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Abstract
We introduce a novel preferential attachment model using the draw variables of a modified Pólya urn with
an expanding number of colors, notably capable of modeling influential opinions (in terms of vertices of
high degree) as the graph evolves. Similar to the Barabási-Albert model, the generated graph grows in size
by one vertex at each time instance; in contrast however, each vertex of the graph is uniquely characterized
by a color, which is represented by a ball color in the Pólya urn. More specifically at each time step, we draw
a ball from the urn and return it to the urn along with a number of reinforcing balls of the same color; we
also add another ball of a new color to the urn. We then construct an edge between the new vertex (corre-
sponding to the new color) and the existing vertex whose color ball is drawn. Using color-coded vertices
in conjunction with the time-varying reinforcing parameter allows for vertices added (born) later in the
process to potentially attain a high degree in a way that is not captured in the Barabási-Albert model. We
study the degree count of the vertices by analyzing the draw vectors of the underlying stochastic process. In
particular, we establish the probability distribution of the random variable counting the number of draws
of a given color which determines the degree of the vertex corresponding to that color in the graph. We
further provide simulation results presenting a comparison between our model and the Barabási-Albert
network.
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1. Introduction
Preferential attachment graphs are an important class of randomly generated graphs which are
often used to capture the “rich gets richer” phenomenon. This class of random graphs has been
widely studied within the areas of statistical mechanics (Hartmann and Weigt, 2001; Tsallis and
Oliveira, 2022), network science (Csányi and Szendrői, 2004), probability theory (König, 2005;
Rácz and Sridhar, 2022), and game theory (Santos and Pacheco, 2005). One of the most popular
model of a preferential attachment graph is the so-called Barabási-Albert model (Barabási and
Albert, 1999), which has since been modified in a variety of ways (Zhongdong et al., 2012; Lin
et al. 2006; Alves et al., 2021). Various other models have been devised thereafter to generate pref-
erential attachment graphs, for example in Berger et al. (2005b) the growth of the random graph
is competition-based. Given a graph at a certain time step, the new vertex attaches itself to an
existing vertex which ends up minimizing a certain cost function. For a vertex, this cost func-
tion depends on its centrality and distance from the root ensuring that the vertices with higher
degrees have lower cost functions. In Krapivsky et al. (2000), a continuous-time equation govern-
ing the number of vertices with degree k is formulated to study citation networks. In Flaxman
et al. (2006), a randomly growing graph algorithm that combines the features of a geometric ran-
dom graph and a preferential attachment graph is analyzed. In Capocci et al. (2006), properties
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of Wikipedia are studied by representing topics as vertices and hyperlinks between them as edges.
Several preferential attachment hypergraphs (i.e., graphs in which an edge can join any number
of vertices) generating models have also been devised in the literature (Avin et al., 2019; Giroire
et al., 2022; Inoue et al., 2022).

Our main objective in this paper is to introduce a new preferential attachment graph-
generating algorithm using a modified Pólya urn model. In the classical two-color Pólya urn
model, at each time instant t, a ball is drawn from the urn and returned to the urn along with one
ball of the color drawn (Pólya, 1930;Mahmoud, 2008; Pemantle, 2007). In this sense, the Pólya urn
model is a suitable reinforcement process for modeling preferential phenomena. In particular, in
the context of randomly growing graphs, the reinforcements favor a high-degree vertex in getting
an even higher degree as the network grows. Indeed, Pólya urn models have been widely used to
model reinforcements, for instance, in communication channels (Alajaji and Fuja, 1994), image
segmentation (Banerjee et al., 1999), social and epidemic networks (Avin et al., 2020; Kim and Jo,
2010; Toivonen et al., 2006; Hayhoe et al., 2018; Singh et al., 2022c, a, b; Jadbabaie et al., 2023; He
et al., 2023), citation networks (Jeong et al., 2003; Milojević, 2010; Newman, 2001), actor collabo-
rations (Albert and Barabási, 2000; Jeong et al., 2003), mechanics (Albert and Barabási, 2002), and
polymer formations (Bhutani et al., 2022). Naturally, Pólya urns have been used to model prefer-
ential attachment graphs in the literature. For example, in Collevecchio et al. (2013) a generalized
Pólya urn process is used to devise a preferential attachment graph-generating algorithm (refer to
Chung et al., 2003; Oliveira, 2009 for a detailed description of this generalized Pólya urn process.)
In Berger et al. (2014), a preferential attachment-typemulti-graph (i.e., a graph that can havemore
than one edge between a pair of vertices) is constructed using different variations of the Pólya urn
process which was used to study the spread of viruses on the internet in Berger et al. (2005a). In
Marcaccioli and Livan (2019), the probability distribution of weights on the edges of a fixed net-
work is established via the draws of the classical two-color Pólya urn. This setup ensures that the
more two vertices have interacted in the past, the more likely they are to interact in the future.
More elaboration on the similarities between Pólya urns and preferential attachment graphs is
given in the survey in Pemantle (2007).

The Barabási-Albert model is well known to exhibit a power law distribution as the number of
vertices becomes sufficiently large, given by p(k)∼ k−3, where p(k) is the probability of randomly
selecting a vertex with degree k in the network. Despite the fact that this power law can be used
to study various properties of the Barabási-Albert model such as Hirsch index distribution and
the clustering coefficient, see Barabási (2009), Bollobás and Riordan (2004), Albert and Barabási
(2000) for definitions, the likelihood of vertices gaining new edges is solely determined by their
degree. This is not realistic, when modeling scenarios where newly added individuals are accom-
panied with impactful ideas that can lead to rapid or disruptive influence, regardless of their initially
low degree.

