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Abstract—A network epidemics model based on the clas-
sical Polya urn scheme is investigated. Temporal contagion
processes are generated on the network nodes using a mod-
ified Polya sampling scheme that accounts for spatial infec-
tion among neighboring nodes. The stochastic properties
and the asymptotic behavior of the resulting network con-
tagion process are analyzed. Unlike the classical Polya pro-
cess, the network process is noted to be nonstationary in
general, although it is shown to be time invariant in its first
and some of its second-order statistics and to satisfy mar-
tingale convergence properties under certain conditions.
Three classical Polya processes, one computational and
two analytical, are proposed to statistically approximate the
contagion process of each node, showing a good fit for a
range of system parameters. Finally, empirical results com-
pare and contrast our model with the well-known discrete
time susceptible-infected-susceptible model.

Index Terms—Epidemics on networks, martingales, non-
stationary stochastic processes, Polya contagion networks.

I. INTRODUCTION

IN THIS paper, we examine the dynamics and properties of
a contagion process, or epidemic, on a network. Here, an

epidemic can represent a disease [2], a computer virus [3], the
spread of an innovation, rumor or idea [4], or the dynamics of
competing opinions in a social network [5].

Many different models for the study of infection propaga-
tion and curing exist in the literature. Our model, the network
Polya contagion process, bears similarities to the well-known
susceptible-infected-susceptible (SIS) infection model [6]. In
this model, all nodes may initially be healthy or infected. As
the epidemic spreads, nodes that are infected can be cured to
become healthy, but any healthy node may become infected at
any time, regardless of whether they have been cured previously.
Epidemics on networks have been intensively studied in recent
years; see [7] and references therein and thereafter. The model
that we present is an adaptation of the classical Polya contagion
process [8]–[10] to a network setting by accounting for spatial
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infection between nodes. The classical Polya model has been
used to study a variety of epidemics such as the bubonic plague
in Peru [11] and the spread of chlamydia in a closed popula-
tion [12], as well as a wide range of other applications; see
[13] for a survey. In this paper, we will examine the stochastic
evolution of the network Polya contagion process.

Our model is motivated by the classical Polya contagion pro-
cess, which evolves by sampling from an urn containing a fi-
nite number of red and black balls [8]–[10]. In the network
Polya contagion model, each node of the underlying network is
equipped with an individual urn; however, instead of sampling
from these urns when generating its contagion process, each
node has a “super-urn,” created by combining the contents of
its own urn with those of its neighbors’ urns. This adaptation
captures the concept of spatial infection, since having infected
neighbors increases the chance that an individual is infected in
the future. This concept of the super-urn sampling mechanism
for incorporating spatial interactions was originally introduced
in [14] in the context of the image segmentation and labeling
problem. We herein adapt the image model of [14] for a network
setting and analyze the resulting contagion process affecting
each node of the network.

More specifically, we study the time evolution and stochastic
properties of the proposed network contagion process. We derive
an expression for the temporal n-fold joint probability distribu-
tion of the process. We show that this process, unlike the classi-
cal Polya urn process, is, in general, nonstationary and, hence,
not exchangeable. For the special case of complete networks,
we analytically find the 1-D and 2-D (n, 1)-step marginal distri-
butions of the contagion process. These results show that even
though it is not stationary, the process in this case is nevertheless
identically distributed with its latter two marginal distributions
being invariant to time shifts. We also establish several martin-
gale properties regarding the network urn compositions, proving
that the proportions of red balls in each node’s urn as well as the
network average urn proportion converge almost surely to a limit
as time grows without bound. We next provide three approxima-
tions to the network contagion process by modeling each node’s
contagion process via a classical stationary Polya process [10].
In the first one, we approximate each node’s process with the
classical Polya process whose correlation parameter is empiri-
cally selected so that the Kullback–Leibler divergence measure
between its n-fold joint distribution and that of the original node
process is minimized. In the second approximation, we propose
an analytical model whose parameters are chosen by matching
its first and (n, 1)-step second-order statistics with those of the
original node process, which fits well for large networks. The
last approximation uses a classical Polya model with parameters
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chosen analytically that we show fits well for small networks.
Finally, simulation results are presented to support the validity
of these approximations and to compare our model with the
traditional discrete time SIS model, which suggests that the net-
work Polya contagion process captures certain properties of the
SIS model, while offering new insights in the case of widespread
infection.

The rest of this paper is organized as follows. Section II out-
lines some preliminary knowledge that will be used throughout
this paper. Section III introduces the network contagion process,
and Section IV presents its stochastic properties and asymp-
totic behavior. Section V proposes three approximations for the
individual node contagion processes in the network, along with
numerical modeling results. Finally, Section VI concludes this
paper.

II. PRELIMINARIES

For a sequence vi = (vi,1 , . . . , vi,n ), we use the notation vt
i,s

with 1 ≤ s < t ≤ n to denote the vector (vi,s , vi,s+1 , . . . , vi,t).
Our technical results rely on notions from stochastic processes,
some of which we recall here. Throughout, we assume that the
reader is familiar with basic notions of probability theory.

Let (Ω,F , P ) be a probability space, and consider the
stochastic process {Zn}∞n=1 , where each Zn is a random vari-
able on Ω. We often refer to the indexes of the process as “time”
indexes. We recall that the process {Zn}∞n=1 is stationary if
for any n ∈ Z≥1 , its n-fold joint probability distribution [i.e.,
the distribution of (Z1 , . . . , Zn )] is invariant to time shifts. Fur-
ther, {Zn}∞n=1 is exchangeable if for any n ∈ Z≥1 , its n-fold
joint distribution is invariant to permutations of the indexes
1, . . . , n. It directly follows from the definitions that an ex-
changeable process is stationary. Finally, the process {Zn}∞n=1 is
called a martingale (respectively, supermartingale, submartin-
gale) with respect to the process {Yn}∞n=1 if E[|Zn |] < ∞
and E[Zn+1 |Yn ] = Zn almost surely (respectively, less than
or equal to, greater than or equal to), for all n. Precise defini-
tions of all notions, including those of ergodicity, can be found
in standard texts (e.g., [15], [16]).

We now recall the classical version of the Polya contagion
process [8], [10]. Consider an urn with R ∈ Z>0 red balls and
B ∈ Z>0 black balls. We denote the total number of balls by
T , that is, T = R + B. At each time step, a ball is drawn from
the urn. The ball is then returned along with Δ > 0 balls of the
same color. We use an indicator Zn to denote the color of ball
in the nth draw

Zn =

{
1, if the nth draw is red

0, if the nth draw is black.

Let Un denote the proportion of red balls in the urn after the nth
draw. Then

Un :=
R + Δ

∑n
t=1 Zt

T + nΔ
=

ρc + δc

∑n
t=1 Zt

1 + nδc

where ρc = R
T is the initial proportion of red balls in the urn and

δc = Δ
T is a correlation parameter. Since we draw balls from

this urn at each time step, the conditional probability of drawing

a red ball at time n, given Zn−1 = (Z1 , . . . , Zn−1), is given by

P (Zn = 1 | Zn−1) =
R + Δ

∑n−1
t=1 Zt

T + (n − 1)Δ
= Un−1 .

