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Compressed Sensing With Nonlinear Analog
Mapping in a Noisy Environment

Ahmad Abou Saleh, Wai-Yip Chan, and Fady Alajaji

Abstract—We propose a low delay and low complexity sensor
system based on the combination of Shannon–Kotel’nikov map-
ping and compressed sensing (CS). The proposed system uses
nonlinear analog mappings on the CS measurements to in-
crease their immunity against channel noise. Numerical results
show that the proposed purely-analog system outperforms the
state-of-the-art purely CS systems in terms of signal-to-distortion
ratio. In addition to sparsity knowledge, we use a statistical
characterization of the observed signal to further improve system
performance.

Index Terms—Compressed sensing, Shannon–Kotel’nikov
mapping.

I. INTRODUCTION

W IRELESS sensors networks (WSNs) monitor the phys-
ical world through distributed sensor nodes. These

nodes, often conceived as having limited lifetime and sensing
capabilities, communicate their sensed field information to a
fusion center (FC) over power and bandwidth constrained noisy
wireless channels. To meet these challenges, in this paper, we
investigate using low delay and low complexity source-channel
mapping with compressed sensing (CS) in WSNs.
The sensor inputs are treated as samples from an analog

source. The traditional approach for analog source transmission
is to use separate (tandem) source and channel coders. This
approach is proven to be asymptotically optimal by Shannon.
In tandem coding, the continuous source can be first com-
pressed using a powerful vector quantizer, and then a capacity
approaching channel code, such as a turbo or a low-den-
sity-parity-check code, is applied for channel noise protection.
This method, however, results in very high encoding/decoding
complexity and significant delays, which are not desirable
in WSNs. The approach used in this work is analog joint
source-channel coding which has been shown to achieve a
good performance under low delay and complexity constraints
[2]–[4]. More precisely, we propose to use a nonlinear analog
mapping that acts as an analog joint source-channel encoder on
the CS measurements. In [5], a hybrid digital-analog system is
used with distributed compressed sensing over noisy channels.
In this letter we consider a purely-analog spiral mapping within
the CS context which is inherently analog. For reference, we
compare the proposed analog system with state-of-the-art CS
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systems that account for channel noise at the decoder. In addi-
tion to using sparsity knowledge and spiral mapping as in [1],
we account for the statistical characteristics of the signal and
use higher dimension expansion mapping to further improve
system performance. The rest of the paper is organized as fol-
lows. In Section II, we briefly review the theory of compressed
sensing. Section III describes Shannon–Kotel’nikov mapping
using the 1:2 double Archimedes’ spiral. In Section IV, we
develop the system structure and its optimization. Simulation
results are included in Section V. Finally, conclusions are
drawn in Section VI.

II. OVERVIEW OF COMPRESSED SENSING THEORY

The theory of compressed sensing has been developed in [6],
[7]. In essence, CS exploits prior knowledge about the sparsity
of a signal in order to provide efficient signal sampling
and reconstruction [7]. The signal is assumed to be sparse in
some orthonormal basis (i.e., , where is
a transform coefficient vector). The sparsity assumption means
that there are only nonzero elements in .
In CS we record linear measurements given by

(1)

where is a measurement matrix that is incoherent
with the basis matrix (i.e., , where mea-
sures the largest correlation between any two elements in and
), and satisfies the restricted isometry property which is equiv-
alent to requiring that all subsets of columns of are nearly
orthogonal. This property can be achieved when the entries of
the matrix are i.i.d. Gaussian variables. In this case, with
on the order of , recovery of from works
with overwhelming probability and is conducted by solving the
convex optimization problem

(2)

where is the norm and de-
notes the transpose operator. Several CS reconstructionmethods
based on convex relaxation (such as basis pursuit (BP) [8]) and
greedy search (such as orthogonal matching pursuit (OMP) [9])
were developed.
In practice, the collected measurements are usually disturbed

by noise ; thus they are modeled as . For CS to
be widely applicable, signal recovery should be robust against
noise; a small distortion in the measurements should result in
a small distortion in the signal recovery. Using a noise-aware
version of (2), the signal is recovered as follows

(3)

where bounds the total amount of noise in the measurements.
Following [7], and assuming a Gaussian noise, is chosen such
that , where , and is the noise
power which can be estimated at the decoder. The problem in
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(3) is solved in [8] using basis pursuit with denoising (BPDN).
(3) can be expressed using Lagrange multiplier as

(4)

This has the form of a least absolute shrinkage and selection
operator (LASSO) problem. The term is tuned to control the
tradeoff between the sparsity and the approximation error in
order to achieve the best possible performance. Note that the CS
properties can be generalized to the case of non-exactly sparse
signals (e.g., signals with transform coefficients in that decay
rapidly). Hence, the results in this work are extendable to the
case of not exactly sparse signals.

