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On Decoding Binary Perfect and Quasi-Perfect
Codes Over Markov Noise Channels
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Abstract—We study the decoding problem when a binary linear
perfect or quasi-perfect code is transmitted over a binary channel
with additive Markov noise. After examining the properties of
the channel block transition distribution, we derive sufficient
conditions under which strict maximum-likelihood decoding is
equivalent to strict minimum Hamming distance decoding when
the code is perfect. Additionally, we show a near equivalence rela-
tionship between strict maximum likelihood and strict minimum
distance decoding for quasi-perfect codes for a range of channel
parameters and the code’s minimum distance. As a result, an
improved (complete) minimum distance decoder is proposed and
simulations illustrating its benefits are provided.

Index Terms—Binary channels with memory, Markov noise,
maximum likelihood decoding, minimum Hamming distance
decoding, linear block codes, perfect and quasi-perfect codes.

I. I NTRODUCTION

CONVENTIONAL communication systems employ cod-
ing schemes that are designed for memoryless channels.

However, since most real world channels have memory, in-
terleaving is used in an attempt to spread the channel noise
in a uniform fashion over the set of received words so that
the channel appears memoryless to the decoder. This in fact
adds more complexity and delay to the system, while failing
to exploit the benefits of the channel memory.

Progress has been achieved on the statistical and information
theoretic modeling of channels with memory (e.g., see [2],
[7], [11], [12]), as well as on the design of effective iterative
decoders for such channels (e.g., see [3], [4], [8], [9]). How-
ever, little is known about the structure of optimal maximum
likelihood (ML) decoders for such channels. We herein focus
on one of the simplest models for a channel with memory,
the binary channel with additive Markov noise and analyze
the performance of binary perfect and quasi-perfect codes,
which can be useful for complexity and delay constrained
applications such as wireless sensor networks. Since it is well
known that ML decoding of binary codes over the memoryless
binary symmetric channel (with bit error rate less than 1/2)
is equivalent to minimum Hamming distance decoding, it is
natural to investigate whether a relation exists between these
two decoding methods for the Markov noise channel. For such
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a channel (with memory), one would expect that ML decoding
is not equivalent to minimum distance decoding for general
codes; however, for certain codes with good (coset) properties
(such as perfect and quasi-perfect codes), some equivalency
may be established.

Indeed, we provide a partial answer to this problem by
showing (after elucidating some properties of the Markov
channel distribution) that the strict ML decoding of a binary
linear perfect code can be equivalent to its strict minimum dis-
tance decoding while the strict ML decoding of a quasi-perfect
code can be nearly equivalent to its strict minimum distance
decoding. As a result, we propose a (complete) decoder which
is an improved version of the minimum distance decoder, and
we illustrate its performance via simulation results.

In a related work [5], the optimality of the binary per-
fect Hamming codes and the near-optimality of subcodes of
Hamming codes are demonstrated for the same Markov noise
channel.

II. SYSTEM DEFINITION AND PROPERTIES

We consider a binary additive noise channel whose output
symbol Yk at time k is described byYk = Xk ⊕ Zk, k =
1, 2, · · · , where⊕ denotes addition modulo-2,Xk ∈ {0, 1}
is the kth input symbol andZk ∈ {0, 1} is the ith noise
symbol. We assume that the input and noise processes are
independent of each other, and that the noise process{Zk}

∞
k=1

is a stationary (first-order) Markov source with transition
probability matrix given by

Q = [Qij ] =

»

ε + (1 − ε)(1 − p) (1 − ε)p
(1 − ε)(1 − p) ε + (1 − ε)p

–

, (1)

where Qij , Pr(Zk = j|Zk−1 = i), i, j ∈ {0, 1}. Here
p = Pr(Zk = 1) is the channel bit error rate (CBER), and
ε , Cov(Zk, Zk−1)/V ar(Zk) = [Pr(Zk = 1, Zk−1 = 1) −
p2]/[p(1−p)] is the correlation coefficient of the noise process,
whereCov(Zk, Zk−1) , E[ZkZk−1] − E[Zk]E[Zk−1] is the
covariance ofZk andZk−1 andV ar(Zk) , E[Z2