Motivated by the above-mentioned shortcoming of the Barabási-Albert model, in this paper,
we construct randomly growing undirected graphs using the draw variables of a single modified
Pólya urn with an expanding number of colors. The Pólya process is modified in the sense that
at each time instant, not only is a ball drawn and returned to the urn along with additional rein-
forcing balls of the same color but another ball of a new color is also added to the urn. This new
color corresponds to a new vertex which is added to the graph at this time instant. More specif-
ically, the network is generated by associating each incoming vertex to the new color ball added
after each draw and by attaching it to the existing vertex represented by the drawn color. The
number of colors in the urn grows without bound with the number of draws, and the generated
network has a preferential attachment property as the vertices corresponding to dominant colors
(i.e., colors in the urn with a large number of balls) are more likely to attract newly formed ver-
tices as their neighbors. The resulting preferential attachment growing graph is thus constructed
via a Pólya urn; this enables us to track and characterize the degree count of individual vertices in
the network through the draw variables of their corresponding colors giving each vertex a unique
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identity which is absent in the Barabási-Albert model. Moreover, using an expanding color Pólya
urn with each vertex uniquely corresponding to a ball color sets our model apart from other mod-
els in the literature (Collevecchio et al., 2013; Marcaccioli and Livan, 2019; Berger et al., 2005a)
which use either the classical two-color Pólya urns or a generalized version of Pólya urns (with
finitely many colors) for generating preferential attachment graphs. Indeed, the draw variables of
the Pólya urn capture the entire structure of the generated graph and hence it is enough to study
the behavior of these draw variables to understand the properties of the graph. Moreover, we use
an extra time-varying parameter to set the number of balls (not necessarily an integer) added to
the Pólya urn to reinforce the color of the drawn ball at each time instant. The time-varying nature
of this reinforcement parameter allows us for any given vertex to tweak the likelihood of ampli-
fying or dampening its degree of growth depending on the time at which it was introduced in
the network (i.e., its birth time). This feature can be used to regulate the dominance (in terms of
gaining edges) of high-degree vertices over low-degree ones in the generated preferential attach-
ment graph. Therefore, unlike the Barabási-Albert algorithm and the aforementionedmodels, our
model can be used to generate random networks with a variety of degree distributions catering to
a wide range of real-world growing networks other than power law distributions, including the
generation of networks where recently formed vertices can play a disruptive role. Furthermore,
we observe that in the special case of using a reinforcement parameter equal to 1, our model is
actually equivalent to the Barabási-Albert algorithm (except for the initialization step).

This paper is organized as follows. In Section 2, we describe our model for constructing prefer-
ential attachment-type graphs using a modified Pólya urn with expanding colors. We determine
the Pólya urn’s composition in terms of its draw random variables and use it to establish the con-
ditional distribution of the urn’s draw vector at a given time instant given all past draw vectors.
In Section 3, we define a counting random variable which tracks the degree of vertices in the
graph as it evolves and analytically derives its probability distribution. We further verify that the
resulting distribution expression of the counting random variable defines a legitimate probability
mass function over its support set. In Section 4, we present via simulations a detailed compari-
son of our model with the Barabási-Albert model by plotting the degree distribution and vertices’
average birth time for various choices of reinforcement parameters. We discuss the advantages of
generating preferential attachment networks through our model over the Barabási-Albert model.
Finally, conclusions are stated in Section 5.

2. The model
We construct a sequence of undirected graphs Gt , where t ≥ 0 denotes the time index, using a
Pólya reinforcement process. We start with G0 = (V0, E0), where the initial vertex and the edge set
are respectively, V0 = {c1} and E0 = {(1, 1)}, i.e., a self-loop on vertex 1. At each time step t ≥ 1, a
new vertex enters the graph and forms an edge with one of the existing vertices. The latter vertex
is selected according to the draw variable of a Pólya urn with an expanding number of colors as
follows:

• At time t = 0, the Pólya urn consists of a single ball of color c1.
• At each time instant t ≥ 1, we draw a ball and return it to the urn along with �t > 0 addi-
tional (reinforcing) balls of the same color. We also add a ball of a new color ct+1. We then
introduce a new vertex to the graph Gt−1 (corresponding to the color ct+1) and connect
it with the vertex whose color ball is drawn at time t. This results in the newly formed
graph Gt . Note that at time t = 0, the urn consists of only one c1 color ball. Hence, the draw
variable at time t = 1 is deterministic and corresponds to drawing a c1 color ball.

At any given time instant t, we define the draw random vector

Zt := (Z1,t , Z2,t , · · · , Zt,t)
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of length t, where

Zj,t =
{
1 if a cj color ball is drawn at time t
0 otherwise

for 1≤ j≤ t. (1)

The vector Zt is a standard unit vector for all time instances t ≥ 1, and since at time t = 1 there is
only c1 color ball present in the urn, Z1 = Z1,1 = 1. We denote the “composition” of the Pólya urn
at any given time instant t by the random vector

Ut :=
(
U1,t ,U2,t , · · · ,Ut+1,t

)
,

where

Uj,t = Number of balls of color cj in the urn at time t
Total number of balls in the urn at time t

, (2)

for 1≤ j≤ t + 1. In the following lemma, we express the vector Ut in terms of the draw variables.

Lemma 1. Given t ≥ 0, Ut is given by

Ut = 1

1+ t +
t∑

k=1
�k

(
1+

t∑
n=1

�nZ1,n, 1+
t∑

n=2
�nZ2,n, · · · , 1+

t∑
n=t−1

�nZt−1,n, 1+ �tZt,t , 1

)

(3)

almost surely.1

Proof. To compute the ratio in (2), recall that at time n= 0, we have one ball in the urn (this ball
is of color c1) and for each time instant n≥ 1, we add �n + 1 balls to the urn (�n of the color
drawn and 1 of the new color cn+1). Hence the total number of balls in the urn at time t is given
by 1+∑t

n=1 (�n + 1).
To determine the number of balls of color cj in the urn after the tth draw, we note that the first

cj color ball is added to the urn at time j− 1. After that, at every time instant n (where j≤ n≤ t)
at which a cj color ball is drawn, we add �n balls of cj color to the urn. Hence, the number of balls

of color cj in the urn at time t is equal to 1+
t∑

n=j
�nZj,n. Therefore, the ratio of color cj balls in the

urn at time t in (2) is given by:

Uj,t =
1+∑t

n=j �nZj,n

1+ t +
t∑

k=1
�k

for 1≤ j≤ t + 1, (4)

which yields (3).
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Remark 1. As expected, the sum of the components of Ut in (3) is one for all t ≥ 0. To see
this we first note that, for t = 0, U0 =U1,0 = 1. For any time t ≥ 1, we have the following
from (3):
t+1∑
j=1

Uj,t = 1

1+ t +
t∑

k=1
�k

(
(t + 1)+

t∑
n=1

�nZ1,n +
t∑

n=2
�nZ2,n + · · · +

t∑
n=t−1

�nZt−1,n + �tZt,t

)

= 1

1+ t +
t∑

k=1
�k

(
(t + 1)+

t∑
i=1

t∑
n=i

�nZi,t

)

= 1

1+ t +
t∑

k=1
�k

(
(t + 1)+

t∑
n=1

�n

t∑
i=n

Zi,t

)
(5)

but since Zt is a standard unit vector for all t ≥ 1, the right-hand side of (5) simplifies as follows:
t+1∑
j=1

Uj,t = 1

1+ t +
t∑

k=1
�k

(
(t + 1)+

t∑
n=1

�n

)
= 1.

An illustration of our model is given in Fig. 1 where we show a sample path of the random vectors
Ut and Zt , for t ≤ 3 and with �t = 2.