III. A SHANNON-KOTEL’NIKOV MAPPING

In this section, a 1:2 double Archimedes’ spiral mapping is
described for a Gaussian memoryless source with variance
. Bandwidth expansion is performed by mapping each source

sample to a two-dimensional channel symbol, which is a
point on the double Archimedes’ spiral, given by

(5)

where is the signum function, is the radial
distance between any two neighboring spiral arms, and

is a stretching bijective function. For a
given channel signal-to-noise ratio (CSNR) defined as ,
where is the average channel power, the radial distance
is optimized to minimize the total distortion by solving the
following unconstrained optimization problem [4]

(6)

where and are, respectively, the average weak noise and
threshold distortion under maximum likelihood (ML) decoding
as defined in [4]. For a Gaussian source, the average weak noise
distortion is given by [4]

(7)

where is a gain factor related to the average channel power
constraint . The threshold distortion is approximated by [4]

(8)

where is the Gaussian error function, , and
. Note that (7) and (8) become increasingly accurate at high

CSNR levels.
At the receiver side, we use the minimum mean square error

(MMSE) decoder instead of theML decoder used in [4]. MMSE
decoding has been shown to achieve a substantial performance
improvement over ML decoding at low CSNRs under 2:1 band-
width reduction [10] and 1:2 bandwidth expansion as simulation
has shown. For 1:2 bandwidth expansion, the MMSE decoding
rule is given by

(9)

where denotes the expectation operator, represents the
probability density function (pdf), and , 1, 2, are
the received channel outputs. To make the decoder implemen-

Fig. 1. Proposed system structure.

tation computationally efficient, we devise a decoder based on
quantization and table-lookup, thereby avoiding having to com-
pute a numerical integration for each received sample. This is
achieved via uniform quantization of the output of the channel

and looking up the decoded value for each quantiza-
tion bin in a table. For a sufficiently large number of bins, the
uniform quantization will not degrade performance; for a small
number of bins, however, it might be necessary to design an op-
timal quantizer.

IV. SYSTEM MODEL

A. System Structure

We consider a group of sensors observing a discrete time
continuous amplitude source signal that is sparse in
some transform basis . Each sensor encodes its observation
and transmits it to the FC over additive white Gaussian noise
(AWGN) channels with variance . Our objective is to re-
cover the sensor observations under a mean square error (MSE)
fidelity criterion. The proposed system structure is shown in
Fig. 1.
On the encoder side, the sensors measure the observation
using a measurement matrix where each element

is i.i.d. Gaussian variable. The measurement vector comprising
the measurements is

(10)

Using the double Archimedes’ spiral given in (5), we map each
element of the measurement vector to a two-dimensional
channel input. It is observed that the measurements fit well a
Gaussian distribution (see Section V). Hence, the results from
Section III are hereafter used; the radial spiral distance is
calculated using (6) given the power allocated to the channel
input under a total transmission power constraint (see below).
At the receiver side, we use the MMSE decoder to obtain

the measurement estimate . To recover the original signal, we
use BP [8] to solve the minimization problem in (2), and for
comparison also the minimization in (3).