k ]−E[Zk]2

is the variance ofZk . We assume that0 < p < 1/2 and that
0 ≤ ε < 1, ensuring that the noise process is irreducible.
When ε = 0, the noise process becomes independent and
identically distributed (i.i.d.) and the resulting channel reduces
to the (memoryless) binary symmetric channel with crossover
probability or CBERp (which we denote by BSC(p)). Note
that this (memory-one) Markov noise channel is a special case
of the Gilbert-Elliott channel [7] (realized when the probability
for causing an error equals zero in the “good state” and one
in the “bad state”).

For xn = (x1, · · · , xn) ∈ {0, 1}n andyn = (y1, · · · , yn) ∈
{0, 1}n, the channel block transition probabilityPr(Y n =
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yn|Xn = xn) can be expressed in terms of the channel noise
block distribution as follows

Pr(Y n = y
n|Xn = x

n) = Pr(Zn = z
n)

= L

n
Y

k=2

[zk−1ε + (1 − ε)p]zk

× [(1 − zk−1)ε + (1 − ε)(1 − p)]1−zk

wherezk = xk ⊕ yk, k = 1, · · · , n andL = Pr(Z1 = z1) =
pz1(1 − p)1−z1 .

Given zn = (z1, · · · , zn) ∈ {0, 1}n, let tij(zn) denote the
number of times two consecutive bits inzn are equal to(i, j),
wherei, j ∈ {0, 1}; i.e.,

t00(z
n) =

n−1
X

k=1

(1 − zk)(1 − zk+1), t11(z
n) =

n−1
X

k=1

zkzk+1,

t10(z
n) =

n−1
X

k=1

zk(1 − zk+1), t01(z
n) =

n−1
X

k=1

(1 − zk)zk+1.

In terms of thetij(zn)’s Pr(Zn = zn) can be written as

Pr(Zn = zn) = L [ε + (1 − ε)(1 − p)]t00 [(1 − ε)p]t01

× [(1 − ε)(1 − p)]t10 [ε + (1 − ε)p]t11 . (2)

But from the definition of thetij(zn)’s, we have the following.

t10(z
n) = n − 1 − w(zn) − t00(z

n) + z1 (3)

t01(z
n) = w(zn) − z1 − t11(z

n), (4)

where w(zn) =
∑n

k=1 zk is the Hamming weight ofzn.
Substituting (3) and (4) into (2) yields the following expression
for the noise block distribution, which will be instrumental in
our analysis:

Pr(Zn = zn) = (1 − ε)(n−1) (1 − p)n

»

p

1 − p

–w(zn)

×

»

ε + (1 − ε)(1 − p)

(1 − ε)(1 − p)

–t00(zn)»
ε + (1 − ε)p

(1 − ε)p

–t11(zn)

.(5)

The properties oft00(zn) and t11(zn) in terms of onlyn and
w(zn) are as follows.

1) If w(zn) = 0, thent00(z
n) = n − 1 and t11(z

n) = 0.
2) If 0 < w(zn) = l ≤ n − 1, then t00(z

n) ≤ n − l −
1 with equality if and only if all the 0’s inzn occur
consecutively. Alsot11(zn) ≤ l− 1 with equality if and
only if all the 1’s in zn occur consecutively.

3) If 0 < w(zn) = l ≤ n
2 , then t00(z

n) ≥ max{n − 2l −
1, 0} and t11(z

n) ≥ 0.
4) If n

2 < w(zn) = l ≤ n − 1, then t00(z
n) ≥ 0 and

t11(z
n) ≥ 2l − n − 1.

5) If w(zn) = n, thent11(z
n) = n − 1 and t00(z

n) = 0.

When there is no possibility for confusion, we will write
t00(z

n) and t11(z
n) as t00 and t11, respectively. We also

assume throughout that the blocklengthn ≥ 2.

III. A NALYSIS OF THE NOISE BLOCK DISTRIBUTION

Lemma 1:Let 0n be the all-zero word (of lengthn) and let
zn 6= 0n be any non-zero binary word. Then

Pr(Zn = zn) < Pr(Zn = 0n).