It can be easily shown that {Un}∞n=1 is a martingale [17]. The
process {Zn}∞n=1 , whose n-fold joint distribution is denoted by
Q

(n)
ρc ,δc

, is also exchangeable (hence stationary) and nonergodic
with both Un and the process sample average 1

n

∑n
i=1 Zi con-

verging almost surely as n → ∞ to a random variable governed
by the Beta distribution with parameters ρc

δc
and 1−ρc

δc
; we denote

this probability density function (pdf) by Beta( ρc

δc
, 1−ρc

δc
) [17],

[18]. Finally, the 1-D distribution of the Polya process is
Q

(1)
ρc ,δc

(a) = P (Zn = a) = (ρc)a(1 − ρc)1−a , for all n ∈ Z≥1
and a ∈ {0, 1}. The above classical Polya process {Zn}∞n=1 is
fully described by its parameters ρc and δc and, thus, we denote
it by Polya(ρc , δc).

III. NETWORK POLYA CONTAGION PROCESS

In this section, we introduce a generalization of the Polya
contagion process to networks, where each individual node in
the underlying graph that describes the network topology is still
equipped with an urn; however, the node’s neighboring structure
affects the evolution of its process. This model, hence, captures
spatial contagion, since infected neighbors increase the chance
of a node being infected in the future.

Consider an undirected graph G = (V, E), where V =
{1, . . . , N} is the set of N ∈ Z≥1 nodes and E ⊂ V × V is
the set of edges. We assume that G is connected, that is, there
is a path between any two nodes in G. We use Ni to de-
note the set of nodes that are neighbors to node i, that is,
Ni = {v ∈ V : (i, v) ∈ E}, and N′

i = {i} ∪ Ni . If N′
i = V for

all i ∈ V , the network is called complete; if |Ni | = |Nj | for all
i, j ∈ V , we call it regular. Each node i ∈ V is equipped with
an urn, initially with Ri ∈ Z>0 red balls and Bi ∈ Z>0 black
balls (we do not let Ri = 0 or Bi = 0 to avoid any degenerate
cases). We let Ti = Ri + Bi be the total number of balls in the
ith urn, i ∈ {1, . . . , N}. We use Zi,n as an indicator for the ball
drawn for node i at time n

Zi,n =
{

1, if the nth draw for node i is red
0, if the nth draw for node i is black.

However, instead of drawing solely from its own urn, each node
draws simultaneously from a “super-urn” created by combining
all of the balls in its own urn with the balls in its neighbors’ urns;
see Fig. 1. This allows the spatial relationships between nodes
to influence their state. This means that Zi,n is the indicator for
a ball drawn from node i’s super-urn, and not its individual urn.
Hence, the super-urn of node i initially has R̄i =

∑
j∈N ′

i
Rj red

balls, B̄i =
∑

j∈N ′
i
Bj black balls, and T̄i =

∑
j∈N ′

i
Tj balls in

total.
We further consider a time-varying version of the classical

Polya contagion process, following [19], where at time t for
node i ∈ V , after a red ball is drawn, it is returned along with
Δr,i(t) red balls to node i’s urn, and Δb,i(t) black balls along
with the drawn ball are added to node i’s urn when a black
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Fig. 1. Illustration of a super-urn in a network.

ball is drawn. When Δr,i(t) = Δb,i(t) for all t ∈ Z≥1 , we write
Δi(t) instead; if the Δ’s are not node dependent, we omit the
node index. We assume throughout that Δr,i(t) ≥ 0,Δb,i(t)
≥ 0, for all t ∈ Z≥1 and that there exists i ∈ V and t such that
Δr,i(t) + Δb,i(t) 
= 0; otherwise, we are simply sampling with
replacement.

In the context of epidemics, the red and black balls in an urn,
respectively, represent units of “infection” and “healthiness”;
for example, bacteria and white blood cells. In a super-urn,
the bacteria can infect others in the area and the white blood
cells contribute to the overall health in the neighborhood of
an individual. Drawing red at time t means the bacteria in the
neighborhood were successful in reproduction and so the indi-
vidual was more infected; otherwise, they were healthier since
the white blood cells reproduced. Thus, when Zi,n = 1, we de-
clare that node i is infected at time n, and if Zi,n = 0, then it
is healthy. We add more units of bacteria once they reproduce,
but commonly assume this number Δr,i(t) is the same across
all individuals and time because the bacteria do not evolve or
become altered. The amount of white blood cells created Δb,i(t)
may change since we can give more medicine to certain people
to increase their immune response, or vaccinate them so they
are better able to fight the disease.

To express the proportion of red balls in the individual urns of
the nodes, we define the random vector Un = (U1,n , . . . , UN,n ),
where Ui,n is the proportion of red balls in node i’s urn after the
nth draw, i ∈ V . For node i

Ui,n :=
Ri +

∑n
t=1 Zi,tΔr,i(t)

Ti +
∑n

t=1 Zi,tΔr,i(t) + (1 − Zi,t)Δb,i(t)

where the numerator represents the total number of red balls in
node i’s urn after the nth draw, whereas the denominator is the
total number of balls in the same urn. Note that Ui,0 = Ri

Ti
is the

initial proportion of balls in node i’s urn. For ease of notation,
let

Xj,n = Tj +
n∑

t=1

Zj,tΔr,j (t) + (1 − Zj,t)Δb,j (t). (1)

Furthermore, we define the random vector Sn = (S1,n , . . . ,
SN,n ) as the proportion of red balls in the super-urns of the
nodes after the nth draw, so that Si,n is the proportion of red

balls in node i’s super-urn after n draws. Hence, for node i

Si,n :=
R̄i +

∑
j∈N ′

i

∑n
t=1 Zj,tΔr,j (t)∑

j∈N ′
i
Xj,n

=

∑
j∈N ′

i
Uj,nXj,n∑

j∈N ′
i
Xj,n

. (2)

Note that Si,0 = R̄ i

T̄ i
. Si,n is, in fact, a function of the random

draw variables of the network, and, in particular, of {Zn
j }j∈N ′

i
,

but for ease of notation, when the arguments are clear, we
write Si,n (Zn

1 , . . . , Zn
N ) = Si,n . Then, the conditional proba-

bility of drawing a red ball from the super-urn of node i at
time n given the complete network history, that is, given all past
n − 1 draw variables for each node in the network {Zn−1

j }N
j=1 =

{(Z1,1 , . . . , Z1,n−1), . . . , (ZN,1 , . . . , ZN,n−1)}, satisfies

P
(
Zi,n = 1|{Zn−1

j }N
j=1
)

=
R̄i +

∑
j∈N ′

i

∑n−1
t=1 Zj,tΔr,j (t)∑

j∈N ′
i
Xj,n−1

= Si,n−1 . (3)

That is, the conditional probability of drawing a red ball for node
i at time n given the entire past {Zn−1

j }N
j=1 is the proportion of

red balls in its super-urn Si,n−1 . This is, however, analogous to
the original Polya case, but instead of relying on the individual
proportion of red balls Un to describe the conditional probability
of drawing red balls, we use the super-urn proportion of red balls
since we now draw from there.

Remark 3.1 (Non-Markovity): While (3) may appear to
suggest some sort of Markovity property, the process is non-
Markovian in general. This can easily be seen due to the fact
that a draw at time n requires knowledge of all previous draws
for the entire neighborhood.

