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Soft-Decision Demodulation Design for COVQ over
White, Colored, and ISI Gaussian Channels

Nam Phamdo, Senior Member, IEEE,and Fady Alajaji, Senior Member, IEEE

Abstract—In this work, the design of a -bit (scalar and vector)
soft-decision demodulator for Gaussian channels with binary
phase-shift keying modulation is investigated. The demodulator is
used in conjunction with a soft-decision channel-optimized vector
quantization (COVQ) system. The COVQ is constructed for an
expanded( 1) discrete channel consisting of the concatenation
of the modulator, the Gaussian channel, and the demodulator.
It is found that as the demodulator resolution increases, the
capacity of the expanded channel increases, resulting in an
improvement of the COVQ performance. Consequently, the
soft-decision demodulator is designed to maximize the capacity
of the expanded channel. Three Gaussian channel models are
considered as follows: 1) additive white Gaussian noise channels;
2) additive colored Gaussian noise channels; and 3) Gaussian
channels with intersymbol interference. Comparisons are made
with a) hard-decision COVQ systems, b) COVQ systems which
utilize interleaving, and c) an unquantized ( = ) soft-decision
decoder proposed by Skoglund and Hedelin. It is shown that
substantial improvements can be achieved over COVQ systems
which utilize hard-decision demodulation and/or channel in-
terleaving. The performance of the proposed COVQ system is
comparable with the system by Skoglund and Hedelin—though
its computational complexity is substantially less.

Index Terms—Additive white/colored Gaussian noise, capacity
of discrete channels, combined source-channel coding, COVQ, ISI
channels, soft-decision decoding.

I. INTRODUCTION

SINCE the groundbreaking paper of Shannon [17], the
source and channel coding components of a communica-

tion system have been designed and implemented separately
(in tandem). This separation of source and channel coding
results in no loss of optimality provided infinite coding delay
and unlimited system complexity are allowed [17]. However,
in practical communication systems, where the amount of
tolerated delay and complexity is constrained, numerous works
have shown that combined source-channel coding systems can
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significantly outperform traditional tandem coding systems,
in particular with regards to the design of vector quantization
schemes for noisy communication channels (e.g., [1], [2], [4],
[5], [7]–[10], [12]–[14], [16], [18], [19], [21], [22]).

The majority of the previous work on the study of vector
quantization for noisy channels considerdiscrete channel
models (with the exception of [1], [9], [12], [16], [18], [19],
[21], and [22]); i.e., channels used in conjunction with hard-de-
cision demodulation. Furthermore, with the exception of [9],
[14], and [19], these works focus onmemorylesschannel
models.

In this paper, we incorporate the use of thesoft-decision
channel information in the design of combined source-channel
coding systems for noisy channels. More specifically, we intro-
duce a channel-optimized vector quantization (COVQ) scheme
[10], [4] for additive Gaussian noise channels with binary
phase-shift keying (BPSK) and soft-decision demodulation.
This is achieved by (scalar or vector) quantizing the channel
output via a -bit soft-decision demodulator (where ), and
designing a COVQ system for the resultingexpanded discrete
channelwhich consists of the concatenation of the modulator,
the Gaussian channel, and the demodulator. We consider
Gaussian noise channel modelsboth with and without memory
as follows: 1) additive white Gaussian noise (AWGN) channels;
2) additive colored Gaussian Noise (ACGN) channels; and
3) Gaussian channels with intersymbol interference (ISI). In
the case of the Gaussian channels with memory, unlike tradi-
tional systems that employ standard channel interleaving or
linear/nonlinear equalization techniques, we utilize the statis-
tical correlation of the channel in the design of our soft-decision
COVQ system. In other words, we design a COVQ scheme
that exploitsboth the (intrablock)channel memoryas well
as the channelsoft-decision information. Numerical results
demonstrate that substantial improvements can be achieved
over COVQ schemes designed for hard-decision channels and
fully interleaved channels.

In previous related work, the authors presented a sim-
ilar soft-decision COVQ system for memoryless Rayleigh
fading channels in [1]. Optimal minimum mean-squared error
(MMSE) sequential soft decoders for vector quantizers were
investigated for memoryless Rayleigh fading channels in [12]
and for Gaussian channels with linear memory in [9]. In [18]
and [19], optimal and suboptimal Hadamard-based soft de-
coders were proposed and implemented for AWGN, Rayleigh,
and ISI channels. While our soft-decision COVQ scheme has
a higher storage requirement than the Hadamard-based soft
decoder of [18] and [19], its computational complexity is
considerably lower.