Proof: Using (2), we have

Pr(Zn = zn) = L [ε + (1 − ε)(1 − p)]t00 [(1 − ε)p]t01

× [(1 − ε)(1 − p)]t10 [ε + (1 − ε)p]t11

< (1 − p) [ε + (1 − ε)(1 − p)]t00

× [ε + (1 − ε)(1 − p)]t01

× [ε + (1 − ε)(1 − p)]t10

× [ε + (1 − ε)(1 − p)]t11

= (1 − p) [ε + (1 − ε)(1 − p)]t00+t01+t10+t11

= (1 − p) [ε + (1 − ε)(1 − p)]n−1

= Pr(Zn = 0n),

where the strict inequality holds sinceL = p < 1−p if z1 = 1,
and sincep < 1 − p with t01 > 0 (sincezn 6= 0n) if z1 = 0.

Lemma 2:Let zn
1 6= 0n be a non-zero noise word with

Hamming weightw(zn
1 ) < n, t00 = n − w(zn

1 ) − 1 and
t11 = w(zn

1 ) − 1 (i.e., zn
1 is of the form (11 · · · 100 · · · 0) or

(00 · · · 011 · · · 1) ). Let zn
2 be another non-zero noise word with

w(zn
2 ) = w(zn

1 ) but with different t00 and/or t11. Then, if
ε > 0,

Pr(Zn = zn
1 ) > Pr(Zn = zn

2 ).

Proof: From (5), we note thatPr(Zn = zn) strictly
increases with botht00 and t11 when the weight is kept
constant andε > 0. Sincezn

1 has maximum values for both
t00 andt11 amongst all noise words of weightw(zn

1 ) (but with
different t00 and/ort11), the strict inequality above follows.

Note that whenε = 0, obviously all noise words with the
same weight have identical distributions (since the channel
reduces to the BSC(p)).

Lemma 3:Suppose that

u < u
∗

,
ln

h

ε+(1−ε)(1−p)
(1−ε)(1−p)

i

+ ln
h

1−p

p

i

ln
h

ε+(1−ε)(1−p)
(1−ε)(1−p)

i

+ ln
h

ε+(1−ε)p
(1−ε)p

i − 1

and

0 < ε <
1 − 2p

2(1 − p)
.

Let zn be a noise word of weightw(zn) = m such that
0 ≤ m ≤ u + 1 ≤ n

2 . Then Pr(Zn = zn) > Pr(Zn = z̄n)
wherez̄n is any noise word with weightw(z̄n) = l > m.

Proof: First, note that the result directly holds ifm = 0
by Lemma 1. Now letzn be a noise word of nonzero weight
m ≤ u+1, and let̄zn be another noise word withw(z̄n) > m.
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Case 1:Assume thatw(z̄n) = m + i wherei ∈ {1, 2, ..., n −
m − 1}. Then by (5), we have

Pr(Zn = z̄n)

Pr(Zn = zn)
≤

»

ε + (1 − ε)(1 − p)

(1 − ε)(1 − p)

–m−i

×

»

ε + (1 − ε)p

(1 − ε)p

–m+i−1 „

p

1 − p

«i

≤

»

ε + (1 − ε)(1 − p)

(1 − ε)(1 − p)

–m−1

×

»

ε + (1 − ε)p

(1 − ε)p

–m „

p

1 − p

«

, f(m).

The first inequality follows from (5) and by applying the
bounds ont00 and t11 described at the end of the previous
section, while the second inequality follows by noting thatthe
right hand side of the first inequality decreases ini for a fixed
m. Sincef(m) is strictly increasing inm (when ε > 0), and
m≤ u + 1 < u∗ + 1, we obtain that

f(m) < f(u∗ + 1) = 1 ⇒
Pr(Zn = z̄n)

Pr(Zn = zn)
< 1.

Case 2:Assume thatw(z̄n) = n. Let ẑn be another noise
word with w(ẑn) = n − 1, t11(ẑ

n) = n − 2 and t00(ẑ
n) = 0.