We further write the conditional probabilities of the draw variables given in the past. More
specifically, for 1≤ j≤ t, using (4), we have that

P(Zt = ej,t | Zt−1, Zt−2, · · · , Z1)= P
(
Zj,t = 1 | Zt−1, Zt−2, · · · , Z1

)
= P

(
a cj color ball is drawn at time t | Zt−1, Zt−2, · · · , Z1

)
=Uj,t−1 = 1+∑t−1

n=j �nZj,n

1+ (t − 1)+
t−1∑
k=1

�k

, (6)

where ej,t represents a standard unit vector of length t whose jth component is 1. Considering the
case where j= t in (6) and the convention that

∑t−1
n=t �nZt,n = 0, we obtain

Ut,t−1 = 1+∑t−1
n=t �nZt,n

t +
t−1∑
k=1

�k

= 1

t +
t−1∑
k=1

�k

= P(Zt,t = 1)

and hence

P
(
Zt,t = 1 | Zt−1, Zt−2, · · · , Z1

)= P
(
Zt,t = 1

)= 1
t +∑t−1

k=1 �k
, (7)

i.e., the conditional probability of drawing a ball of color ct at time t equals the marginal
probability of drawing a ball of color ct at time t. Similarly, we have that

P
(
Zt,t = 0 | Zt−1, Zt−2, · · · , Z1

)= P
(
Zt,t = 0

)= t − 1+∑t−1
n=1 �n

t +∑t−1
k=1 �k

, (8)

https://doi.org/10.1017/nws.2024.3 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2024.3


6 S. Singh et al.

Figure 1. We illustrate a sample path for constructing a preferential attachment graph using an expanding color Pólya urn
with �t = 2. For t= 0, the urn has only one ball of color c1. This urn corresponds to G0 and U0 = U1,0 = 1. For t= 1, the c1
color ball is drawn from and returned to the urn (i.e., Z1 = Z1,1 = 1). Two additional c1 color balls are added to the urn along
with a new c2 color ball and soU1 = (3/4, 1/4). For t= 2, a c2 color ball is drawn fromand returned to the urn (i.e., Z2 = (0, 1)).
Two additional c2 color balls are added to the urn along with a new c3 color ball; hence U2 = (3/7, 3/7, 1/7). For t= 3, a c1
color ball is drawn from and returned to the urn (i.e., Z3 = (1, 0, 0)). Two additional c1 color balls are added along with a new
c4 color ball; thus U3 = (5/10, 3/10, 1/10, 1/10).

implying that Zt,t is independent of the random vectors {Zt−1, Zt−2, · · · , Z1}. More generally, we
obtain the marginal probability for the random variable Zj,t for any 1≤ j≤ t by taking expectation
on both sides in (6) with respect to the random vectors Zt−1, Zt−2, · · · , Z1 as follows:

P
(
Zj,t = 1

)= E(Uj,t−1)=
1+∑t−1

n=j �nP(Zj,n = 1)

t +∑t−1
k=1 �k

= 1− P(Zj,t = 0) for 1≤ j≤ t. (9)

For j= t, the formula in (9) for P(Zt,t = 1) reduces to (7), but for j< t, the formula for
P
(
Zj,t = 1

)
is a recursive function of the marginal probabilities of past draw variables: P(Zj,1 =

1), · · · , P(Zj,t−1 = 1).
We further note that, for graph Gt , the edge between the new vertex to one of the existing

vertices in Gt−1 is made using the realization of the draw vector Zt . Using (6), we observe that the
conditional probability P

(
Zt = ej,t|Zt−1, · · · , Z1

)
can be written in terms of the draw variables

Zj,j, · · · , Zj,t−1. Hence, all the spatial information of the graph Gt is encoded in the sequence of
random draw vectors {Z1, . . . , Zt−1, Zt}. We illustrate this property in the following example,
where we retrieve the graph G4 using {Z1, Z2, Z3, Z4}.
Example 1. Consider the following realizations for the random draw vectors Z1, Z2, Z3 and Z4 for
all t ≥ 1:

Z1 = 1, Z2 = (1, 0),
Z3 = (0, 1, 0), Z4 = (0, 1, 0, 0).
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Figure 2. An illustration of how the sequence of draw vectors {Z4 = (0, 1, 0, 0), Z3 = (0, 1, 0), Z2 = (1, 0), Z1 = 1} deter-
mines G4.

By construction, the graph G0 consists of only one vertex c1 with a self-loop. Since we start with only
one ball of color c1 in the urn, the random variable Z1 = 1 is deterministic and results in an edge
drawn between the c1 vertex and the new incoming vertex c2. For t = 2, since Z2 = (1, 0), the new
incoming vertex c3 is connected to c1. Similarly for t = 3, the new vertex c4 is connected to c2 and
finally, for t = 4, using the value of Z4, we connect c5 to c2. Hence, the graph G4 is as shown in
Fig. 2.

3. Analyzing the degree count of the vertices inGt
The goal of this section is to establish a formula for the probability distribution of degree count
of a fixed vertex in the preferential attachment graph constructed via our modified Pólya process
until time t (including time t). We obtain this formula by writing the degree of a fixed vertex
at time t in terms of the total number of balls of color corresponding to this vertex drawn until
time t. To this end, let random variable Nj,t count the number of draws of color cj from the urn
until time t (including time t). Since by construction, for a fixed color cj, at any time t ≥ j− 1 the
degree of vertex cj at time t, denoted by dj,t , is one more than the number of times a cj color ball
is drawn from the urn until time t; the additional one here is due to the fact that at each time
instant, the new vertex which is added has degree one. For instance in Fig. 1, the color c2 (green)
is drawn once until time 3 and hence the degree of vertex corresponding to color c2 in G3 is two.
Therefore,

dj,t = 1+Nj,t for all 1≤ j≤ t + 1,

where Nt+1,t = 0. Also, note that the first time a color cj ball can be drawn is at time j. In the fol-
lowing theorem, we establish an analytical expression for the (marginal) probability mass function
of random variable Nj,t .

Theorem 1. Fix t ≥ 1. For a color cj, 1≤ j≤ t, we have that

P(Nj,t = k)=
(10)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
(i1,i2,··· ,ik)∈A(t)

j,k

k∏
a=1

(
1+

a−1∑
b=1

�ib

) t∏
p=j,p/∈{i1,··· ,ik}

(
(p− 1)+

p−1∑
l=1,l/∈{i1,··· ,ik}

�l
)

t−1∏
n=j−1

(
(n+1)+

n∑
m=1

�m
) for 1≤ k≤ t − j+ 1

∏t
p=j

(
(p− 1)+∑p−1

l=1 �l
)

∏t−1
n=j−1

(
(n+1)+∑n

m=1 �m
) for k= 0,
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where

A(t)
j,k =

{{(i1, i2, · · · , ik) | 1= i1 < i2 < · · · < ik ≤ t} for j= 1{
(i1, i2, · · · , ik) | j≤ i1 < i2 < · · · < ik ≤ t

}
for 1< j≤ t.