A main objective throughout the rest of this paper is to study
the evolution and stochastic properties of the process defined
above. Using the above conditional probability, we can deter-
mine the n-fold joint probability of the entire network G: for
an

i ∈ {0, 1}n , i ∈ {1, . . . , N}, we have that

P
(n)
G (an

1 , . . . , an
N )

:= P
({Zn

i = an
i }N

i=1
)

=
n∏

t=1

P
({Zi,t = ai,t}N

i=1 | {Zt−1
i = at−1

i }N
i=1
)

=
n∏

t=1

N∏
i=1

(
Si,t−1

)ai , t
(
1 − Si,t−1

)1−ai , t

(4)

where Si,t = Si,t(at
1 , . . . , a

t
N ) is defined in (3). With the above

explicit joint distribution, it is possible to determine the distri-
butions of each node’s process. More specifically, using (4), the
n-fold distribution of node i’s process at time t ≥ n is

P
(n)
i,t (ai,t−n+1 , . . . , ai,t) :=

∑
at−n

i ∈{0,1}t−n

at
j ∈{0,1}t :j 
=i

P
(t)
G (at

1 , . . . , a
t
N ).
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In order to measure the spread of contagion in the network at
any given time, we wish to see how likely it is, on average, for a
node to be infected at that instant. We, hence, define the average
infection rate in the network at time n as the average marginal
probability of drawing a red ball

Ĩn :=
1
N

N∑
i=1

P (Zi,n = 1) =
1
N

N∑
i=1

P
(1)
i,n (1).

Note that Ĩn is a function of the network topology (V, E), the ini-
tial placement of balls Ri and Bi , the draw processes {Zi,t}n

t=1 ,
and number of balls added {Δr,i(t)}n

t=1 and {Δb,i(t)}n
t=1 for

each node i ∈ V . Unfortunately for an arbitrary network, the
above quantity does not yield an exact analytical formula (ex-
cept in the simple case of complete networks). As such, in
general, it is hard to mathematically analyze the asymptotic be-
havior of Ĩn , which we wish to minimize when attempting to
cure an epidemic. Instead, we examine the asymptotic stochas-
tic behavior of a closely related variable given by the average
individual proportion of red balls at time n, namely

Ũn :=
1
N

N∑
i=1

Ui,n

which we call the network susceptibility. This quantity is related
to the conditional probability of drawing a red ball, as seen in (2).
Since the individual urn of node i is in every super-urn in the
neighborhood, if Ui,n increases, then Sj,n increases for every
j ∈ N ′

i and, hence, given the past history, those nodes are more
likely to exhibit infected behavior as seen from (3). Note that
similar to Ĩn , Ũn is a function of the network variables.

Remark 3.2 (Finite memory): It is worth pointing out that a
practical adaptation to our model can be considered, where urns
have “finite memory” in the sense that the balls added after each
draw are only kept in each node’s urn for a finite number of future
draws. This model is developed in [18] for the classical Polya
process in the context of modeling communication channels,
where it is shown that the resulting finite memory contagion
process is stationary, Markovian and ergodic. We present the
following result that states that in this case the entire state is
Markovian and, hence, it is a limited reinforcement model, but
we leave an in-depth investigation to a future work. •

Proposition 3.3 (Finite Memory Markovity): The entire
state of the network Polya contagion process {Zn}∞n=1 with
finite memory M is Markovian with memory M .

Proof: By (1) and (3) and the fact that added balls are
removed after M steps, we have for n > M that

P
(
Zi,n = 1 | {Zn−1

j }N
j=1
)

=
R̄i +

∑
j∈N ′

i

∑n−1
t=n−M Zj,tΔr,j (t)

T̄i +
∑

j∈N ′
i

∑n−1
t=n−M Zj,tΔr,j (t) + (1 − Zj,t)Δb,j (t)

= P
(
Zi,n = 1 | {Zn−1

j,n−M }N
j=1

)
.

Using the above result along with conditional independence,
for (a1 , . . . , aN ) ∈ {0, 1}N , we have for n > M that

P
(
Z1,n = a1 , . . . , ZN,n = aN | {Zn−1

j }N
j=1
)

=
N∏

i=1

P
(
Zi,n = 1 | {Zn−1

j }N
j=1
)

=
N∏

i=1

P
(
Zi,n = 1 | {Zn−1

j,n−M }N
j=1

)

= P
(
Z1,n = a1 , . . . , ZN,n = aN | {Zn−1

j,n−M }N
j=1

)

and, hence, the entire network process {Zn}∞n=1 is Markovian
with memory M . �

IV. STOCHASTIC PROPERTIES

We next examine the stochastic properties of the network
contagion process. We assume throughout the beginning of this
section that Δr,i(t) = Δb,i(t) = Δ > 0, for all i ∈ V and times
t; that is, the net number of red and black balls added are equal
and constant in time for all nodes. In the case of a complete
network, the composition of every nodes’ super-urn is identical,
since there is only one super-urn that is being drawn from.
Thus, for a complete network, the super-urn model is analogous
to one urn where multiple draws occur with replacement, which
has been recently studied in detail [20]. However, the analysis
in [20] is carried out in an aggregate sense, that is, only for
the entire urn and not individual processes. Unfortunately, this
aggregate approach does not work in a network setting, whereas
the super-urn model proposed here is applicable.

A. Complete Network Marginal Distributions

We first focus on the special case of complete networks to
derive some useful probability distributions; later on, we will
obtain other stochastic properties that apply to more general
networks.

Given that the network is complete, we focus on one of the
nodes, say, i ∈ V . For ease of notation, we define T̄j =

∑N
k=1

Tk =: T̄ , and similarly, R̄j =: R̄, B̄j =: B̄, for all j∈V . Defi-
ning the events An−1 = {Zi,n−1 = an−1 , . . . , Zi,1 = a1} and
Wn−1 = {An−1 , {Zn−1

j,1 = bn−1
j }j 
=i} with bn−1

j ∈ {0, 1}n−1 ,

and parameters ρ = R̄
T̄

and δ = N Δ
T̄

, we can write using (3)
under the above assumptions, that

P (Zi,n = 1, An−1)

=
∑

bn −1
j ∈{0,1}n −1 :j 
=i

P (Zi,n = 1|Wn−1)P (Wn−1)

=
∑

bn −1
j :j 
=i

R̄ + Δ
∑n−1

t=1

(
at +

∑
j 
=i bj,t

)
T̄ +

∑n−1
t=1 Δ +

∑
j 
=i Δ

P (Wn−1)
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=
∑

bn −1
j :j 
=i

ρ + δ
N

∑n−1
t=1

(
at +

∑
j 
=i bj,t

)
1 + (n − 1)δ

P (Wn−1)

=
∑

bn −1
j :j 
=i

[
ρ
P (An−1 , {Zn−1

j = bn−1
j }j 
=i)

1 + (n − 1)δ

+
δ

N

n−1∑
t=1

(
at

P (An−1 , {Zn−1
j = bn−1

j }j 
=i)
1 + (n − 1)δ

+
∑
j 
=i

bj,tP (An−1 , {Zn−1
j = bn−1

j }j 
=i)
1 + (n − 1)δ

)]
. (5)

By examining an arbitrary term k 
= i in the final sum above,
for fixed t ∈ {1, . . . , n − 1}, we can sum out all the other draw
variables ∑

bn −1
j ∈{0,1}n −1 :j 
=i

bk,tP (An−1 , {Zn−1
j = bn−1

j }j 
=i)

=
∑

bn −1
k ∈{0,1}n −1

bk,tP (An−1 , Z
n−1
k = bn−1

k )

=
∑

bk , t ∈{0,1}
bk,tP (An−1 , Zk,t = bk,t)

= P (An−1 , Zk,t = 1). (6)

Further, by the law of total probability∑
bn −1

j ∈{0,1}n −1 :j 
=i

P (An−1 , {Zn−1
j = bn−1

j }j 
=i) = P (An−1).