Then
Pr(Zn = z̄n)

Pr(Zn = zn)
=

Pr(Zn = ẑn)

Pr(Zn = zn)

Pr(Zn = z̄n)

Pr(Zn = ẑn)

<
Pr(Zn = z̄n)

Pr(Zn = ẑn)

=

»

ε + (1 − ε)p

(1 − ε)p

– „

p

1 − p

«

=

»

ε + (1 − ε)p

(1 − ε)(1 − p)

–

< 1

where the first strict inequality holds sincePr(Zn = ẑn) <
Pr(Zn = zn) by Case 1, and the last strict inequality holds
sinceε < 1−2p

2(1−p) .

Remark:Note that the weight limitu∗ in the above lemma is
independent of the codeword length.

IV. D ECODING PERFECT ANDQUASI-PERFECTCODES

We next study the relationship between strict maximum
likelihood (SML) decoding and strict minimum (Hamming)
distance decoding for binary linear perfect and quasi-perfect
codes sent over the additive Markov noise channel. SML
decoding is an (incomplete) optimal decoder where optimality
is in the sense of minimizing the probability of codeword error
(PCE) when the codewords are equally likely (which we herein
assume).

Let Fn
2 = {0, 1}n denote the set of all binary words of

lengthn. A non-empty subsetC of Fn
2 is called a binary linear

code if it is a subgroup ofFn
2 . The elements ofC are called

codewords. We usually describeC with the triplet (n,M, d)
to indicate thatn is the blocklength of its codewords,M is its
size andd is its minimum Hamming distance; in other words,
d , minc1,c2∈C:c1 6=c2

d(c1, c2) whered(c1, c2) = w(c1 ⊕ c2)
is the Hamming distance betweenc1 andc2 and the modulo-2
operation is applied component-wise onc1 andc2.

Definition 1: [10], [6] An (n,M, d) linear codeC is said
to be aperfect codeif, for some non-negative integert, it has
all patterns (i.e., elements of{0, 1}n) of Hamming weightt
or less and no others as coset leaders.

Definition 2: [10], [6] An (n,M, d) binary linear codeC is
said to bequasi-perfect if, for some non-negative integert,
it has all patterns of weightt or less, some of weightt + 1,
and none of greater weight as coset leaders.

An equivalent definition for quasi-perfectness is that, for
some non-negative integert, C has a packing radius equal
to t and a covering radius equal tot + 1; i.e., the spheres
with (Hamming) radiust around the codewords ofC are
disjoint, and the spheres with radiust+1 around the codewords
cover{0, 1}n. On the other hand, perfectness means that both
packing and covering radii are equal. For these two classes
of codes,t =

⌊

d−1
2

⌋

(with d = 2t + 1 for perfect codes and
d = 2t + 1 or d = 2t + 2 for quasi-perfect codes).

The (2m − 1, 22m−1−m, 3) Hamming codes (m ≥ 2),
the (n, 2, n) repetition code withn odd and the(23, 212, 7)
Golay code are the only members of the family of binary
perfect linear codes. Examples of quasi-perfect binary linear
codes include the(n, 2, n) repetition codes withn even, the
(2m, 22m−1−m, 4) extended Hamming codes as well as the
(2m − 2, 22m−2−m, 3) shortened Hamming codes (m ≥ 2),
the(2m−1, 22m−1−2m, 5) double-error correcting BCH codes
(m ≥ 3), and the(24, 212, 8) extended Golay code.

Perfect codes as well as quasi-perfect codes are not powerful
error-correcting codes due to their small Hamming distances.
However, they can be useful in complexity and delay con-
strained applications where codes with short blocklengthsare
needed.

Suppose that a codeword of a quasi-perfect codeC is
transmitted over the Markov noise channel and thatyn is
received at the decoder. The following are possible decoding
rules one can use to recover the transmitted codeword.

• ML Decoding: yn is decoded into codewordc0 ∈ C if
Pr(Y n = yn|Xn = c0) ≥ Pr(Y n = yn|Xn = c) for
all c ∈ C. If there is more than one codeword for which
the above condition holds, then the decoder picks one of
such codewords at random.