(11)

Proof. Note that the set A(t)
j,k defined in (11) gives all possible ways in which k elements can be

chosen from a set of t − j+ 1 consecutive integers. In the context of our model, this set represents
all possible k length tuples of time instants such that a color cj ball is drawn at each of these time
instants. For j= 1, the first draw at t = 1 is deterministic and hence i1 = 1 for j= 1 as given in
(11). For 1≤ k≤ t − j+ 1, we have

P
(
Nj,t = k

)=
∑

(i1,··· ,ik)∈A(t)
j,k

P
(
Zj,j = 0, · · · , Zj,i1−1 = 0, Zj,i1 = 1, Zj,i1+1 = 0, · · · Zj,i2−1 = 0, Zj,i2

= 1, Zj,i2+1 = 0, · · · , Zj,i3−1 = 0, Zj,i3 = 1, · · · , Zj,ik−1 = 0, Zj,ik = 1, Zj,ik+1

= 0, · · · , Zj,t = 0
)

=
∑

(i1,··· ,ik)∈A(t)
j,k

[
P(Zj,t = 0 | Zj,j = 0, · · · , Zj,i1−1 = 0, Zj,i1 = 1, Zj,i1+1 = 0, · · · , Zj,i2−1

= 0, Zj,i2 = 1, Zj,i2+1 = 0, · · · , Zj,i3−1 = 0, Zj,i3 = 1, · · · , Zj,ik−1 = 0, Zj,ik = 1, Zj,ik+1
= 0, · · · , Zj,t−1 = 0)× P(Zj,j = 0, · · · , Zj,i1−1 = 0, Zj,i1 = 1, Zj,i1+1 = 0, · · · , Zj,i2−1
= 0, Zj,i2 = 1, Zj,i2+1 = 0, · · · , Zj,i3−1 = 0, Zj,i3 = 1, · · · , Zj,ik−1 = 0, Zj,ik = 1, Zj,ik+1

= 0, · · · , Zj,t−1 = 0)
]
. (12)

By substituting (6) in the conditional probability expressions in (12), we obtain the following:

P(Zj,t = 0|Zj,j = 0, · · · , Zj,i1−1 = 0, Zj,i1 = 1, Zj,i1+1 = 0, · · · , Zj,i2−1 = 0, Zj,i2 = 1, Zj,i2+1

= 0, · · · Zj,i3−1 = 0, Zj,i3 = 1, · · · , Zj,ik−1 = 0, Zj,ik = 1, Zj,ik+1 = 0, · · · , Zj,t−1 = 0)

= 1− 1+∑t−1
n=j �nZj,n

t +∑t−1
m=1 �m

= 1− 1+∑k
l=1 �il

t +∑t−1
m=1 �m

= (t − 1)+∑t−1
l=1,l/∈{i1,··· ,ik} �l

t +∑t−1
m=1 �m

. (13)

Now, substituting the conditional probability expression obtained in (13) in (12) yields

P
(
Nj,t = k

)=
∑

(i1,··· ,ik)∈A(t)
j,k

(
(t − 1)+∑t−1

l=1,l/∈{i1,··· ,ik} �l
)

t +∑t−1
m=1 �m

P(Zj,j = 0, · · · , Zj,i1−1 = 0, Zj,i1

= 1, Zj,i1+1 = 0, · · · · · · , Zj,i2−1 = 0, Zj,i2 = 1, Zj,i2+1 = 0, · · · , Zj,i3−1 = 0, Zj,i3
= 1, · · · , Zj,ik−1 = 0, Zj,ik = 1, Zj,ik+1 = 0, · · · , Zj,t−1 = 0). (14)
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Similar to (12) and (14), we continue to recursively write the joint probability as a product of con-
ditional and marginal probabilities and substitute the expressions for the conditional probability
using (13) as follows:

P
(
Nj,t = k

)=
∑

(i1,··· ,ik)∈A(t)
j,k

(
(t − 1)+∑t−1

l=1,l/∈{i1,··· ,ik} �l

t +∑t−1
m=1 �m

)(
(t − 2)+∑t−2

l=1,l/∈{i1,··· ,ik} �l

t − 1+∑t−2
m=1 �m

)

P(Zj,j = 0, · · · Zj,i1−1 = 0, Zj,i1 = 1, Zj,i1+1 = 0, · · · , Zj,i2−1 = 0, Zj,i2 = 1, Zj,i2+1

= 0, · · · , Zj,i3−1 = 0, Zj,i3 = 1, · · · , Zj,ik−1 = 0, Zj,ik = 1, Zj,ik+1 = 0, · · · , Zj,t−2 = 0)

...

=
∑

(i1,··· ,ik)∈A(t)
j,k

[(
(t − 1)+∑t−1

l=1,l/∈{i1,··· ,ik} �l

t +∑t−1
m=1 �m

)(
(t − 2)+∑t−2

l=1,l/∈{i1,··· ,ik} �l

t − 1+∑t−2
m=1 �m

)
· · ·

(
ik +∑ik

l=1,l/∈{i1,··· ,ik} �l

ik + 1+∑ik
m=1 �m

)(
1+∑k−1

l=1 �il

ik +∑ik−1
m=1 �m

)(
ik − 2+∑ik−2

l=1,l/∈{i1,··· ,ik} �l

ik − 1+∑ik−2
m=1 �m

)
· · ·

(
ik−1 +∑ik−1

l=1,l/∈{i1,··· ,ik} �l

ik−1 + 1+∑ik−1
m=1 �m

)(
1+∑k−2

l=1 �il

ik−1 +∑ik−1−1
m=1 �m

)(
ik−1 − 2+∑ik−1−2

l=1,l/∈{i1,··· ,ik} �l

ik−1 − 1+∑ik−1−2
m=1 �m

)

· · ·
(

1
i1 +∑i1−1

m=1 �m

)(
i1 − 2+∑i1−2

l=1,l/∈{i1,··· ,ik} �l

i1 − 1+∑i1−2
m=1 �m

)
· · ·

(
j− 1+∑j−1

l=1,l/∈{i1,··· ,ik} �l

j+∑j−1
m=1 �m

)]

=
∑

(i1,··· ,ik)∈A(t)
j,k

[ ∏k
a=1

(
1+∑a−1

b=1 �ib

)
∏t−1

n=j−1
(
(n+ 1)+∑n

m=1 �m
)
⎛
⎝ i1−2∏

l1=j−1

(
l1 +

∑l1

l=1,l/∈{i1,··· ,ik}
�l

)⎞⎠
⎛
⎝ i2−2∏

l2=i1

(
l2 +

∑l2

l=1,l/∈{i1,··· ,ik}
�l

)⎞⎠
⎛
⎝ i3−2∏

l3=i2

(
l3 +

∑l3

l=1,l/∈{i1,··· ,ik}
�l

)⎞⎠ · · ·

· · ·
⎛
⎝ ik−2∏

lk=ik−1

(
lk +

∑lk

l=1,l/∈{i1,··· ,ik}
�l

)⎞⎠
⎛
⎝ t−1∏

lk+1=ik

(lk+1 +
∑lk+1

l=1,l/∈{i1,··· ,ik}
�l)

⎞
⎠
]

=
∑

(i1,i2,··· ,ik)∈A(t)
j,k

∏k
a=1

(
1+∑a−1

b=1 �ib

)∏t
p=j,p/∈{i1,··· ,ik}

(
(p− 1)+∑p−1

l=1,l/∈{i1,··· ,ik} �l

)
∏t−1

n=j−1
(
(n+ 1)+∑n

m=1 �m
) .