(7)

So using (6) and (7), (5) becomes

ρP (An−1) + δ
N

∑n−1
t=1

[
atP (An−1)+

∑
j 
=iP (An−1 , Zj,t = 1)

]
1 + (n − 1)δ

.

Thus, using the law of total probability, we have

P (Zi,n = 1) =
∑

an −1 ∈{0,1}n −1

P (Zi,n = 1, An−1)

=
∑
an −1

ρP (An−1) + δ
N

∑n−1
t=1 atP (An−1)

1 + (n − 1)δ

+
δ
N

∑n−1
t=1

∑
j 
=i P (An−1 , Zj,t = 1)

1 + (n − 1)δ

=
ρ + δ

N

∑n−1
t=1

∑N
j=1 P (Zj,t = 1)

1 + (n − 1)δ
. (8)

An interesting corollary of this derivation is as follows.
Lemma 4.1 (Complete network marginal distribution):

The 1-D marginal distribution of node i’s contagion draw pro-
cess {Zi,n}∞n=1 for the N -node complete network is given by

P
(1)
i,n = P (Zi,n = a) = ρa(1 − ρ)1−a

where i ∈ V , n ≥ 1, and a ∈ {0, 1}.

Proof: We proceed using a strong induction on n ≥ 1, show-
ing that P (Zi,n = 1) = ρ, for all nodes i ∈ V and all n. The
base case readily holds, since at time n = 1

P (Z1,1 = 1) = · · · = P (ZN,1 = 1) =
∑N

i=1 Ri∑N
i=1 Ti

= ρ.

Now, assuming that P (Zj,t = 1) = ρ for all j ∈ V and t ≤ n
and using (8), we have

P (Zi,n+1 = 1) =
ρ + δ

N

∑n
t=1
∑N

j=1 P (Zj,t = 1)
1 + nδ

=
ρ +

∑n
t=1

δ
N Nρ

1 + nδ

=
ρ + δ

∑n
t=1 ρ

1 + nδ
= ρ

which completes the induction argument. The result now follows
using the fact that

P (Zj,n = 1) + P (Zj,n = 0) = 1 ⇒ P (Zj,n = 0) = 1 − ρ

for all j ∈ V and all n. �
We next show that each node’s draw process is not sta-

tionary, in general, and, hence, is different from the classical
Polya(ρc , δc) process.

Remark 4.2 (Non-stationarity of the network contagion
process): Consider a two-node complete network. Then, us-
ing (4), one can obtain (after some simplifications) that

P (Z1,2 = 1, Z1,1 = 1) = ρ
ρ + (1 + ρ) δ

2

1 + δ

P (Z1,3 = 1, Z1,2 = 1)

=
∑

a 1 ∈{0 , 1 }
b 3 ∈{0 , 1 }3

P (Z1,1 = a1 , {Z1,t = 1}3
t=2 , {Z2,t = bt}3

t=1)

= ρ
4ρ + δ(2 + 14ρ) + δ2(6 + 14ρ) + δ3(5 + 3ρ)

4(1 + δ)2(1 + 2δ)

and, hence, the network process is not stationary. •
Since every exchangeable process is necessarily stationary,

Remark 4.2 implies that the network Polya process is not ex-
changeable in general. However, some notions of stationarity
remain; in our next result, we will see that there is a consistent
relationship between the draws at the first and nth time steps.

Lemma 4.3 (Complete network (n, 1)-step marginal
probability): For the complete network, the 2-D marginal prob-
ability that node i’s draw variables at times n and 1 are both one
is given by

P (Zi,n = 1, Zi,1 = 1) = ρ
ρ + (1 + (N − 1)ρ) δ

N

1 + δ

for i ∈ V , n ≥ 2. Furthermore, for any other node k

P (Zk,n = 1, Zi,1 = 1) = ρ
ρ + (1 + (N − 1)ρ) δ

N

1 + δ
.
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Proof: By Lemma 4.1, we have that P (Zk,1 = 1) = ρ for
all k ∈ V , so it is enough to show that

P (Zk,n = 1 | Zi,1 = 1) =
ρ + (1 + (N − 1)ρ) δ

N

1 + δ
(9)

for all n and nodes i and k. Using the law of total proba-
bility (3) and after some simplifications, with defining Wn−1 =
{Zn−1

i,2 = an−1
2 , {Zn−1

j,1 = bn−1
j,1 }j 
=i} (note that Wn−1 is a func-

tion of {bn−1
j,1 }j 
=i , but for simplicity we omit this), we have that

P (Zi,n = 1 | Zi,1 = 1)

=
∑

an −1
2 ∈{0,1}n −2

bn −1
j , 1 ∈{0,1}n −1 :j 
=i

P (Zi,n = 1 | Zi,1 = 1,Wn−1)

× P (Wn−1 | Zi,1 = 1)

=
∑

an −1
2 ,bn −1

j , 1 :j 
=i

ρ + δ
N (1 +

∑n−1
t=2 at +

∑n−1
t=1

∑
j 
=i bj,t)

1 + (n − 1)δ

× P (Wn−1 | Zi,1 = 1)

=
∑

an −1
2 ,bn −1

j , 1 :j 
=i

[(
ρ +

δ

N

)
P (Wn−1 | Zi,1 = 1)

1 + (n − 1)δ

+
δ

N

n−1∑
t=2

atP (Wn−1 | Zi,1 = 1)
1 + (n − 1)δ

+
δ

N

n−1∑
t=1

bj,tP (Wn−1 | Zi,1 = 1)
1 + (n − 1)δ

]
.

Then, after arranging terms and using the law of total
probability for∑

an −1
2 ,bn −1

j , 1 :j 
=i

bj,tP (Wn−1 | Zi,1) = P (Zj,t = 1|Zi,1 = 1)

we have

P (Zi,n = 1 | Zi,1 = 1)

=
(ρ + δ

N )(1)
1 + (n − 1)δ

+
δ
N

∑n−1
t=2 P (Zi,t = 1|Zi,1 = 1)

1 + (n − 1)δ

+
δ
N

∑n−1
t=1

∑
j 
=i P (Zj,t = 1|Zi,1 = 1)
1 + (n − 1)δ

=
ρ + δ

N

∑
j 
=i P (Zj,1 = 1)

1 + (n − 1)δ

+
δ
N

[
1 +

∑N
j=1

∑n−1
t=2 P (Zj,t = 1|Zi,1 = 1)

]
1 + (n − 1)δ

=
ρ(1 + (N − 1) δ

N )
1 + (n − 1)δ

+
δ
N

[
1 +

∑N
j=1

∑n−1
t=2 P (Zj,t = 1 | Zi,1 = 1)

]
1 + (n − 1)δ

. (10)

Fig. 2. Simulated values for P (Zi,n = 1, Zi,n−1 = 1) for an arbitrary
node i averaged over 50 000 simulated trials on the network shown in
Fig. 3(d). All parameters remained constant throughout all trials; see
http://bit.ly/2tnBix5 for a complete list of them.

It can be similarly shown by symmetry of the complete network
that (10) holds for P (Zk,n = 1 | Zi,1 = 1) if k 
= i.