• Strict ML (SML) Decoding:It is identical to the ML rule
with the exception of replacing the inequality with a strict
inequality; if no codewordc0 satisfies the strict inequality,
the decoder declares a decoding failure.

• Minimum Distance (MD) Decoding: yn is decoded into
codeword c0 ∈ C if w(c0 ⊕ y) ≤ w(c ⊕ y) for all
c ∈ C. If there is more than one codeword for which
the above condition holds, then the decoder picks one of
such codewords at random.

• Strict Minimum Distance (SMD) Decoding: It is iden-
tical to the MD rule with the exception of replacing
the inequality with a strict inequality; if no codeword
c0 satisfies the strict inequality, the decoder declares a
decoding failure.1

1Recall that the ML and MD decoders are complete decoders – i.e., they
always select a codeword to decode the received word – while the SML and
SMD decoders are incomplete decoders as they declare a decoding failure
when there are more than one codeword with minimal decoding metric.



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 4, APRIL 2009 876

Lemma 4:Let C be an(n,M, d) perfect code to be used
over the Markov noise channel. Assume that

—

d − 1

2

�

<
ln

h

ε+(1−ε)(1−p)
(1−ε)(1−p)

i

+ ln
h

1−p

p

i

ln
h

ε+(1−ε)(1−p)
(1−ε)(1−p)

i

+ ln
h

ε+(1−ε)p
(1−ε)p

i

and
0 < ε <

1 − 2p

2(1 − p)
.

Then SMD and SML decoding are equivalent.
Proof: First note that for perfect codes, the element within

each coset of minimum weight (i.e., the coset leader) is unique.
Also notice that the coset leader is of weight less than or equal
to ⌊(d−1)/2⌋ ≤ n/2. Assume thatyn is received; then∃ĉ ∈ C
which is unique such thatw(ĉ⊕yn) < w(c⊕yn) ∀ c ∈ C\{ĉ}.
Using Lemma 3 withu = ⌊(d − 1)/2⌋ − 1, we conclude that
∀ c ∈ C\{ĉ}

Pr(Zn = ĉ⊕ yn) > Pr(Zn = c⊕ yn)

⇔

Pr(Y n = yn|Xn = ĉ) > Pr(Y n = yn|Xn = c).

Hence, given a received wordyn, the codeword with the
smallest Hamming distance toyn will be the most likely
codeword that was sent over the channel amongst all the
codewords inC. Therefore, SMD and SML decoding are
equivalent.

Observations:

• The above lemma also proves that for perfect codes
MD and ML decoding are equivalent under the same
assumptions ond, ε andp. This is because for such codes
SMD and MD are the same due to the uniqueness of their
coset leaders which results in no ties in the MD decoder.
Similarly, the uniqueness of coset leaders coupled with
the proof of the above lemma also imply that SML and
ML are equivalent for the perfect codes under the range
of channel parameters given in the lemma.

• In a related work [5], Hamada showed that for the
Markov channel with a non-negative noise correlation
coefficient (i.e.,ε ≥ 0) and bit error ratep < 1/2,
the binary perfect Hamming codes (of minimum distance
3) are optimal (under ML decoding) in the sense of
minimizing the probability of decoding error amongst all
codes having the same blocklength and rate provided that
ε < (1−2p)/2(1−p). Thus, in light of the above lemma,
for a communication system employing codes with short
blocklength due to delay constraints, Hamming codes
used with MD decoding will be optimal over the Markov
noise channel amongst all codes of the same blocklength
and rate.

Lemma 5:Let C be an(n,M, d) binary linear quasi-perfect
code to be used over the Markov noise channel. Assume that

—

d − 1

2

�

<
ln

h

ε+(1−ε)(1−p)
(1−ε)(1−p)

i

+ ln
h

1−p

p

i

ln
h

ε+(1−ε)(1−p)
(1−ε)(1−p)

i

+ ln
h

ε+(1−ε)p
(1−ε)p

i − 1

and
0 < ε <

1 − 2p

2(1 − p)
.

Then, for a given wordyn received at the channel output, the
following hold.