0090–6778/00$10.00 © 2000 IEEE
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Fig. 1. Block diagram of the COVQ system.

The rest of this paper is organized as follows. In Section II,
a soft-decision COVQ system for BPSK-modulated AWGN
channels is proposed, analyzed, and implemented. Its perfor-
mance is also compared to that of the Hadamard-based decoder
in [18]. In Section III, a soft-decision COVQ scheme for
ACGN without noise whitening is studied. Scalar and vector
soft-decision quantization systems for ACGN channels with
noise whitening are examined in Section IV. In Section V,
quantization over ISI channels is addressed and performance
comparisons to the scheme in [19] are presented. Finally,
conclusions are stated in Section VI.

II. AWGN CHANNELS

A. DMC Channel Model

Consider the following combined source-channel coding
system (cf. Fig. 1). The input source is a -dimensional real
vector, and the COVQ operates at a rate ofbits per source
dimension. For each input vector, the encoder produces a binary
vector for transmission, where is assumed to
be an integer. Each of the bits of is BPSK modulated, and
the output is transmitted over an AWGN
channel according to

(1)

, where is the BPSK signal
of unit energy, and is a zero-mean independent and identi-
cally distributed (i.i.d.) Gaussian random process with variance

.
At the receiver, each component of the received vectoris

demodulated via a-bit uniform scalar quantizer with quantiza-
tion step to yield . Thus, for each -dimen-
sional source vector, bits are produced at the demodulator
output. These bits are then passed to the COVQ decoder to de-
termine the estimate .

B. Capacity and Soft-Decision Quantizer Design

We observe that the concatenation of the modulator, channel,
and demodulator constitutes indeed a -input, -output
discrete memoryless channel (DMC). Since the noise is i.i.d.,

this channel is equivalent to a binary-input,-output DMC
used times. Its channel transition probability matrix can
hence be computed in terms of the quantization step, the
channel signal-to-noise ratio (SNR), and the complemen-
tary error function. More specifically, if and

then the transition probability
matrix is given by

(2)

where

(3)

Here,

(4)

is the complementary error function, and are the thresholds
of the receiver’s soft-decision quantizer , which is defined
as

if (5)

. In this work, we assume that the thresh-
olds are uniformly spaced with step-sizesuch that

if
if
if .

(6)

We observe that the above two-input, -output DMC is
“weakly” symmetric in the sense that its transition probability
matrix can be partitioned (along its columns) into symmetric
arrays—where a symmetric array is defined as an array having
the property that all its rows are permutations of each other,
and all its columns are permutations of each other [6], [3].
The symmetry property implies the fact that the capacity of
this channel is achieved by a uniform input distribution [6].
Its capacity can therefore be easily computed by evaluating
the mutual information between and , , using
a uniform distribution on . In Table I(a), we display the
channel capacity for different values ofand the channel SNR.
For each channel SNR, we numerically select the value of the
quantization step which yields the maximum capacity of the
binary-input -output DMC. The motivation for this approach
is twofold: i) an increase in channel capacity typically would
result in an increase in overall system performance [measured
in term of source signal-to-distortion ratio (SDR)] and ii)
optimizing the soft-decision quantizer under the maximum
capacity criterion is much simpler than under the maximum
SDR criterion. Note that the capacity increases with(as
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TABLE I
(a) CAPACITY C (IN BITS/CHANNEL USE) OF TWO-INPUT, 2 -OUTPUT DMC

DERIVED FROM BPSK-MODULATED AWGN CHANNEL WITH q-BIT

SOFT-DECISION DEMODULATION; � = �(SNR) IS OPTIMAL

QUANTIZATION STEP. (b) SOURCESDR (IN DECIBELS) PERFORMANCES

OF COVQ SYSTEM IN AWGN CHANNEL FOR DIFFERENTVALUES OF q

(NUMBER OF SOFT-DECISION BITS); MEMORYLESSGAUSSIAN SOURCE;
r = 2 BITS/SAMPLE; DIMENSION k = 2. NUMBERS IN BRACKETS

INDICATE THE OPTIMAL PERFORMANCE THEORETICALLY

ATTAINABLE (OPTA) FOR THE MEMORYLESS

GAUSSIAN SOURCE AND DMC

expected);1 however, most of the capacity increase over the
hard-decision demodulation system ( ) is achieved for

. Furthermore, the soft-decision information significantly
increases the channel capacity during severe channel condi-
tions; for example, at a channel SNR of3 dB, the capacity
increases by 40% (from to ).