Therefore, (10) holds for 1≤ k≤ t − j+ 1. We determine P(Nj,t = 0) as follows:

P(Nj,t = 0)= P(Zj,j = 0, Zj,j+1 = 0, · · · , Zj,t−1 = 0, Zj,t = 0)

= P(Zj,j = 0)
t∏

n=j+1
P(Zj,n = 0 | Zj,j = 0, Zj,j+1 = 0, · · · , Zj,n−1 = 0). (15)
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Now, using (6) for the conditional probabilities in (15) we obtain

P(Nj,t = 0)=
(
1− 1

j+∑j−1
m=1 �m

)(
1− 1

j+ 1+∑j
m=1 �m

)
· · ·

(
1− 1

t +∑t−1
m=1 �m

)

=
∏t

p=j

(
(p− 1)+∑p−1

l=1 �l
)

∏t−1
n=j−1

(
(n+ 1)+∑n

m=1 �m
) .

Hence, (10) holds for k= 0.

The analytic formula obtained in (10) is quite involved when the reinforcement parameter �t
is time-varying. For the special case of �t = � for all t ≥ 1, Theorem 1 reduces to the following
corollary.

Corollary 1. Fix t ≥ 1. For a color cj, 1≤ j≤ t and �n = � for all n≥ 1, the marginal probability
for Nj,t is given by:

P
(
Nj,t = k

)=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
(i1,i2,··· ,ik)∈A(t)

j,k

k∏
a=1

(
1+(a−1)�

) t∏
p=j,p/∈{i1,··· ,ik}

(
(p− 1)(�+1)−�

k∑
l=1

1(il≤p− 1)
)

t−1∏
n=j−1

(
(�+1)n+1

) for 1≤ k≤ t − j+ 1

t∏
p=j

(p− 1)(�+1)

t−1∏
n=j−1

(
(�+1)n+1

) for k= 0,

(16)

where the set A(t)
j,k is defined in (11) and 1(E) is the indicator function of the event E .

The analytical expression in (16) can be further simplified for the case of�t = 1, t ≥ 1, as follows.

Corollary 2. Fix t ≥ 1. For a color cj, 1≤ j≤ t and �n = 1 for all n≥ 1, the marginal probability
for Nj,t is given by:

P
(
Nj,t = k

)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
(i1,i2,··· ,ik)∈A(t)

j,k

�(k+1)
t∏

p=j

(
2(p−1)−

k∑
l=1

1(il≤p− 1)

)

t−1∏
n=j−1

(2n+1)
for 1≤ k≤ t − j+ 1

2�(t+1)

�(j−1)
t−1∏

n=j−1
(2n+1)

for k= 0,

(17)

where �( · ) is the gamma function.

As we will see in Section 4, our model with�t = 1 for all t ≥ 0 has exactly the same mechanism as
the Barabási-Albert model (except for the initialization). Therefore, (17) can be used to predict the
degree count of vertices in the Barabási-Albert model for sufficiently large t. To illustrate (17), we
present a simulation in Fig. 3 for the probability mass function of the counting random variable
N2,12 for the case of �t = 1, 1≤ t ≤ 12.
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Figure 3. A simulation of the probability distribution given by (17) in Corollary 2 for the case of �t = 1 with 1≤ t≤ 12. A
normalized histogram of the counting random variable N2,12 from our model is plotted (by averaging over 1000 simulations)
and is shown to concord with the curve of (17) (in blue).

Since the first time instant at which a cj color ball can be drawn from the Pólya urn is at time j,
the total number of draws of a cj color ball till time t can be at most t − j+ 1. Therefore,

t−j+1∑
k=0

P(dj,t = k+ 1)=
t−j+1∑
k=0

P
(
Nj,t = k

)= 1,

which implies that P
(
Nj,t = k

)
is a probability mass function on the support set {0, 1, · · · ,

t − j+ 1}. We next only verify that P
(
Nj,t = k

)
obtained in (16) does indeed sum up to one (over k

ranging from zero to t − j+ 1) and is hence a legitimate probability mass function. For simplicity,
we focus on the case with �t = �; the proof for the general case follows along similar lines. To
this end, we write the setA(t)

j,k as the following disjoint union:

A(t)
j,k = {(i1, i2, · · · , ik) | j≤ i1 < i2 < · · · < ik ≤ t}

= {(i1, i2, · · · , ik) | j≤ i1 < i2 < · · · < ik ≤ t − 1} � B(t)
j,k =A(t−1)

j,k � B(t)
j,k , (18)

where B(t)
j,k := {(i1, · · · , ik−1, t ) | j≤ i1 < · · · < ik−1 ≤ t − 1}. Note that

B(t)
j,k =

{
(i1, · · · , ik−1, t ) | (i1, · · · , ik−1) ∈A(t−1)

j,k−1

}
. (19)

Theorem 2. Fix t ≥ 1. For a cj, 1≤ j≤ t and �t = � for all t ≥ 1, we have that:
t−j+1∑
k=0

P
(
Nj,t = k

)= 1. (20)

Proof.We write the left-hand side of (20) using (16):∏t
p=j (p− 1)(� + 1)∏t−1

n=j−1 ((� + 1)n+ 1)

+
t−j+1∑
k=1

∑
(i1,··· ,ik)∈A(t)

j,k

k∏
a=1

(1+ (a− 1)�)
t∏

p=j,p/∈{i1,··· ,ik}
((p− 1)(� + 1)− �

∑k
l=1 1(il ≤ p− 1))

∏t−1
n=j−1 ((� + 1)n+ 1)

.