(a) If ∃ ĉ ∈ C such thatw(ĉ⊕yn) < w(c⊕yn) ∀ c ∈ C\{ĉ},
then Pr(Y n = yn|Xn = ĉ) > Pr(Y n = yn|Xn = c)
∀ c ∈ C\{ĉ}.

(b) If ∃ ĉ ∈ C such thatPr(Y n = yn|Xn = ĉ) > Pr(Y n =
yn|Xn = c) ∀ c ∈ C\{ĉ}, then w(ĉ ⊕ yn) ≤ w(c ⊕
yn) ∀ c ∈ C.

Proof: (a) Let ĉ ∈ C such thatw(ĉ ⊕ yn) < w(c ⊕ yn)
∀ c ∈ C\{ĉ}. Obviously,ĉ⊕ yn is a coset leader, thusw(ĉ⊕
yn) ≤

⌊

d−1
2

⌋

+ 1 ≤ n
2 sinceC is quasi-perfect. By Lemma 3,

Pr(Zn = ĉ⊕ yn) > Pr(Zn = c⊕ yn) ∀c ∈ C ⇐⇒ Pr(Y n =
yn|Xn = ĉ) > Pr(Y n = yn|Xn = c) ∀ c ∈ C\{ĉ}.

(b) Let ĉ ∈ C such thatPr(Y n = yn|Xn = ĉ) > Pr(Y n =
yn|Xn = c) ∀ c ∈ C\{ĉ}. Assume that∃c̄ ∈ C\{ĉ} such
that w(c̄ ⊕ yn) < w(ĉ ⊕ yn); the existence of̄c is always
guaranteed by choosing it such thatc̄⊕ yn is the coset leader
of C ⊕yn. Thus, we can assume thatw(c̄⊕yn) ≤ n

2 since the
coset leader has weight less than or equal ton

2 (asC is quasi-
perfect). Then by Lemma 3,Pr(Zn = ĉ ⊕ yn) < Pr(Zn =
c̄⊕yn) ⇐⇒ Pr(Y n = yn|Xn = ĉ) < Pr(Y n = yn|Xn = c̄)
which contradicts our assumption thatĉ maximizesPr(yn|c)
over all codewords. Hence,w(ĉ⊕ yn) ≤ w(c⊕ yn) ∀ c ∈ C.

Note the above lemma implies that if a quasi-perfect code
has no decoding failures in its SMD decoder, then its SMD and
SML decoders are equivalent under the stated conditions on
the Markov channel parameters(p, ǫ) and the code’s minimum
distance.2 Inspired by the above result, Lemma 2 and (5), we
next propose the following complete decoder that improves
over MD decoding. It includes SMD decoding and exploits
the knowledge oft00 and t11 to resolve ties (which occur
when there are more than one codeword that are closest to the
received word).

MD+ Decoding: Assume thatyn is received at the channel
output. Suppose the decoder outputs the codewordc̃ satisfying
the MD decoding condition. If there is more than one such
codeword, then the decoder choosesc̃ that maximizest00(c̃⊕
yn)+t11(c̃⊕yn). If there is still a tie, then the decoder chooses
c̃ that maximizest11(c̃⊕yn). Finally, if there is still a tie, then
the codeword̃c is picked at random.3

V. SIMULATION RESULTS AND DISCUSSION

Given an(n,M, d) perfect (respectively, quasi-perfect) code
and a fixed CBERp, we let εt−1 (respectively,εt) be the
largestε for which Lemma 4 (respectively, Lemma 5) holds,
wheret , ⌊(d − 1)/2⌋. In Table I, we provide the values of
εt for t = 1, 2, 3 and different values ofp.

2In contrast, recall that for the BSC(p) with p < 1/2, SML and SMD
decoding are equivalent for all binary codes (the same equivalence also holds
between ML and MD decoding). Note also that whenε ↓ 0, the conditions
in the above lemma reduce to

j

d−1
2

k

< ∞, andp < 1
2

(which is consistent
with what was just mentioned).