C. Numerical Results and Discussion

As in [1], we employ the transition matrix of the above
( -input, -output) DMC to design a COVQ. The COVQ
is obtained via the algorithm described in [1] and [4]. It consists
of an iterative algorithm that results in a locally optimal solution.
As discussed in [1], our scheme has no decoding computational
requirements (as opposed to [19]); although the codebook size
is larger than the codebook in [19].

In Table I(b), we present numerical results for the scheme in
Fig. 1 when the source is memoryless Gaussian. The results are
given in terms of the source SDR. The numbers in brackets indi-
cate the optimal performances theoretically attainable (OPTA)
obtained by evaluating , where is the distortion-rate
function of the source (for the squared-error distortion measure),

1Indeed, asq ! 1, the capacity of the DMC monotonically converges to
the capacity of the binary input AWGN channel with unquantized output [20].

TABLE II
SOURCESDR (IN DECIBELS) PERFORMANCES OFCOVQ SYSTEM IN AWGN
CHANNEL FOR DIFFERENTVALUES OFq (NUMBER OF SOFT-DECISION BITS);

MEMORYLESSGAUSSIAN SOURCE; r = 2 BITS/SAMPLE. SIZE OF COVQ
DECODERTABLE IS FIXED AT 256. NUMBERS IN BRACKETS INDICATE THE

OPTIMAL PERFORMANCETHEORETICALLY ATTAINABLE (OPTA) FOR THE

MEMORYLESSGAUSSIAN SOURCE AND DMC

and is the capacity of the DMC derived from the BPSK-mod-
ulated AWGN channel. The rate is bits/sample and the
dimension is . Throughout the paper, we assume that
the exact channel parameters are known to the encoder and de-
coder. We used 80 000 training vectors in the COVQ design
program. The numerical results are obtained using the vectors
inside this training set. Note that the results for corre-
spond to hard-decision demodulation. In this case, the DMC is
derived from uses of a binary symmetric channel (BSC) with
crossover probability . Thus, for , the results
are nearly identical to those reported in [4] for the BSC. Observe
from Table I(b) that the system performance increases asin-
creases (and that most of the gain is achieved at ). In this
case, the largest improvement is 0.87-dB SDR occurring at 3-dB
channel SNR. Also, it can be remarked that at low channel SNR,
the bit soft-decision scheme is approximately 1.3 dB
in channel SNR better than the hard-decision scheme ( );
this is in contrast to the typical 2-dB coding gain obtained over
AWGN channels at high channel SNR in soft-decision coded
modulation systems.

The cost of doing soft-decision demodulation is increased
complexity. The main complexity is due to the amount of
memory needed to store the look-up table in the COVQ de-
coder. This table includes vectors—each with dimension

. The size of the table increases exponentially with. It is
hence interesting to study the behavior of the proposed system
when the size of this table is constrained. In Table II, we
provide numerical results for the COVQ system when
and . In this case, the table in the COVQ decoder will
always consist of 256 vectors (though the dimension of each
vector is which varies). It can be seen that only at very high
channel SNRs (6 dB), the hard-decision scheme slightly
outperforms the soft-decision schemes. However, at lower
SNRs, the soft-decision schemes are superior. Furthermore, the
soft-decision schemes have lower computational and storage
complexity in the encoder. Also, the dimension of the vectors
in the decoder table is smaller.