In order to show (9), we proceed using strong induction on
n ≥ 2. For the base case, setting n = 2 in (10), we have for any
i, k ∈ V

P (Zk,2 = 1|Zi,1 = 1) =
ρ(1 + (N − 1) δ

N ) + δ
N

1 + δ

=
ρ + (1 + (N − 1)ρ) δ

N

1 + δ

as desired. Assume now that P (Zk,t = 1 | Zi,1 = 1) is given
by (9), for 2 ≤ t ≤ n − 1 and any i, k ∈ V . Then by (10)

P (Zk,n = 1 | Zi,1 = 1)

=
ρ(1 + (N − 1) δ

N )
1 + (n − 1)δ

+
δ
N

[
1 +

∑N
j=1

∑n−1
t=2 P (Zj,t = 1 | Zi,1 = 1)

]
1 + (n − 1)δ

=
ρ(1 + (N − 1) δ

N ) + δ
N

[
N(n − 2) ρ+(1+(N −1)ρ) δ

N

1+δ

]
1 + (n − 1)δ

=
1

1 + (n − 1)δ

[
(1 + δ)

ρ + (1 + (N − 1)ρ) δ
N

1 + δ

+ δ(n − 2)
ρ + (1 + (N − 1)ρ) δ

N

1 + δ

]

=
ρ + (1 + (N − 1)ρ) δ

N

1 + δ

which completes the induction argument. �
Although the draw process is not stationary in general,

simulated results suggest that it satisfies some asymptotic sta-
tionarity properties, in the sense that given sufficient time, the
process settles and deviations become very small in magnitude.
A representative example is shown in Fig. 2 for the 2-D dis-
tribution at times n and n − 1 in the five-node network shown
in Fig. 3(d).
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Fig. 3. Comparison of normalized simulated histograms for the sample average of draws 1
n

∑n

t=1 Zi,t and the Beta
(

ρ i

δ̂ i
, 1−ρ i

δ̂ i

)
, Beta

(
ρ i
δ ′

i

, 1−ρ i
δ ′

i

)
,

and Beta
(

ρ i
δ �

i
, 1−ρ i

δ �
i

)
pdfs from Models I, II(a), and II(b), respectively, for an arbitrary node i with n = 1000, averaged over 5000 simulated trials.

Here, the parameters Δ as well as Ri and Bi , for all i ∈ V , were uniformly randomly assigned for each network, and were consistent throughout
all trials. See http://bit.ly/2tnBix5 for a complete list of all parameters used for each network. (a) 10-node complete network histogram. (b) 100-node
complete network histogram. (c) 5-node Barabasi-Albert network histogram. (d) 5-node Barabasi-Albert network [23]. (e) 100-node Barabasi-Albert
network histogram. (f) 100-node Barabasi-Albert network [23].

B. Martingale Theorems

We now turn our attention to the martingale properties of the
network contagion process, where we do not assume that the
network is necessarily complete. Recall that by the martingale
convergence theorem [15], [16], if a process {Zn}∞n=1 is a mar-
tingale (or supermartingale, or submartingale), there exists a
random variable Z such that {Zn}∞n=1 converges almost surely
to Z as n → ∞.

Theorem 4.4 (Individual Urn proportion martingale): For
a network G = (V, E), Δr,i(n) = Δb,i(n) = Δ, and Ti = T ,
for all i ∈ V and all n, the individual proportion of red balls
{Ui,n}∞n=1 is a martingale with respect to the draws for the
whole network {Zn}∞n=1 = {(Z1,n , . . . , ZN,n )}∞n=1 if and only
if, almost surely

1
|Ni |

∑
j∈Ni

Uj,n−1 = Ui,n−1 .

Proof: Using the expression for Ui,n , (2) and (3), we have
almost surely

E[Ui,n | Zn−1 ]

= E

[
ΔZi,n + Ui,n−1(T + (n − 1)Δ)

T + nΔ

∣∣∣ Zn−1

]

=
Ui,n−1(T + (n − 1)Δ)

T + nΔ
+

ΔE[Zi,n | Zn−1 ]
T + nΔ

= Ui,n−1
T + (n − 1)Δ

T + nΔ
+

ΔP (Zi,n = 1|Zn−1)
T + nΔ

= Ui,n−1

(
1 − Δ

T + nΔ

)
+

Δ
∑

j∈N ′
i
Uj,n−1(T + (n − 1)Δ)

(T + nΔ)|N ′
i |(T + (n − 1)Δ)

= Ui,n−1 − ΔUi,n−1

T + nΔ
+ Δ

Ui,n−1 +
∑

j∈Ni
Uj,n−1

|N ′
i |(T + nΔ)
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= Ui,n−1 + Δ

[∑
j∈Ni

Uj,n−1

]
− |Ni |Ui,n−1

(T + nΔ)(|Ni | + 1)

= Ui,n−1 +
Δ
∑

j∈Ni
(Uj,n−1 − Ui,n−1)

(T + nΔ)(|Ni | + 1)
. (11)

This implies that {Ui,n}∞n=1 is a martingale with respect to
{Zn}∞n=1 if and only if

∑
j∈Ni

Uj,n−1 − Ui,n−1 = 0 ⇔ 1
|Ni |

∑
j∈Ni

Uj,n−1 = Ui,n−1

almost surely. �
If the condition in Theorem 4.4 holds, then for any i, both Ui,n

and 1
n

∑n
t=1 Zi,t converge almost surely to a limit as n → ∞.

However, the condition of Theorem 4.4, barring the trivial single
node scenario, is not verifiable. To resolve this issue, we instead
examine the evolution of the average proportion of red balls
(i.e., the susceptibility) in a regular network.

Theorem 4.5 (Regular network susceptibility martin-
gale): For a regular network G = (V, E) with Δr,i(n) = Δb,i

(n) = Δ and Ti = T for all nodes i ∈ V and times n, the net-
work susceptibility {Ũn}∞n=1 , where Ũn = 1

N

∑N
i=1 Ui,n , is a

martingale with respect to {Zn}∞n=1 .
Proof: We have, similar to Theorem 4.4, that

E[Ũn | Zn−1 ]

=
1
N

N∑
i=1

E[Ui,n | Zn−1 ]

=
1
N

N∑
i=1

[
Ui,n−1 +

Δ
∑

j∈Ni
(Uj,n−1 − Ui,n−1)

(T + nΔ)(|Ni | + 1)

]

= Ũn−1 +
N∑

i=1

Δ
∑

j∈Ni
(Uj,n−1 − Ui,n−1)

N(T + nΔ)(|Ni | + 1)
.

Let us examine the second term of the last equality. If this term
is zero, {Ũn}∞n=1 is a martingale with respect to {Zn}∞n=1 . We
now define the adjacency matrix [aij ] of our network, where the
(i, j)th entry aij is 1 if (i, j) ∈ E , and 0 otherwise. Since we
assumed that our network was undirected, [aij ] is symmetric,
that is, aij = aji for all i, j ∈ V . So

N∑
i=1

Δ
∑

j∈Ni
(Uj,n−1 − Ui,n−1)

N(T + nΔ)(|Ni | + 1)

=
N∑

i=1

Δ
∑N

j=1 aij (Uj,n−1 − Ui,n−1)
N(T + nΔ)(|Ni | + 1)

=
Δ

N(T + nΔ)

N∑
i=1

N∑
j=1

aij (Uj,n−1 − Ui,n−1)
|Ni | + 1

.