(21)
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Therefore, showing that (20) holds is equivalent to showing that:

t∏
p=j

(p− 1)(� + 1)

+
t−j+1∑
k=1

∑
(i1,··· ,ik)∈A(t)

j,k

⎛
⎝∏k

a=1

(
1+ (a− 1)�

) t∏
p=j,p/∈{i1,··· ,ik}

⎛
⎝(p− 1)(� + 1)− �

k∑
l=1

1(il ≤ p− 1)

⎞
⎠
⎞
⎠

=
t−1∏

n=j−1
((� + 1)n+ 1). (22)

We prove (22) by induction on t − j+ 1≥ 1.
Base Case: t − j+ 1= 1 or t = j. For this case, the left-hand side of (22) is the following:

j∏
p=j

(p− 1)(� + 1)

+
∑
A(j)

j,1

⎛
⎝∏1

a=1

(
1+ (a− 1)�

) j∏
p=j,p �= j

(
(p− 1)(� + 1)− �

1∑
l=1

1(il ≤ p− 1)

)⎞⎠

= (j− 1)(� + 1)+ 1

which, upon simplification and noting that the setA(j)
j,1 = {j}, equals the right-hand side of (22) for

t − j+ 1= 1.
Induction Step: We now show the induction step: assuming that (22) is true for t − j+ 1= s, we
show that it holds for t − j+ 1= s+ 1. We thus assume that the following holds:

j+s−1∏
p=j

((p− 1)(� + 1))+
s∑

k=1

∑
A(j+s−1)

j,k

⎛
⎝ k∏

a=1

(
1+ (a− 1)�

) j+s−1∏
p=j,p/∈{i1,··· ,ik}

(
(p− 1)(� + 1)

−�

k∑
l=1

1(il ≤ p− 1)
)⎞⎠

=
j+s−2∏
n=j−1

((� + 1)n+ 1). (23)

We next show the induction step using (23), by starting from the right-hand side:

j+s−1∏
n=j−1

((� + 1)n+ 1)= ((� + 1)(s+ j− 1)+ 1)
j+s−2∏
n=j−1

((� + 1)n+ 1)

(a)= ((� + 1)(s+ j− 1)+ 1)
j+s−1∏
p=j

(p− 1)(� + 1)
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+
s∑

k=1

((� + 1)(s+ j− 1)+ 1)
∑

A(j+s−1)
j,k

⎛
⎝ k∏

a=1

(
1+ (a− 1)�

) j+s−1∏
p=j,p/∈{i1,··· ,ik}

(
(p− 1)(� + 1)

−�

k∑
l=1

1(il ≤ p− 1)
)⎞⎠

(b)=
j+s∏
p=j

(p− 1)(� + 1) +
j+s−1∏
p=j

(p− 1)(� + 1)+
s∑

k=1

((� + 1)(s+ j− 1)

− �k+ �k+ 1)
∑

A(j+s−1)
j,k

⎛
⎝ k∏

a=1

(
1+ (a− 1)�

) j+s−1∏
p=j,p/∈{i1,··· ,ik}

⎛
⎝(p− 1)(� + 1)− �

k∑
l=1

1(il ≤ p− 1)

⎞
⎠
⎞
⎠

(c)=
j+s∏
p=j

(p− 1)(� + 1) +
j+s−1∏
p=j

(p− 1)(� + 1)

+
s∑

k=1

((� + 1)(s+ j− 1)− �k)
∑

A(j+s−1)
j,k

⎛
⎝ k∏

a=1

(
1+ (a− 1)�

) j+s−1∏
p=j,p/∈{i1,··· ,ik}

(
(p− 1)(� + 1)

−�

k∑
l=1

1(il ≤ p− 1)
)⎞⎠

+
s∑

k=1

(�k+ 1)
∑

A(j+s−1)
j,k

⎛
⎝ k∏

a=1

(
1+ (a− 1)�

) j+s−1∏
p=j,p/∈{i1,··· ,ik}

⎛
⎝(p− 1)(� + 1)− �

k∑
l=1

1(il ≤ p− 1)

⎞
⎠
⎞
⎠

(d)=
j+s∏
p=j

(p− 1)(� + 1) +
j+s−1∏
p=j

(p− 1)(� + 1)

+
s∑

k=1

∑
A(j+s−1)

j,k

⎛
⎝ k∏

a=1

(
1+ (a− 1)�

) j+s∏
p=j,p/∈{i1,··· ,ik}

⎛
⎝(p− 1)(� + 1)− �

k∑
l=1

1(il ≤ p− 1)

⎞
⎠
⎞
⎠

+
s∑

k=1

∑
A(j+s−1)

j,k

⎛
⎝k+1∏

a=1

(
1+ (a− 1)�

) j+s−1∏
p=j,p/∈{i1,··· ,ik}

⎛
⎝(p− 1)(� + 1)− �

k∑
l=1

1(il ≤ p− 1)

⎞
⎠
⎞
⎠

(e)=
j+s∏
p=j

(p− 1)(� + 1) +
j+s−1∏
p=j

(p− 1)(� + 1)

+
s∑

k=1

∑
A(j+s−1)

j,k

⎛
⎝ k∏

a=1

(
1+ (a− 1)�

) j+s∏
p=j,p/∈{i1,··· ,ik}

⎛
⎝(p− 1)(� + 1)− �

k∑
l=1

1(il ≤ p− 1)

⎞
⎠
⎞
⎠

+
s+1∑
k=2

∑
A(j+s−1)

j,k−1

⎛
⎝ k∏

a=1

(
1+ (a− 1)�

) j+s−1∏
p=j,p/∈{i1,··· ,ik−1}

⎛
⎝(p− 1)(� + 1)− �

k−1∑
l=1

1(il ≤ p− 1)

⎞
⎠
⎞
⎠
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(f )=
j+s∏
p=j

(p− 1)(� + 1) +
j+s−1∏
p=j

(p− 1)(� + 1)

+
s∑

k=1

∑
A(j+s−1)

j,k

⎛
⎝ k∏

a=1

(
1+ (a− 1)�

) j+s∏
p=j,p/∈{i1,··· ,ik}

⎛
⎝(p− 1)(� + 1)− �

k∑
l=1

1(il ≤ p− 1)

⎞
⎠
⎞
⎠

+
s+1∑
k=2

∑
B(j+s)
j,k

⎛
⎝ k∏

a=1

(
1+ (a− 1)�

) j+s∏
p=j,p/∈{i1,··· ,ik−1,j+s}

⎛
⎝(p− 1)(� + 1)− �

k−1∑
l=1

1(il ≤ p− 1)

⎞
⎠
⎞
⎠

(g)=
j+s∏
p=j

(p− 1)(� + 1) +
j+s−1∏
p=j

(p− 1)(� + 1)

+
∑

A(j+s−1)
j,1

⎛
⎝ 1∏

a=1

(
1+ (a− 1)�

) j+s∏
p=j,p/∈{i1}

(
(p− 1)(� + 1)− �

1∑
l=1

1(il ≤ p− 1)

)⎞⎠

+
s∑

k=2

∑
A(j+s)

j,k

⎛
⎝ k∏

a=1

(
1+ (a− 1)�

) j+s∏
p=j,p/∈{i1,··· ,ik}

⎛
⎝(p− 1)(� + 1)− �

k∑
l=1

1(il ≤ p− 1)

⎞
⎠
⎞
⎠

+
s+1∏
a=1

(1+ (a− 1)�)

(h)=
j+s∏
p=j

(p− 1)(� + 1)

+
s+1∑
k=1

∑
A(j+s)

j,k

⎛
⎝ k∏

a=1

(
1+ (a− 1)�

) j+s∏
p=j,p/∈{i1,··· ,ik}

⎛
⎝(p− 1)(� + 1)− �

k∑
l=1

1(il ≤ p− 1)

⎞
⎠
⎞
⎠ .