In Table III(a) and (b), numerical results are provided for the
case where the source is Gauss–Markov with correlation
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TABLE III
SOURCESDR (IN DECIBELS) PERFORMANCES OFCOVQ SYSTEM IN AWGN
CHANNEL FOR DIFFERENTVALUES OFq (NUMBER OF SOFT-DECISIONBITS);
GAUSS–MARKOV SOURCE WITHCORRELATION COEFFICIENT0.9; NUMBERS IN

BRACKETS INDICATE THE OPTIMAL PERFORMANCETHEORETICALLY

ATTAINABLE (OPTA) FOR THEGAUSS–MARKOV SOURCE(� = 0:9) AND

DMC. (a)r = 2 BITS/SAMPLE; DIMENSION k = 2. (b) r = 2 BITS/SAMPLE;
DIMENSION k = 4. SHCD RESULTSWEREOBTAINED FROM THE AUTHORS OF

[18]; THEY ARE ALSO PLOTTED IN [18, Fig. 8]

parameter 0.9, and with COVQ parameters and
, respectively. In this case, the source has high

redundancy in the form of memory. In Table III(a), the results
are obtained for ranging from 1 to 4; while in Table III(b), they
are obtained for and 2 only. The largest improvement as

varies from 1–4 in Table III(a) is 1.18-dB SDR occurring at
3-dB channel SNR. In Table III(b), asincreases from 1 to 2, the
largest improvement is 1.21-dB SDR occurring at 3-dB channel
SNR. The best coding gains at low channel SNRs are around 2
dB [Table III(a)] and 1.31 dB [Table III(b)] in channel SNR.

In Table III(b), we also compare the performance of the
proposed soft-decision COVQ scheme with the soft Hadamard
column decoder (SHCD) of [18]. The SHCD results in this
table are for afixedencoder whereas the results of the proposed
scheme are for the case whereboth the encoder and decoder
are optimized for the given channel SNR. Hence we find
that even the hard-decision ( ) COVQ outperforms the
SHCD of [18] with a fixed encoder (optimized for the clean
channel). Thus the comparison in Table III(b) is not fair to
[18]. In Fig. 2, we attempt to make a fair comparison. In this
figure, we compare the proposed soft-decision COVQ scheme
with the channel-optimized SHCD scheme (both encoder and
decoder are optimized for the given channel SNR) for the
Gauss–Markov source with . In this case, we
find that the proposed scheme with is comparable to

Fig. 2. Performances of COVQ system in AWGN channel withq = 1 and
q = 4 compared with SHCD (cf. [18, Table 4]). Gauss–Markov source.R = 1;
k = 4.

the channel-optimized SHCD. We observe that the decoder of
the proposed scheme is just a simple table lookup while the
decoder of the SHCD requires a weighted multiplication of

-dimensional vectors. Thus, the decoder computational
complexity of the proposed scheme is substantially less than
SHCD. However, the decoder memory storage of the proposed
scheme is times more than the SHCD.

III. ACGN CHANNELS WITHOUT NOISEWHITENING

We next investigate the COVQ system for a BPSK-modu-
lated additive colored Gaussian noise (ACGN) channel. The
system is the same as described in Section II [cf. (1) and Fig. 1]
with the exception that the noise process is a th-order
Gauss–Markov noise process described by

(7)

where is an i.i.d. (white) Gaussian process. Here, it is
assumed that the all-pole filter described by (7) is stable, i.e.,
all the roots of the polynomial are
within the unit circle.

Instead of using the traditional interleaving technique for such
a channel, we propose to utilize the statistical characteristics of
the correlated channel noise by incorporating them in the design
of the COVQ. This results in a COVQ scheme exploitingboth
thechannel memoryas well as the channelsoft-decision infor-
mation.2 Like the AWGN case, the resulting discrete channel
obtained by concatenating the modulator, ACGN channel, and
the soft-decision demodulator, has inputs and outputs.
However, in this case, the channel transition matrix is nonsym-
metric and the channel has memory from block to block; thus,
its capacity cannot be easily obtained. To simplify this matter,
we model this discrete channel as a block-memoryless channel

2In [14], a binary-input binary-output channel with memory was considered,
thus only the channel memory was exploited by the COVQ design.
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TABLE IV
(a) CAPACITY C (IN BITS/CHANNEL USE) OF 2 -INPUT, 2 -OUTPUT DMC
DERIVED FROM BPSK-MODULATED ACGN CHANNEL (p = 1; a = 0:9)