B. System Optimization

We optimize the proposed system for minimal end-to-end
MSE distortion which is a function of two sources
of distortion: from compressed sensing (without lossy
transmission) and from channel noise. As power is a
scarce resource in WSNs, we aim for efficient utilization of this
resource. Given a total transmission power constraint , we
aim to minimize the end-to-end distortion with no constraint on
the number of measurements and channel use. From CS theory,
it is known that as the number of measurements increases, the
distortion decreases. However, due to the total power con-
straint, the average power per channel (use) will decrease. This
will increase the distortion from bandwidth expansion
transmission. Thus, for a given channel condition, our aim is to
determine the optimal number of measurements which results
in a minimum end-to-end distortion under the total transmission
power constraint .
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Distortion from channel noise is minimized by opti-
mizing using (6). In the CS literature, however, there is not
yet an explicit relation between the number of measurements
and the distortion obtained with BP. Thus optimization is
done numerically by searching for the number of measurements
that minimizes the end-to-end MSE distortion . A
set of realizations of the source vector with signal dimen-
sion is created. Each source vector is synthesized as ,
where is the sparsity basis and is a sparse transform co-
efficient vector. There are possible sparsity patterns for
(i.e., the sets of indices of the nonzero components of ). Each
realization is drawn uniformly from these patterns. For each
number of measurements , we create a fixed measurement
matrix whose entries follow a Gaussian distribution, and cal-
culate the set of CS measurement vectors using (10). For
a given noise level, we optimize using (6) under the av-
erage power constraint . Note that is opti-
mized assuming ML decoding without any noticeable perfor-
mance loss. The Archimedes’ spiral, given in (5), is used on
each component of the measurement vector to achieve 1:2 di-
mension expansion. Then, the measurement estimate is cal-
culated using the MMSE decoder according to (9) and BP is
used for signal reconstruction according to (2). We evaluate the
overall MSE distortion over the data set . Starting
from a small value of , we keep increasing until we ob-
serve an increase in the overall distortion. The design search al-
gorithm (Algorithm 1) is shown below. In our simulations, we
used , , and . Note that the algorithm
is run offline.

Algorithm 1 System Optimization

Data Input: Input data set , channel noise
variance , and transmission power constraint .
Initialization: Set , the incremental step for
the number of measurements, the overall MSE distortion

, , , , and .
while
1: .
2: Set , , and .
3: Create a random Gaussian CS matrix .
4: Obtain for each observation in using (10).
5: Scale the average channel power constraint as

.
6: Optimize for the given channel noise variance
according to (6) under the power constraint .
7: Apply 1:2 dimension expansion on using (5).
8: Decode using MMSE as in (9), and using BP as in (2).
9: Evaluate over the data set .
10: .
end while
Return .

V. NUMERICAL RESULTS

In this section, we assume to be a sparse source in the dis-
crete cosine transform basis with signal length .
The signal is synthetically generated as , where has

nonzero elements. The results presented here are for
the case where the nonzero elements in are i.i.d. zero-mean
Gaussian with unit variance and the sparsity pattern

is uniformly distributed. We use the spiral mapping, discussed
in Section III, to apply 1:2 dimension expansion, and BP to re-
cover the source signal from the received measurements.
For benchmarking, we consider two CS-based systems

BPDN (“CS-BPDN”) and LASSO (“CS-LASSO”), that were
previously described in conjunction with (3) and (4), respec-
tively. These reference systems use uncoded transmission
over AWGN channels. Also CS decoding based on OMP is
considered [9]. The number of measurements is optimized
for all systems under the total transmission power . This is
realized using Algorithm 1 for the proposed system, whereas
for the reference systems, we search over a range of to obtain
the one that produces the minimum end-to-end distortion. Since
varies with the channel noise variance, source signal-to-dis-

tortion ratio is plotted against

total signal-to-noise ratio . From Fig. 2,
it can be seen that the proposed system “CS-Mapping” out-
performs the CS-BPDN for all TSNR levels, and CS-LASSO
and CS-OMP from moderate to high TSNRs (TSNR 29 dB).
Notice that the gain from CS-Mapping as well as its gap to the
reference systems gets more prominent as TSNR increases.
This benefit from the spiral mapping contrasts with the two
reference systems’ SDR which increases at a rate of 1 dB per
dB increase in TSNR. We also simulate the proposed system
using BPDN instead of BP on the noisy decoded measurement
. This gives around 1 dB gain in SDR over CS-Mapping
with BP. In addition, we studied the CS system using sawtooth
instead of spiral mapping. However, simulations have shown
that our proposed system gives better performance. This can
be attributed to the fact that fits well a Gaussian distribution;
hence the structure of the optimized sawtooth approaches a
linear mapping. Next, we show the result of using 1:3 analog
mapping with CS system. In [11], a 3:1 dimension reduction
was introduced; here we use the same parametric analog map-
ping to investigate 1:3 dimension expansion for the CS system.
As shown from Fig. 2, we can notice that there is around 4 dB
gain over CS-Mapping with 1:2 spiral mapping. The number
of measurements and the mapping parameters were optimized
numerically to give the best possible performance. Note that
finding better parametric analog mappings for 1:3 dimension
expansion is still an open problem; hybrid digital-analog map-
ping may be incorporated in the proposed system to increase
its error resilience.
To further improve the performance of the proposed system,