In the above set of equations, we obtain (a) by substituting (23) in the left-hand side of (a). In (b),
we add and subtract �k to the term ((� + 1)(s+ j− 1)+ 1) and split the summation across the
terms ((� + 1)(s+ j− 1)− �k) and (�k+ 1) in (c). In (d), we absorb the terms ((�k+ 1)(s+ j−
1)− �k) and (�k+ 1) into the product. We replace k by k− 1 in the fourth term on the left-hand
side of (e). We obtain the fourth term on the right-hand side of (f ) using (19). On the right-hand
side of (g), the second term can be written as follows:

j+s−1∏
p=j

(p− 1)(� + 1)

=
∑
B(j+s)
j,1

⎛
⎝ 1∏

a=1

(
1+ (a− 1)�

) j+s∏
p=j,p/∈{j+s}

(
(p− 1)(� + 1)− �

0∑
l=1

1(il ≤ p− 1)

)⎞⎠

which is merged with the third term on the right-hand side of (g) to obtain the k= 1 term on the
right-hand side of (h). Similarly, for the terms for k= 2 to k= s, we merge both of the terms on
the right-hand side of (f ) using (18) to obtain the fourth term on the right-hand side of (g). The
last term on the right-hand side of (g) is the evaluation of the fourth term on the right-hand side
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of (f ) at k= s+ 1. Finally (h) is obtained by writing all the terms under one summation. Hence
the proof follows from induction on t − j+ 1.

4. Simulation results
In this section, we present a comparative study2 between our model and the Barabási-Albert
model in terms of following three features:

• Structural differences in small-sized graphs;
• Degree distributions of the graphs obtained;
• Expected birth time of vertices with a fixed degree.

We first illustrate the structural differences (in terms of vertex color allocation and degree)
between the graphs generated by our model and the Barabási-Albert model. In the next set of
simulations, we compare the degree distribution of both models by plotting the probability of
randomly choosing a k degree vertex versus k (on a log− log scale) for a graph generated until a
fixed time instant. We give the degree distribution of graphs generated for 5000 time steps (aver-
aged over 250 simulations) via the standard Barabási-Albert model and our model with different
choices of the reinforcement parameter �t and discuss the similarities and differences obtained
in the degree distributions. In the third set of simulations, we compare both models in terms of
vertices expected birth time versus degree which we define as follows.

Definition 1. Given a random network/graph generated until time t, we define the vertices expected
birth time for a fixed degree k,where 1≤ k≤ t, as the expected value of all the times when the vertices
which have degree k at termination time t were introduced. It is denoted by bt(k) and is given by the
following expression:

bt(k)=
t∑

j=1
(j− 1)p(j)k (t) (24)

where p(j)k (t) is the probability that vertex j has degree k at termination time t.

Note that we write (j− 1) in (24) because vertex j is introduced in the network/graph at time
(j− 1). In the experiments, we determine the empirical version of (24), which we call the average
birth time and denote it by bt(k) for a degree k and termination time t. It is given by

bt(k)=
t∑

j=1
(j− 1)

1
(∑t

n=j Zj,n = k− 1
)

t∑
j′=1

1
(∑t

n=j′ Zj′,n = k− 1
) . (25)

Analyzing the expected birth time for a random graph provides insights on the average “age” of
vertices gaining a certain degree in the generated network. A high expected birth time for a high-
degree k indicates that newer incoming vertices have (on average) accumulated more connections
than older vertices. In the context of social networks, this scenario corresponds to tardy influential
vertices that quickly gained more popularity over already existing ones despite being introduced
later in the network. We will compute the empirical expected birth time (average birth time) for
different choices of �t and compare them with the Barabási-Albert model later in this section.

In Fig. 4, two 15-vertex networks are depicted, one generated by our model (on the left-hand
side) and the other by the Barabási-Albert model (on the right-hand side). We make two obser-
vations: First, in contrast with the Barabási-Albert model, in our model all vertices are labeled
by distinct colors. This one-to-one correspondence between vertices and colors encodes all the
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Figure 4. On the left-hand side is a 15-vertex network generated via the draws from a Pólya urn with expanding colors and
�t = 5 for all t≥ 1 and on the right-hand side is a network with 15 vertices generated via Barabási-Albert model. For our
model, unlike the Barabási-Albert model, each vertex is represented by a distinct color which corresponds to a color type
of balls in the Pólya urn at that time instant. Furthermore, the extra reinforcement parameter �t in our model provides
versatility in the level of preferential attachment. The parameter�t = 5 in our model enables the central vertex of the graph
on the left-hand side to obtain a higher degree (11 in this case) as compared to the right-hand side Barabási-Albert network
in which the highest degree achieved is 6.

Figure 5. Degree distributions of networks generated until time 5000 (averaged over 250 simulations) for the Barabási-Albert
model and our model with�t = 1 and�t = ln (t). In (a), the degree distributions of both models are nearly identical. While
in (b) the degree distributions are quite different.

information of the generated graph in the draw vectors of the underlying Pólya urn. Second,
the maximum degree achieved is higher in the left-hand side network generated via our model
(which achieves a maximum degree of 11 compared to 6 in the right-hand side Barabási-Albert
network). This happens along one sample path due to the choice of reinforcement parame-
ter (here �t = 5 for all t ≥ 1) in our model which allows for an already selected vertex to be
chosen with a higher probability than in the case of the Barabási-Albert model where the ver-
tices are chosen proportional to their degree. In fact, this property is observed to persist in our
simulations.

In Figs. 5 and 6, we plot the degree distribution of networks generated for four different choices
of�t : 1, ln (t), f (t), g(t), where the functions f (t) and g(t) are defined in (26).We observe the devi-
ation of the degree distribution of the graphs generated via our model for the above-mentioned
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(a) (b)

Figure 6. Degree distribution of the Barabási-Albertmodel and ourmodel generated for two different choices of�t , (a)�t =
f (t) and (b) �t = g(t), where f (t) and g(t) are defined in (26). Both plots are averaged over 250 simulations, where each
simulation is a generation of a 5000-vertex graph.

choices of �t from the degree distribution of the Barabási-Albert network which follows the rela-
tion p(k)∼ k−3, where p(k) is the probability of randomly choosing a vertex of degree k in the
network. The similarity between the Barabási-Albert algorithm and our model with �t = 1 (as
observed in Fig. 5(a)) can be represented in the following way:

P(incoming vertex at time tconnects to vertex corresponding to color cj)
= ratio of cj color balls in the expanding color Pólya urn at time t − 1

= degree of vertex corresponding to color cj in graph Gt−1

sum of degrees in graph Gt−1

= P(incoming vertex connects to the vertex added at time j− 1
in a standard Barabási-Albert network).