WITH q-BIT SOFT-DECISIONDEMODULATION AND kr = 4; � = �(SNR) IS

OPTIMAL QUANTIZATION STEP. (b) SOURCE SDR (IN DECIBELS)
PERFORMANCE OFCOVQ SYSTEM IN ACGN CHANNEL (p = 1; a = 0:9)

FOR DIFFERENT VALUES OF q (NUMBER OF SOFT-DECISION BITS);
GAUSS–MARKOV SOURCE WITH CORRELATION COEFFICIENT0.9; r = 2

BITS/SAMPLE; DIMENSION k = 2. NUMBERS IN BRACKETS INDICATE THE

OPTIMAL PERFORMANCETHEORETICALLY ATTAINABLE (OPTA) FOR

THE GAUSS–MARKOV SOURCE AND DMC

(a DMC with inputs, outputs). Hence the noise memory
from block-to-block is ignored while the memory within a block
is considered. Therefore, as the blocklengthgets large, the
model becomes more accurate. To determine the capacity, we
estimate the block transition matrix of the DMC
using a long training sequence of colored noise. We then em-
ploy Blahut’s algorithm [3] to calculate its capacity. As in Sec-
tion II, the quantization step is chosen to maximize capacity
at each channel SNR. In Table IV(a), we present the channel ca-
pacity for the channel for different values ofand for .
Here, and (first-order Gauss–Markov noise) and
the capacity is normalized by to yield a unit of bits/channel
use. The results indicate that soft-decision information provides
very large gains in capacity. At low channel SNRs the capacity
is increased by more than 100% from to . Also,
for the same SNR and the same, the capacity of the quantized
ACGN channel is always greater than the capacity of the quan-
tized AWGN channel (cf. Table I).

The estimated channel transition matrix is then incorporated
in the COVQ design algorithm [14]. Numerical results for the
Gauss–Markov source over the ACGN channel are displayed

in Table IV(b). It can been observed that for identical channel
SNRs,substantialgains in SDR are achieved asincreases from
1 to 4. For low channel SNRs, the soft-decision gains are up
to 6.8 dB. Note that if a sufficiently long interleaver is used
before and after channel transmission, the ACGN channel will
be converted to an AWGN channel. Thus, comparing the results
of Tables III(a) and IV(b), we remark that very large gains over
channel interleaving are achieved—particularly for . For
example, for and channel dB, the SDR gain
over the memoryless channel case is more than 6 dB. This gain
is due mainly to the higher capacity of the ACGN channel as
compared to the AWGN channel [cf. Table I(a) and IV(a)].

IV. ACGN CHANNELS WITH NOISE WHITENING

Another traditional method for dealing with an ACGN
channel is to perform noise whitening [15]. Assume the noise
parameters in (7) are known to the receiver. The
channel output is passed through a noise whitening filter

, described by

(8)

where are the filter input and are the filter output.
Substituting (1) into (8), we get

(9)

where the last equality follows from (7).
Therefore, the noise-whitening filter converts the

ACGN in (7) into the AWGN in (9), while intro-
ducing the ISI: . Thus, the combination
of the ACGN channel and the noise-whitening filter is
equivalent to an ISI channel with AWGN. Since the filter
is invertible, one may use the data processing theorem [6] to
argue that the capacity of the ACGN channel is equal to the
capacity of the induced ISI channel. When a soft-decision
quantizer is introduced at the channel output, however, this
no longer holds. Note that the noise-whitening filter is
introducedbeforethe soft-decision quantizer.

A. Scalar Soft-Decision Quantization System

The questions we ask are the following. With a-bit soft-deci-
sion quantizer at the channel output, does the introduction of the
noise-whitening filter increase or decrease capacity? Further-
more, is the overall system performance improved or reduced
with the noise-whitening filter?