we exploit knowledge of the statistical along with the sparsity
characteristics of the signal. This is referred to as “Statistical
CS-Mapping.” The optimal decoding in the MSE sense is

(11)

where is the probability of the sparsity pattern which
follows a uniform distribution. The conditional expectation

is calculated as follows:

(12)

where is calculated from the fact that is

if
if

(13)

with is the dirac distribution, and , , represents
the -th element in . Note that there are sparsity patterns
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Fig. 2. Performance of CS-Mapping and CS reference systems with sparsity
level and signal length . The nonzero components of have
i.i.d. distribution. The number of measurements used by CS-Mapping
at the asterisk marks are: [38 38 42 42 42 42], which correspond to the following

[dB] levels: [3.2 7.2 10.7 14.7 18.7 22.7]. The perfor-
mance of statistical CS-Mapping and oracle sparsity-pattern selection are also
plotted. Note that the number of measurements M used for the reference sys-
tems are around twice of that used for our proposed system.

and thus in practice, it is hard to use the MMSE decoder as in
(11) for a reasonable choice of and .
To make the decoder implementation computationally effi-

cient, we use a two-stage implementation in a similar approach
to [12]. In the first stage, we use the decoder shown in Fig. 1
to estimate the sparsity pattern by finding the elements
in with the largest magnitudes, where

, with referring to the estimate calculated
using the decoder shown in Fig. 1. The second stage is to apply
the MMSE estimator using (12) in order to find a better esti-
mate of . Calculation of (12) can be simplified to only mul-
tiplication and addition operations by discretizing the vector
using a uniform quantization step. However, the computation
complexity will increase exponentially with the dimension of
, hence making it not applicable in our case.
Monte carlo techniques can be used to lower the complexity

of decoding. Given , (12) can be expressed as follows:

(14)

(15)

where the samples follow the distribution in (13), and the last
equation is valid due to the strong law of large numbers. Due to
the high dimension of , the convergence of (15) is still slow.
An alternative to sampling from the distribution is to
use importance sampling. This is conducted by using samples
from another distribution . After some manipulations,
(14) can be written as follows:

where is set to . The distribution has to be chosen
to improve the convergence speed. The approach used here is

inspired by [10]. Since the result from the suboptimal decoding
shown in Fig. 1 gives some information about the estimate ,
we choose such that

if
if

where denotes each element in the estimated signal
found using the decoder shown in Fig. 1, and is

properly chosen to increase the speed of convergence, and gets
smaller in relation to the variance of the channel noise.
As shown in Fig. 2, Statistical CS-Mapping gives large

(3 10) dB gains in SDR over CS-Mapping. Notice that the gap
between the two curves widens as TSNR increases. This can be
attributed to the fact that at low TSNRs, CS-Mapping has poor
performance which leads to a poor estimate of the sparsity pat-
tern . This is clearly shown from the “statistical oracle” curve
which assumes perfect knowledge of the sparsity pattern at the
decoder side. Note that the gap between the statistical oracle
curve and the statistical CS-Mapping is from not knowing the
indices of the nonzero components in the sparse signal. Hence,
the performance of the proposed CS system cannot reach the
oracle curve. Moreover, We have noticed that CS-Mapping
without statistical knowledge outperforms CS-BPDN with
statistical knowledge for moderate to high TSNRs.

VI. SUMMARY AND CONCLUSION

In this letter, we have presented a system which combines
nonlinear analog mapping and compressed sensing over AWGN
channels. The proposed purely-analog system is optimized for
minimal overall MSE distortion under a transmission power
constraint. Simulation results have shown that the system out-
performs the state-of-the-art CS-based systems. In addition to
sparsity knowledge, statistical characteristics of the signal is
used to further improve the system.
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