Now, we examine the sum of the (i, j) and (j, i) components
of the double sum, where (i, j) ∈ E (otherwise, both terms are

zero). Recall that (i, i) 
∈ E , ∀i. We have

aij (Uj,n−1 − Ui,n−1)
|Ni | + 1

+
aji(Ui,n−1 − Uj,n−1)

|Nj | + 1

=
aij (Uj,n−1 − Ui,n−1)(|Nj | + 1)

(|Ni | + 1)(|Nj | + 1)

+
aji(Ui,n−1 − Uj,n−1)(|Ni | + 1)

(|Ni | + 1)(|Nj | + 1)

=
aij (|Nj | − |Ni |)

(|Ni | + 1)(|Nj | + 1)

(
Uj,n−1 − Ui,n−1

)
.

From above, it is clear that this term is zero for all i and j
by setting |Nj | = |Ni |, that is, in any regular network, and so
{Ũn}∞n=1 is a martingale with respect to {Zn}∞n=1 . �

We next allow the net number of black balls Δb,i(·) to evolve
stochastically in time as a function of the past draw history in the
network in order to steer {Ui,n}∞n=1 to a limit for every node i.

Theorem 4.6 (Individual Urn proportion categories): In a
general network G = (V, E) with Δr,i(n) = Δr for all n ∈ Z≥1
and i ∈ V , if we choose {Δb,i(n)}∞n=1 so that

Δb,i(n) ≥ Δr (1 − Ui,n−1)Si,n−1

Ui,n−1(1 − Si,n−1)

almost surely for all n ∈ Z≥1 and i ∈ V (respectively, equal to,
less than or equal to), then {Ui,n}∞n=1 is a supermartingale (re-
spectively, martingale, submartingale) with respect to {Zn}∞n=1 .

Proof: We will start with the case of a supermartingale. That
is, we wish to show that almost surely for all n ∈ Z≥1

E[Ui,n | Zn−1 ] − Ui,n−1 ≤ 0.

Define Z̄i,n =
∑n

t=1 Zi,t , and take Xi,n as in (1). Then, we
have almost surely

Ui,n − Ui,n−1

=
Ri + Δr (Z̄i,n−1 + Zi,n )

Xi,n
− Ri + Δr Z̄i,n−1

Xi,n−1

=
ΔrZi,n

Xi,n
− (Ri + Δr Z̄i,n−1)(Xi,n − Xi,n−1)

Xi,n−1Xi,n

=
ΔrZi,n

Xi,n
− Ui,n−1(Xi,n − Xi,n−1)

Xi,n

=
1

Xi,n

[
ΔrZi,n − Ui,n−1(ΔrZi,n + Δb,i(n)(1 − Zi,n ))

]

since Xi,n > 0 for all n ∈ Z≥1 almost surely, we can ignore it.
Now, since Ui,n−1 is almost surely constant given Zn−1

E[Ui,n |Zn−1 ] − Ui,n−1 ≤ 0 ⇒ E[Ui,n − Ui,n−1 |Zn−1 ] ≤ 0.

That is, we wish to check if, almost surely

E
[
ΔrZi,n (1 − Ui,n−1) − Δb,i(n)Ui,n−1(1 − Zi,n)|Zn−1

]≤ 0.

Now if

Δb,i(n) ≥ Δr (1 − Ui,n−1)Si,n−1

Ui,n−1(1 − Si,n−1)
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almost surely, we have

E
[
ΔrZi,n (1 − Ui,n−1) − Δb,i(n)Ui,n−1(1 − Zi,n )|Zn−1

]
≤ E

[
ΔrZi,n (1 − Ui,n−1) − Ui,n−1(1 − Zi,n )

× Δr (1 − Ui,n−1)Si,n−1

Ui,n−1(1 − Si,n−1)

∣∣∣∣∣Zn−1

]

= Δr (1 − Ui,n−1)E
[
Zi,n − (1 − Zi,n )

Si,n−1

1 − Si,n−1

∣∣∣∣Zn−1

]

= Δr (1 − Ui,n−1)
[
Si,n−1 − (1 − Si,n−1)

Si,n−1

1 − Si,n−1

]

= 0

where the second to last equality comes from the fact that
E[Zi,n |Zn−1 ] = P (Zi,n = 1|Zn−1) = Si,n−1 almost surely
by (3), and that Si,n−1 is almost surely constant given Zn−1 .
Thus, as long as Δb,i(n) obeys this bound almost surely for
all n ∈ Z≥1 , {Ui,n}∞n=1 is a supermartingale with respect to
{Zn}∞n=1 . Similarly, if Δb,i(n) is almost surely equal (respec-
tively, less than or equal) to this bound, {Ui,n}∞n=1 is a mar-
tingale (respectively, submartingale) with respect to {Zn}∞n=1 .
�

Theorem 4.6 tells us what bounds for {Δb,i(n)}∞n=1 must be
obeyed almost surely to guarantee that {Ui,n}∞n=1 admits an
asymptotic limit for all i ∈ V in any general network. For in-
stance, this tells us that by choosing Δb,i(t) = 0 almost surely
for all i ∈ V and t ∈ Z≥1 , {Ui,n}∞n=1 will be a submartingale
and will converge to some limiting random variable. While this
result is interesting for modeling contagion, it is especially use-
ful in the context of curing.

V. MODEL APPROXIMATIONS

As previously noted, the dynamics of the network contagion
process are complicated, especially when considered on general
networks. For this reason, in this section, we develop two useful
approximations to this process on a general network that allow
us to shed some light on its asymptotic behavior. Throughout this
section, unless stated otherwise, we consider general network
topologies with Δr,i(t) = Δb,i(t) = Δ for all t ∈ Z≥1 and
i ∈ V . However, to match the 1-step and (n, 1)-step distribu-
tions, we make the simplifying assumption that the neighbor-
hood of each node i can be represented as a complete network,
i.e., all of its neighbors are connected to one another, in order to
apply Lemmas 4.1 and 4.3.

A. Approximation: Computational Model

We now introduce our first approximation technique, where
we approximate the contagion process of each node in the net-
work with a classical Polya urn process.

Model I (Computational model): We approximate the dy-
namics of any node i’s contagion process using a classical Polya

process Polya(ρc = ρi, δc = δ̂i), with

ρi =

∑
j∈N ′

i
Rj∑

j∈N ′
i
Tj

, and δ̂i = arg min
δ̃

1
n

D
(
P

(n)
i,n ||Q(n)

ρi ,δ̃

)

with

Q
(n)
ρi ,δ̃

(an ) =
Γ
(

1
δ̃

)
Γ
(

ρi

δ̃
+ ān

)
Γ
(

1−ρi

δ̃
+ n − ān

)
Γ
(

1
δ̃

+ n
)

Γ
(

ρi

δ̃

)
Γ
(

1−ρi

δ̃

)
where Γ(·) is the Gamma function, an = (a1 , . . . , an)∈ {0, 1}n ,
and ān = a1 + · · · + an . •

Here ρc is chosen to be the proportion of red balls ρi in the
node’s super-urn, so that the 1-D distributions of the classical
Polya process and the node process {Zi,n} coincide, whereas δ̂i

is set by performing a minimization to find the value that best
fits Q

(n)
ρi ,δ̂i

to the distribution of {Zi,n}∞n=1 of node i ∈ V . We

use a divergence measure, denoted by D(·||·), to observe the
quality of the fit.