In Table V(a), we present the capacity of the quantized
ACGN channel with noise whitening ( is scalar quantized to

bits). The COVQ performances are reported in Table V(b).
As in Section III, we assume that the discrete channel is block
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TABLE V
(a) CAPACITY C (IN BITS/CHANNEL USE) OF 2 -INPUT, 2 -OUTPUT DMC
DERIVED FROM BPSK-MODULATED ACGN CHANNEL (p = 1; a = 0:9)
WITH NOISE WHITENING AND q-BIT SOFT-DECISION DEMODULATION AND

kr = 4; � = �(SNR) IS OPTIMAL QUANTIZATION STEP. (b) SOURCESDR
(IN DECIBELS) PERFORMANCE OFCOVQ SYSTEM WITH NOISE-WHITENING

FILTER; GAUSS–MARKOV SOURCE WITH CORRELATION COEFFICIENT0.9;
r = 2 BITS/SAMPLE; DIMENSION k = 2. NUMBERS IN BRACKETS INDICATE

THE OPTIMAL PERFORMANCETHEORETICALLY ATTAINABLE (OPTA) FOR

THE GAUSS–MARKOV SOURCE AND DMC

memoryless with blocklength . For system design, we reset
the state, , of the noise whitening
filter at the beginning of each block to zeros. This leads to a
block-based system which is simple to design and analyze.
However, the “effective channel” (the combination of the
ACGN channel and the noise-whitening filter) will not be
exactly an ISI channel since the noise is not entirely whitened
in the first samples of each block of bits.

Comparing Tables IV(a) and V(a), we observe that the noise
whitening filter does in fact increase capacity in all cases except
for and high SNR. This is explained by the fact that a
one-bit scalar quantizer is not effective for ISI channels. Con-
sider as an example the case where , , ,
and . Even though the transmitted signals, , be-
long to

(10)

the signal part of the received signals belong to

(11)

due to the ISI in (9). Thus, it is apparent that in the case of ACGN
channel with noise whitening, a vector soft-decision quantizer
(VSDQ) will be more effective in capturing the channel memory
than a scalar soft-decision quantizer. In the next sub-section, we
propose two VSDQ methods.

B. Vector Soft-Decision Quantization Systems

We introduce two VSDQ systems: an unstructured VSDQ
system using an LBG (Linde, Buzo, Gray) VQ [11] and a struc-
tured VSDQ. To derive the unstructured VSDQ, we obtain a se-
quence of noise samples derived from a Gauss–Markov
process of order . The noise process is obtained by passing
a white Gaussian noise sequence through an all-pole filter de-
scribed by (7). The noise samples are divided into blocks of size

. We thus obtain noise vectors. Each of the noise vec-
tors is added to each of the signal points on the constellation

of size . The received vectors are passed
through a noise-whitening filter described by the matrix

...
...

...
...

...
...

...

(12)

We thus obtain VSDQ input vectors of dimension .
These vectors are used as the training sequence in the design
of an LBG-VQ [11] of size codevectors. Note thatis the
rate of the soft-decision vector quantizer. The LBG-VQ is de-
signed assuming a squared-error distortion measure. This de-
sign criterion is chosen for convenience only and does not nec-
essarily result in the best soft-decision vector quantizer in term
of achieving the maximum capacity. Once the LBG-VQ is de-
signed, a channel transition matrix of size is deter-
mined by encoding each of the received vectors. The ca-
pacity is then calculated using Blahut’s algorithm.

The second VSDQ is designed based on the observation that
at high SNR, the VSDQ input vectors are concentrated around
the points , where is a column
vector. It is thus desirable to place codevectors near these points.
To achieve this, we design a structured VSDQ in which each
codevector is described by

(13)

where

(14)

Thus, the structured VSDQ codebook is a linear mapping
(by ) of a uniform -dimensional grid (derived from
uses of a uniform scalar quantizer of step size). There are
several advantages of the structured VSDQ as compared to
the unstructured LBG-VQ. First, since the codebook depends
only on one parameter, namely, obtaining the best codebook
(for maximizing channel capacity) among those having the
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TABLE VI
CAPACITY C (IN BITS/CHANNEL USE) OF 2 -INPUT, 2 -OUTPUT DMC
DERIVED FROM BPSK-MODULATED ACGN CHANNEL (p = 1; a = 0:9)

WITH NOISEWHITENING AND q-BIT VSDQ AND kr = 4. (b) SOURCESDR (IN
DECIBELS) PERFORMANCE OFCOVQ SYSTEM WITH STRUCTUREDVSDQ;
GAUSS–MARKOV SOURCE WITH CORRELATION COEFFICIENT0.9; r = 2