3Clearly, MD+ and MD decoding are equivalent for the BSC, since for this
channel, it does not matter what codeword the decoder selectswhen there is
a tie (as long as it is one of the codewords closest to the received word).
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p ε0 ε1 ε2 ε3

1 × 10−3 499/999 0.3172 0.02843 0.08801
5 × 10−3 99/199 0.3152 0.05628 0.02277
1 × 10−2 49/99 0.3126 0.07297 0.03308
5 × 10−2 9/19 0.2918 0.11492 0.06644
1 × 10−1 4/9 0.2645 0.12367 0.07995

TABLE I
VALUES OF εt FOR DIFFERENTp AND t. LEMMA 4 HOLDS FOR ALL

ε ≤ εt−1 AND LEMMA 5 HOLDS FOR ALL ε ≤ εt .

 0.0001
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0.050.010.0050.0010.00050.0001

P
C

E

Channel Bit Error Rate (p)

MD (epsilon=0.1)
ML (epsilon=0.1)
MD (epsilon=0.5)
ML (epsilon=0.5)

Fig. 1. PCE vs CBERp under different decoding schemes for the
Hamming(15, 211, 3) code over the Markov channel with noise correlation
ε = 0.1, 0.5.
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ML decoding

Fig. 2. PCE vs CBERp under different decoding schemes for the Hamming
(8, 24, 4) code over the Markov channel with noise correlationǫ = 0.25.
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E

Channel Bit Error Rate (p)

MD decoding
MD+ decoding

ML decoding

Fig. 3. PCE vs CBERp under different decoding schemes for the BCH
(15, 27, 5) code over the Markov channel with noise correlationǫ = 0.05.

We first examine the perfect(15, 211, 3) Hamming code
under different channel conditions, and show that indeed MD
decoding and ML decoding are equivalent for the channel
conditions specified by Lemma 4, as illustrated in Table I.
A large sequence of a uniformly distributed binary i.i.d.
source was generated, encoded via one of these codes and
sent over the Markov channel. Typical values are shown for
ε ∈ {0.1, 0.5} in Fig. 1. Note thatε = 0.1 satisfies the
conditions of Lemma 4 whileε = 0.5 does not. The simulation
results show that MD and ML are identical for the caseε = 0.1
and almost identical atε = 0.5.

We next present simulation results for decoding two quasi-
perfect codes, the binary(8, 24, 4) extended Hamming code
and the(15, 27, 5) BCH code. For the Hamming code,t = 1;
thus the values forε1 in Table I provide the largest values
of ε for which Lemma 5 holds for different CBERsp. As
a result, we simulated the Hamming system for the 5 values
of p listed in Table I andε ∈ {0.05, 0.1, 0.2, 0.25}. Similarly,
sincet = 2 for the BCH code, the values forε2 apply, and the
BCH system was simulated forε = 0.05 and all values ofp in
Table I exceptp = 10−3. A typical Hamming code simulation
result is presented in Fig. 2 forε = 0.25, and the BCH code
simulation is shown in Fig. 3 forε = 0.05. The results indicate
that MD+ performs nearly identically to ML decoding and
provides significant gain over MD decoding. By comparing the
two figures, we also note that the performance gap between
MD and ML decoding decreases withε (which is consistent
with the fact that MD and ML decoding are equivalent when
ε = 0). Additional results are available in [1].

As this work is a basic first step towards understanding the
structure of ML decoders for channels with memory, there
are several directions for future work. For example, note that
one limitation of Lemmas 4 and 5 is that their conditions
are too stringent to accommodate codes with larger minimum
distance, unless if the channel correlationε is substantially
decreased towards 0, thus rendering the Markov channel nearly
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memoryless4 (e.g, see howεt decreases ast increases in
Table I). The determination of less stringent conditions is
an interesting topic for future work. Another possible future
direction is to design a decoder that exploits the memory
between blocks by using estimates of the previous noise
samples. This can result in an improved performance over
the block-by-block ML and MD+ methods (studied here) at
a cost of increased complexity. Finally, extending this work
to channels withM th order Markovian noise [12] or hidden
Markovian noise [7], which are good models for correlated
fading channels, may be a worthwhile endeavor.
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