The explicit derivation of the distribution Q
(n)
ρi ,δ̂i

can be found

in [17] and [21]. This method ensures that the fit of Q
(n)
ρi ,δ̂i

is as

close as possible under the given divergence measure. Since we
are measuring the error in using an approximating distribution,
we use the Kullback–Leibler divergence [22]; we thus have that

δ̂i = arg min
δ̃

1
n

∑
an ∈{0,1}n

P
(n)
i,n (an ) log

P
(n)
i,n (an )

Q
(n)
ρi ,δ̃

an )

= arg max
δ̃

1
n

∑
an ∈{0,1}n

P
(n)
i,n (an ) log Q

(n)
ρi ,δ̃

(an )

since P
(n)
i,n (an ) log P

(n)
i,n (an ) is independent of δ̃. The approxi-

mating process is stationary and exchangeable, as it is a classical
Polya process. We also know (from Section II) that it is noner-
godic with its sample average converging almost surely to the
Beta( ρi

δ̂i
, 1−ρ)i

δ̂i
) distribution. Calculating an analytic expression

for the minimizing δ̂i is not feasible in general, and hence should
be performed computationally. However, due to the above min-
imization, the value of δ̂i is, by definition, the best way to fit a
Polya process to the process {Zi,n}∞n=1 for a given n.

B. Approximation: Analytical Models

An alternative to Model I is to attempt to find approximations
whose parameters can be determined analytically.

Model II(a) (Large-network analytical model): For any
given node i, we approximate the dynamics of its process
{Zi,n}∞n=1 by using a classical Polya process Polya(ρc =
ρi, δc = δ′i), with

ρi =

∑
j∈N ′

i
Rj∑

j∈N ′
i
Tj

, and δ′i =
δi

N + (N − 1)δi

where δi = N Δ∑
j ∈N′

i

Tj
. •

Here the parameters of the classical Polya process are cho-
sen by directly matching its first and (n, 1)-step second-order
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statistics with those of {Zi,n}∞n=1 . This method avoids the com-
putational burden of the previous model by yielding an analytical
expression for the correlation parameter of the classical Polya
process.

We next prove that under some stationarity and symmetry
assumptions, the contagion process running on each node in the
network is statistically identical to the classical Polya process
of Model II(a).

Lemma 5.1 (Exact representation): Suppose that
1) P (Zi,1 = 1 | Zn−1

j,1 = an−1) = ρi , and
2) P (Zi,t = 1|Zn−1

j,1 = an−1)= P (Zk,n = 1|Zn−1
j,1 = an−1)

for all n ≥ 1, 2 ≤ t < n, i, j, k ∈ V , an−1 ∈ {0, 1}n−1 . Then
for any node i in a complete network, {Zi,n}∞n=1 is given exactly
by the Polya(ρi, δ

′
i) process.

Proof: For any node i, we wish to show that for all n, the
n-dimensional distributions of {Zi,n}∞n=1 and the Polya(ρi, δ

′
i)

process are identical. It is enough to show that the conditional
probability of one event given the whole past is the same, since
any joint probability can be written as a product of conditional
probabilities. Let us define the events An−1 = {Zn−1

i,1 = an−1}
and Bn−1 = {Zn−1

j,1 = bn−1
j,1 }j 
=i . Then

Pi|n := P (Zi,n = 1 | An−1)

=
∑

bn −1
j , 1 ∈{0,1}n −1 :j 
=i

P (Zi,n = 1|An−1 , Bn−1)P (Bn−1 |An−1)

=
∑

bn −1
j , 1 :j 
=i

ρi + δi

N

∑n−1
t=1 (at +

∑
j 
=i bj,t)

1 + (n − 1)δi
P (Bn−1 | An−1)

=
∑

bn −1
j , 1 :j 
=i

ρi(1 − (N − 1)δ′i) + δ′i
∑n−1

t=1 (at +
∑

j 
=i bj,t)
1 + (N(n − 2) + 1)δ′i

× P (Bn−1 | An−1)

=
ρi(1 − (N − 1)δ′i) + δ′i

∑n−1
t=1 at

1 + (N(n − 2) + 1)δ′i

∑
bn −1

j , 1 :j 
=i

P (Bn−1 | n−1A)

+
δ′i

1 + (N(n − 2) + 1)δ′i

n−1∑
t=1

∑
j 
=i

∑
bn −1

j , 1 :j 
=i

bj,tP (Bn−1 |An−1)

=

(
ρi(1 − (N − 1)δ′i) + δ′i

∑n−1
t=1 at

)
· 1

1 + (N(n − 2) + 1)δ′i

+
δ′i
∑n−1

t=1
∑

j 
=i P (Zj,t = 1 | An−1)
1 + (N(n − 2) + 1)δ′i

.

Then using assumption (1), we have

Pi|n =
ρi(1 − (N − 1)δ′i) + δ′i

∑n−1
t=1 at + δ′i(N − 1)ρi

1 + (N(n − 2) + 1)δ′i

+
δ′i
∑n−1

t=2
∑

j 
=i P (Zj,t = 1 | An−1)
1 + (N(n − 2) + 1)δ′i

=
ρi + δ′i

∑n−1
t=1

[
at +

∑
j 
=i P (Zj,t = 1 | An−1)

]
1 + (N(n − 2) + 1)δ′i

Now using assumption (2), we get

Pi|n =
ρi + δ′i

(∑n−1
t=1 at +

∑n−1
t=2

∑
j 
=i Pi|n

)
1 + (N(n − 2) + 1)δ′i

=
ρ + δ′i

(∑n−1
t=1 at + (n − 2)(N − 1)Pi|n

)
1 + (N(n − 2) + 1)δ′i

.

Thus, we have that

Pi|n =
ρi + δ′i

(∑n−1
t=1 at + (n − 2)(N − 1)Pi|n

)
1 + (N(n − 2) + 1)δ′i

⇒ Pi|n =
ρi + δ′i

∑n−1
t=1 at

1 + (n − 1)δ′i
which is the conditional probability P (Zn = 1|Zn−1

1 = an−1)
for a Polya(ρi, δ

′
i) process. A similar calculation can be per-

formed for P (Zi,n = 0 | Zn−1
i,1 = an−1). �

Unfortunately in a general network setting assumptions (1)
and (2) above do not hold true. However, this result motivates
the fact that this analytical approximation is reasonable to use
for situations where these assumptions hold within tolerable
margins of error; empirical evidence indicates that this occurs
for large values of N , since as N increases the quality of the fit
improves. This approximation, nevertheless, drastically reduces
the complexity in analyzing the individual contagion draw pro-
cesses, as closed-form expressions for the process parameters
are available.

Model II(b) (Small-network analytic model): Given any
node i in the network with a small to moderate number of
nodes, we approximate the dynamics of its contagion process
{Zn}∞n=1 using a Polya(ρi, δ

�
i ) process, where

ρi =

∑
j∈N ′

i Rj∑
j∈N ′

i
Tj ,

and

δ�
i =

δi/N

N + (N − 1)δi/N
=

δi

N 2 + (N − 1)δi

where δi = N Δ∑
j ∈N′

i

Tj
. •

The idea behind this model is that we want to remove the
dependence on the number of nodes N from the parameter
δi = N Δ

T̄ i
, and so we divide each instance of δi in δ�

i by N . The
idea is that as n grows, it eventually becomes significantly larger
than the relatively small number of nodes N , and so n|Ni | ≈ n
for all i ∈ V . Hence, we may consider that for a sufficiently
large time, we have added nΔ balls to the super-urn. Effectively,
this means, we are using a correlation parameter of Δ

T̄ i
instead

of δ = N Δ
T̄ i

. Simulation results confirm that this approximation
captures the limit distribution of the original process better than
Model II(a) when the number of nodes is small. Fig. 3 displays
this relationship. A summary of all models presented in this
section, and the scenarios under which they are most suitable,
is provided in Table I.