BITS/SAMPLE; DIMENSION k = 2. NUMBERS IN BRACKETS INDICATE THE

OPTIMAL PERFORMANCETHEORETICALLY ATTAINABLE (OPTA) FOR

THE GAUSS–MARKOV SOURCE AND DMC

structure is straightforward. Second, since the codebook
is structured, the quantization process can be implemented
straightforwardly using the Viterbi algorithm.3 The Viterbi
trellis has states with branches entering and leaving
each state. To obtain the capacity of the discrete channel
(which is derived from the BPSK modulator, ACGN channel,
noise-whitening filter , and the structured VSDQ), we use the
training sequence approach described above to determine the
channel transition matrix. From the channel transition matrix,
the capacity is calculated from Blahut’s algorithm. We note that
with the training-based approach, the channel transition matrix
of the discrete channel is often very sparse—especially for high
SNR. Thus, the storage requirement for the channel transition
matrix can be kept small even though is large. Furthermore,
the complexity of calculating the Shannon capacity can be
reduced when the matrix is sparse.

In Table VI(a), we present the capacity of the discrete chan-
nels derived from unstructured and structured VSDQ. Note that
the structured VSDQ capacities are comparable to the unstruc-
tured VSDQ. Furthermore, for , both unstructured and

3Note that in implementing the structured VSDQ encoder, we use the mean
squared error criterion in the Viterbi algorithm. However, in the design of the
structured VSDQ, we choose the value of�which maximizes channel capacity.

TABLE VII
(a) CAPACITY C (IN BITS/CHANNEL USE) OF 2 -INPUT, 2 -OUTPUT

DMC DERIVED FROM BPSK-MODULATED ISI CHANNEL

(p = 2; a = 0:407; a = 0:815; a = 0:417) WITH q-BIT STRUCTURED

VSDQ AND kr = 4; 6; AND 8. (b) SOURCE SDR (IN DECIBELS)
PERFORMANCE OFCOVQ SYSTEM WITH STRUCTURED VSDQ;

GAUSS–MARKOV SOURCE WITH CORRELATION COEFFICIENT0.9; r = 2

BITS/SAMPLE; DIMENSION k = 2; 3; AND 4

structured VSDQ are better than the scalar quantizer (with and
without noise whitening). For , the structured VSDQ,
the unstructured VSDQ, and the scalar soft-decision quantizer
(with noise whitening) all yield similar results. The COVQ per-
formance of the system assuming ACGN, noise whitening, and
structured VSDQ is provided in Table VI(b). Considerable gains
are observed over Tables IV(b) and V(b). Note that the struc-
tured VSDQ is chosen because of its moderate complexity and
consistent performance.

V. ISI CHANNELS

We now consider an ISI channel modeled by

(15)

where is the channel input, is the channel
output, and is AWGN.

For purpose of simulation, we will consider the parameters
and

(16)
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Such a filter has been considered in [15] and [19]. Note that the
filter has a zero on the unit circle and hence linear equalization
will result in very poor performance [15].

We now consider the structured VSDQ for the ISI channel.
The capacity of the discrete channel is given in Table VII(a)
for and . As before, the optimal values of is
chosen for each SNR. The COVQ performance is reported in
Table VII(b). For comparison purposes, we have included the
performance of the optimal soft-decision decoding method
proposed by Skoglund [19] (referred to as the M1 scheme in
[19]). Note that our scheme exploits the intrablock channel
memory only; while Skoglund’s technique exploits both the
intrablock and interblock channel memories. Thus, Skoglund’s
scheme is superior for small blocklengths (). However, our
method has less computational complexity and can readily
operate for higher blocklengths.

VI. CONCLUSIONS

We presented and implemented a soft-decision COVQ
system for BPSK-modulated AWGN, ACGN, and ISI Gaussian
channels. The system, which consists of a COVQ scheme
constructed for a discrete channel derived from the-bit
soft-decision demodulation of the Gaussian channels, exploits
the channel soft information as well as the channel block
memory in the case of the ACGN and ISI channels. The
soft-decision demodulators are designed to maximize the
capacity of the expanded channel which, in turn, results in
improved COVQ performance. It is shown that the proposed
scheme yields a considerably superior performance over COVQ
schemes designed for hard-decision channels or channels that
employ interleaving. Coding gains in SDR of up to 6.8 dB are
achieved. Future work may address the study of soft-decision
vector quantizers used in conjunction with error-control coding
schemes.
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