Hence in the case where �t = 1, the mechanisms of both models for iteratively constructing
new vertices and edges are equivalent. However, the initialization of our model is different from
the Barabási-Albert model. In our model, the initial graph has only one vertex with a self-loop,
whereas in the Barabási-Albert model, the initial graph can potentially have more than one ver-
tex equipped with an edge set and no self-loops. Even though the initialization of both models is
different, the equivalent procedures for adding new vertices and edges between our model with
�t = 1 and the standard Barabási-Albert model ensure that the generated graphs via both models
will show similar properties for sufficiently large t. While it is an intricate task to analytically solve
for the asymptotic degree distribution and other properties of our model due to the fact that its
reinforcement dynamics is much more involved than that of the Barabási-Albert model, such an
investigation is a worthwhile future direction.

In Fig. 5(b), we observe that the degree distribution of our model with �t = ln (t) significantly
differs from the degree distribution of Barabási-Albert model. The former has a lower proba-
bility of obtaining lower degree vertices (degree range 100 − 101) as compared to the latter but
has a slightly higher probability of gaining moderate degree vertices (degree range 50− 150).
Additionally, the maximum degree attained in the case of �t = ln (t) for our model in Fig. 5 is
much higher (∼ 103 as compared to only 200 in Barabási-Albert network).

In Fig. 6, we present two more cases in which the degree distributions differ substan-
tially between our model and the Barabási-Albert model. More specifically, we generate our
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network for �t being an increasing step function f (t) and a decreasing continuous function g(t)
given by:

f (t)=

⎧⎪⎪⎨
⎪⎪⎩
1 for 0≤ t < 1000

10 for 1000≤ t < 2500

100 for 2500≤ t ≤ 5000,

g(t)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10 for 0≤ t ≤ 1000

104

t
for 1000≤ t ≤ 2000

5 for 2000≤ t ≤ 3000

15× 103

t
for 3000≤ t ≤ 4000

3.75 for 4000≤ t ≤ 5000.

(26)

We remark from Fig. 6 that the maximum degree attained in both figures (generated via�t = f (t)
and �t = g(t)) is higher than in the Barabási-Albert model. Under the function g(t), the constant
value of �t = 10 up until time 1000 allows for the ball colors corresponding to older vertices
(birth time≤ 1000) to get accumulated in large numbers. Thereafter, the value of�t continuously
decreases, and therefore, the ball colors corresponding to younger vertices (birth time ≥ 1000)
do not grow in large numbers. This gap between number of balls corresponding to younger and
older vertices is significant enough for most of the older vertices to achieve high degrees with
the younger vertices not acquiring much connections. Hence, most of the vertices either get a
very high degree or a very low degree resulting in less vertices with moderate degrees (101 − 102)
compared to the Barabási-Albert network. On the contrary, the increasing step function f allows
for a wider range of ball colors (corresponding to vertices born between time 1000 to 2500) to
grow their proportion, thus producing more vertices in the moderate degree range (101 − 102)
compared to the Barabási-Albert network.

In the next set of simulations, we compare (25) for our network generated with
�t = 1, ln (t), f (t) and g(t) and the Barabási-Albert network. Fig. 7(a) demonstrates that in both
the Barabási-Albert model and our model for �t = 1 vertices of the same degree are born at sim-
ilar times. The stark similarities between the Barabási-Albert model and our model for �t = 1 in
Figs. 5 and 7 strongly suggest that both networks have very similar structures; however, a rigor-
ous analytic study is required to confirm if our model with �t = 1 is stochastically equivalent to
the standard Barabási-Albert model. In Fig. 7(b), we observe that for our model with �t = ln (t),
the network shows slightly more connectivity in the vertices which are born at similar times as
compared to the Barabási-Albert network. This effect of same-age vertices showing more connec-
tivity when compared to Barabási-Albert networks is much more amplified when our model uses
�(t)= f (t) as shown in Fig. 7(c). Both cases provide a much richer algorithm for generating real-
life networks in which the “rich gets richer” phenomenon needs to be dampened as it allows the
more recently born vertices to get more connectivity. In contrast, Fig. 7(d) shows an amplification
of the “rich gets richer” phenomenon when compared to the Barabási-Albert network as the first
two richest vertices achieve a significantly higher degree (around 3500) compared to all other ver-
tices. The rest of the vertices have very similar connectivity as that of the Barabási-Albert network.
The choice �t = g(t) of the reinforcement parameter in our model provides an algorithm to gen-
erate graphs which are spatially similar to the Barabási-Albert network but demonstrate a higher
effect of preferential attachment.

5. Conclusion
We constructed a preferential attachment-type graph using the draw vectors of a Pólya urn with
growing colors and a tunable time-varying reinforcement parameter �t . The network obtained is
essentially equivalent to the Barabási-Albert network for the case �t = 1 and gains a significant
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(a) (b)

(c) (d)

Figure 7. Vertices average birth time versus degree for our model using (a) �t = 1; (b)�t = ln (t); (c)�t = f (t) and (d)�t =
g(t) (where the functions f (t) and g(t) are given in (26)) and for the Barabási-Albert network. All networks are generated for
5000 time steps and the average of 250 such networks is plotted.

amount of versatility when �t is a time-varying function. We analyzed the draw vectors of the
underlying stochastic process and derived the probability distribution of a random variable count-
ing the draws of a particular color of this Pólya process. This random variable can be written
in terms of the degree of the vertex in the constructed preferential attachment network corre-
sponding to this color. We provided simulation evidences for the structural similarities between
our model and the Barabási-Albert model for �t = 1 and also justified the richness and versa-
tility of our model for general �t . Future directions include devising a preferential attachment
graph-generating algorithm using a Pólya urn with finitely many colors, formulating strategies for
choosing the best possible �t for a randomly growing graph, incorporating removal of edges in
the graph through removal of balls from the Pólya urn and setting an upper limit on themaximum
degree a vertex can achieve.
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Notes
1 All identities involving random variables or vectors are (implicitly) understood to hold almost surely.
2 For details about the simulations, refer to the following link: https://drive.google.com/drive/folders/1uOmz4B6RQ0hRmuu_
CTfb02jJ03B1SyEl?usp=share_link
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