We close this section with numerical demonstrations on the
fitness of all models. Fig. 3 shows a representative comparison
between the Beta( ρi

δ ′
i
, 1−ρi

δ ′
i

) pdf and the simulated histogram

of 1
n

∑n
t=1 Zi,n , where n = 1000, for an arbitrary node i in the



2008 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 5, NO. 4, DECEMBER 2018

TABLE I
APPROXIMATION USAGE SCENARIOS

Model Usage Scenario

I Exactness valued over analytic simplicity
II(a) Larger values of N , i.e., large network
II(b) Small to moderate values of N , i.e., small network

given networks. Recall that the Beta( ρi

δ̂i
, 1−ρi

δ̂i
), Beta( ρi

δ ′
i
, 1−ρi

δ ′
i

),

and Beta( ρi

δ�
i
, 1−ρi

δ�
i

) pdfs are the distributions of the limit random
variables to which the sample average of the draw processes of
Models I, II(a), and II(b), respectively, converge almost surely,
as n → ∞ (see Section II). We use complete networks since they
satisfy the assumption that all neighborhoods are complete, as
well as Barabasi–Albert networks that have been shown to be
a good model for real-world social networks [23] and do not
satisfy this assumption; however, our results show that the ap-
proximations still fit quite well. As expected, Model I provides
the best approximation in all scenarios, albeit without an ana-
lytic expression for its parameters, which can provide insight
into the behavior of the underlying process. Model II(a) fits
quite well when the number of nodes in the network is large,
as seen in Fig. 3(b) and (e), but fits poorly for a small num-
ber of nodes, which is evident in Fig. 3(a) and (c). Model II(b)
is the complement of Model II(a) in the sense that it fits very
well for a small number of nodes but poorly for a large net-
work. Hence, if analytic expressions for parameters are desired,
Models II(a) and II(b) can be used depending on the number of
nodes to provide approximations that are marginally worse than
the computational exactness of Model I.

C. Comparison With SIS Model

We now provide a number of empirical results in which we
compare our model, with both finite and infinite memory, to the
traditional discrete time SIS model [24]. In the SIS model, the
parameter δSIS denotes the probability that a node will recover
from infection, and βSIS is the probability that a node will
become infected through contact with a single infected neighbor.
The dynamics are described through the probability that any
node i will be infected at time t, Pi(t), which evolves according
to the equation

Pi(t + 1)

= Pi(t)(1 − δSIS) + (1 − Pi(t))

⎛
⎝1 −

∏
j∈Ni

(1 − βSISPj (t))

⎞
⎠.

Note in particular that this model exhibits Markovian behavior,
since the evolution of the process depends only on the prob-
ability of infection from the previous time step. We make the
simplifying assumption that δSIS and βSIS remain the same for
all nodes and throughout time, and hence we will compare it
with the network Polya contagion process when Δr and Δb are
similarly fixed in time and throughout the network.

The concept of an epidemic threshold for the SIS model gives
a value through which one may determine whether the epidemic
dies, a priori using only the system parameters [24]. The thresh-
old condition is directly related to the largest-magnitude eigen-
value λmax of the adjacency matrix of the underlying graph
of the network, and states that if δSIS > βSISλmax then the
epidemic will be eliminated after some time n, i.e., eventually
Pi(t) = 0 for all i and all t > n. Furthermore, it has been shown
that this threshold is tight, and indeed if δSIS < βSISλmax then
some nonzero convergence point exists, called an endemic state,
and the epidemic will never be eliminated [25].

Fig. 4 compares the behavior of the SIS model and the net-
work Polya contagion process for different selections of these
parameters. The initial probabilities of infection Pi(0) for the
SIS model were set to coincide with the initial individual pro-
portions of red balls for the nodes Ri

Ti
. Further, we relate in

Fig. 4(a)–(c) the parameters βSIS and δSIS to Δr and Δb , respec-
tively, using ratios of the largest-magnitude eigenvalue λmax of
the adjacency matrix of the graph shown in Fig. 4(d).

Fig. 4(a) shows a comparison when the SIS model is display-
ing endemic behavior. We see, here, that after a very short time,
the SIS model settles and shortly thereafter the finite memory
process settles (albeit to a different value), while for the infinite
memory process the individual rates of infection and, hence,
the average Ĩn continue to increase in time. Since both the SIS
model and the finite memory process have limited reinforce-
ment, while the infinite memory process does not, these results
are to be expected. Fig. 4(b) displays a comparison where the
epidemic threshold is met and the epidemic dies out for the
SIS model. Here, we note that Ĩn for both the infinite and fi-
nite memory processes decreases and approaches zero, albeit
not as quickly as the SIS model. Hence, we observe that when
the curing parameter Δb is much larger (in fact, more than five
folds larger) than the infection parameter Δr the epidemic is
eliminated, as we expect, and this behavior of the SIS model
is captured by the network Polya contagion process. However,
the finite memory process does not fully approach zero, since
the initial conditions Ri and Bi have a much larger influence
relative to the infinite memory process. Finally, Fig. 4(c) shows
the case where the epidemic does not vanish and the parameters
in both models are set to be equal (δSIS = βSIS and Δb = Δr ).
We observe a similar trend between all models, with the fi-
nite and infinite memory processes exhibiting near-identical
behavior.

Through these observations, we may conclude that both ver-
sions of the network Polya contagion process may apply to
the modeling of epidemics, albeit in different applications. The
finite memory process exhibits behavior that is more closely re-
lated to the SIS model since they are both limited reinforcement
processes, and hence it may be best suited to traditional biolog-
ical diseases. The infinite memory process obeys similar trends,
but in the endemic state there are some interesting differences
since the effects of the infection continue to spread throughout
the population. On the other hand, the SIS model quickly set-
tles and does not change in time. Thus with infinite memory,
our process is better suited to modeling opinion dynamics, the
spread of ideas, and advertising schemes.
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Fig. 4. Comparison between discrete time susceptible-infected-susceptible (SIS) model average infection rate 1
N

∑N

i=1 Pi (n) and the network

Polya contagion process average infection rate Ĩn . Simulation results were averaged over 5000 trials, and the initial parameters Ri and Bi for all
nodes were randomly assigned but consistent throughout all trials for a given case. Here λm ax ≈ 5.05, βSIS = 0.15, and Δr = 2 for all cases, while
δSIS and Δb were set according to the ratios given above. (a) δS IS

βS IS
= Δ b

Δ r
= λm a x

10 . (b) δS IS
βS IS

= Δ b
Δ r

= 1.01λm ax . (c) δS IS
βS IS

= Δ b
Δ r

= 1 and λm ax > 1.
(d) 100-node Barabasi–Albert network [23].

VI. CONCLUSION

We introduced a network epidemics model based on the
classical Polya urn scheme, and we investigated its stochas-
tic properties and asymptotic behavior in detail. We showed that
under certain conditions the proportion of red balls in individual
urns and the network susceptibility, which are processes used to
measure infection, admit limits. Three classical Polya processes
were proposed, one computational and two analytical, to statisti-
cally approximate the contagion process of each node. Empirical
results were presented which show that the approximations are
a good fit for a range of system parameters. Our process was
also compared empirically with the discrete-time SIS model,
showing a similar behavior, particularly in the finite memory
mode, while providing different degrees of reinforcement in the
endemic state, with the largest reinforcement occurring under
the infinite memory mode. Future directions of research include
investigations into the curing of these processes, and the further
study of the network contagion process with finite memory.
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