesting and related direction
is to study Lα-GAN within the context of f -GANs, given that the Jensen- f -divergence
is itself an f -divergence (see Remark 1), by systematically analyzing different Jensen- f -
divergences and the role they play in improving GAN performance and stability. Other
worthwhile directions include incorporating the proposed Lα loss into state-of-the-art GAN
models, such as, among others, BigGAN [33], StyleGAN [34], and CycleGAN [35], for high-
resolution data generation and image-to-image translation applications and conducting a
meticulous analysis of the sensitivity of the models’ performance to different values of the
α parameter and providing guidelines on how best to tune α for different types of datasets.
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Appendix A. Neural Network Architectures

We outline the architectures used for the generator and discriminator. For the MNIST
dataset, we use the architectures of [6]. For the CIFAR-10 and Stacked MNIST datasets, we

https://github.com/justin-veiner/MASc
https://github.com/justin-veiner/MASc
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base the architectures on [5]. We summarize some aliases for the architectures in Table A1.
For all models, we use a batch size of 100 and a noise size of 784 for the generator input.

Table A1. Summary of aliases used to describe neural network architectures.

Alias Definition

FC Fully Connected
UpConv2D Deconvolutional Layer

Conv2D Convolutional Layer
BN Batch Normalization

LeakyReLU Leaky Rectified Linear Unit

We omit the bias in the convolutional and deconvolutional layers to decrease the
number of parameters being trained, which in turn decreases computation times. We
initialize our kernels using a normal distribution with zero mean and variance 0.01. We
present the MNIST architectures in Tables A2 and A3 and the CIFAR-10 and Stacked MNIST
architectures in Tables A4 and A5.

Table A2. Discriminator architecture for the MNIST dataset.

Layer Output Size Kernel Stride BN Activation

Input 28 × 28 × 1 No
Conv2D 14 × 14 × 64 5 × 5 2 No LeakyReLU (0.3)

Dropout (0.3) No
Conv2D 7 × 7 × 128 5 × 5 2 No LeakyReLU (0.3)

Dropout(0.3) No
FC 1 No Sigmoid

Table A3. Generator architecture for the MNIST dataset.

Layer Output Size Kernel Stride BN Activation

Input 784
FC 7 × 7 × 256

UpConv2D 7 × 7 × 128 5 × 5 1 Yes LeakyReLU (0.3)
UpConv2D 14 × 14 × 64 5 × 5 2 Yes LeakyReLU (0.3)
UpConv2D 28 × 28 × 1 5 × 5 2 No Tanh

Table A4. Discriminator architecture for the CIFAR-10 and Stacked MNIST datasets.

Layer Output Size Kernel Stride BN Activation

Input 32 × 32 × 3
Conv2D 16 × 16 × 128 3 × 3 2 No LeakyReLU (0.2)
Conv2D 8 × 8 × 128 3 × 3 2 No LeakyReLU (0.2)
Conv2D 4 × 4 × 256 3 × 3 2 No LeakyReLU (0.2)

Dropout (0.4) No
FC 1 Sigmoid

Table A5. Generator architecture for the CIFAR-10 and Stacked MNIST datasets.

Layer Output Size Kernel Stride BN Activation

Input 784
FC 4 × 4 × 256

UpConv2D 8 × 8 × 128 4 × 4 2 Yes LeakyReLU (0.2)
UpConv2D 16 × 16 × 128 4 × 4 2 Yes LeakyReLU (0.2)
UpConv2D 32 × 32 × 128 4 × 4 2 Yes LeakyReLU (0.2)

Conv2D 32 × 32 × 3 3 × 3 1 No Tanh

Appendix B. Algorithms

We outline the algorithms used to train our models in Algorithms A1–A3.
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Algorithm A1 Overview of (αD, αG)-GAN training

Require αD, αG, number of epochs ne, batch size B, learning rate η
Initialize generator G with parameters θG, discriminator D with parameters θD.
for i = 1 to ne do

Sample batch of real data x = {x1, . . . , xB} from dataset
Sample batch of Gaussian noise vectors z = {z1, . . . , zB} ∼ N (0, I)
Update the discriminator’s parameters using an Adam optimizer with learning rate

η by descending the gradient:

∇θD

(
− 1

B

B

∑
i=1

(−ℓα(1, D(xi))− ℓα(0, D(G(zi))))

)

or update the discriminator’s parameters with a simplified GP:

∇θD

(
− 1

B

B

∑
i=1

(−ℓα(1, D(xi))− ℓα(0, D(G(zi))))

+5

(
B

∑
i=1

∣∣∣∣∣∣∣∣∇x log
(

D(x)
1 − D(x)

)∣∣∣∣∣∣∣∣2
2

))

Update the generator’s parameters using an Adam optimizer with learning rate η
and descending the gradient:

∇θG

(
1
B

B

∑
i=1

ℓα(0, D(G(zi)))

)

end for

Algorithm A2 Overview of Lk-SLkGAN training

Require k, number of epochs ne, batch size B, learning rate η
Initialize generator G with parameters θG, discriminator D with parameters θD.
for i = 1 to ne do

Sample batch of real data x = {x1, . . . , xB} from dataset
Sample batch of Gaussian noise vectors z = {z1, . . . , zB} ∼ N (0, I)
Update the discriminator’s parameters using an Adam optimizer with learning rate

η by descending the gradient:

∇θD

(
1
B

B

∑
i=1

(
1
2
(D(xi)− 1)2 +

1
2
(D(G(zi))

2)

))

or update the discriminator’s parameters with a simplified GP:

∇θD

(
1
B

B

∑
i=1

(
1
2
(D(xi)− 1)2 +

1
2
(D(G(zi))

2)

)

+5

(
B

∑
i=1

∣∣∣∣∣∣∣∣∇x log
(

D(x)
1 − D(x)

)∣∣∣∣∣∣∣∣2
2

))

Update the generator’s parameters using an Adam optimizer with learning rate η
and descending the gradient:

∇θG

(
1
B

B

∑
i=1

1
2
(|1 − D(G(zi))|k − 1)

)

end for
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Algorithm A3 Overview of Vanilla-SLkGAN training

Require k, number of epochs ne, batch size B, learning rate η
Initialize generator G with parameters θG, discriminator D with parameters θD.
for i = 1 to ne do

Sample batch of real data x = {x1, . . . , xB} from dataset
Sample batch of noise vectors z = {z1, . . . , zB} ∼ N (0, I)
Update the discriminator’s parameters using an Adam optimizer with learning rate

η by descending the gradient:

∇θD

(
− 1

B

B

∑
i=1

(log(D(xi)) + log(1 − D(G(zi))))

)

or update the discriminator’s parameters with a simplified (GP):

∇θD

(
− 1

B

B

∑
i=1

(log(D(xi)) + log(1 − D(G(zi))))

+5

(
B

∑
i=1

∣∣∣∣∣∣∣∣∇x log
(

D(x)
1 − D(x)

)∣∣∣∣∣∣∣∣2
2

))

Update the generator’s parameters using an Adam optimizer with learning rate η
and descending the gradient:

∇θG

(
1
B

B

∑
i=1

1
2
(|1 − D(G(zi))|k − 1)

)

end for
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