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Tight Error Bounds for Space-Time Orthogonal Block Codes
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Abstract—The performance of space-time orthogonal block
(STOB) codes over slow Rayleigh fading channels and max-
imum-likelihood (ML) decoding is investigated. Two Bonfer-
roni-type bounds (one upper bound and one lower bound) for the
symbol error rate (SER) and bit error rate (BER) of the system
are obtained. The bounds are expressed in terms of the pairwise
error probabilities (PEPs) and the two-dimensional pairwise error
probabilities (2-D PEPs) of the transmitted symbols. Furthermore,
the bounds can be efficiently evaluated and they hold for arbitrary
(nonstandard) signaling schemes and mappings. Numerical results
demonstrate that the bounds are very accurate in estimating the
performance of STOB codes. In particular, the upper and lower
bounds often coincide even at low channel signal-to-noise ratios,
large constellation sizes, and large diversity orders.

Index Terms—Bit and symbol error rates, diversity, maximum-
likelihood decoding, multiple antennas, pairwise error probability,
slow Rayleigh fading, space-time coding, wireless communications.

I. INTRODUCTION

THE original papers on space-time trellis (STT) codes
[15] and space-time orthogonal block codes [14] adopt

the Chernoff upper bound to estimate the pairwise error
probability (PEP) of codewords and to establish code design
criteria. Although the Chernoff bound yields successful code
constructions, it is quite loose even at high values of channel
signal-to-noise ratio (CSNR). Furthermore, it is common prac-
tice to use the union bound to approximate the symbol error
rate or bit error rate. However, the union bound is intrinsically
loose, particularly at low CSNRs. Therefore, using the Cher-
noff bound together with the union bound may result in poor
approximations to system performance (see, e.g., Section IV).

The main challenge in determining the codeword PEP of
space-time codes under maximum-likelihood detection is to
average the Gaussian -function , where is a nonneg-
ative random variable. This problem has been mainly studied
in [11], [13], and [16]. In [16], a method to derive the exact
PEP in terms of the residues of the moment generating function
(MGF) is presented. The result is used to find an estimate of the
BER of STT codes. In [13] a form of the MGF is derived which
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is simpler to evaluate for block fading channels, and the PEPs
are found numerically. The study in [11] presents another exact
form of the PEP, which can be evaluated in closed form when
the codewords corresponding to a pair of trellis paths have
orthogonal rows. Recently, Lu et al. derived exact closed-form
expressions for the PEP of general space-time codes [7]. Their
derivation of the STOB codeword PEP is based on averaging
Craig’s formula [5] using the results in [12].

With respect to the SER/BER analysis of space-time orthog-
onal block codes, one can use the closed-form conditional SER
formulas in [12] and average them over the fading coefficients
distribution to derive exact SER formulas for standard PSK and
square -ary QAM, where is a positive integer; this approach
is taken in [9]. However, the resulting SER formulas do not hold
for arbitrary constellations such as star-QAM and it is not clear
how to extend this approach to evaluate the BER, specially if
Gray mapping is not used. For PSK signaling, tight bounds on
the symbol PEP were found in [4]. Also, in [1], the symbol
PEP was found in integral form for diversity reception systems,
which can be easily tailored to STOB coding. The symbol PEPs
can be used to derive an upper bound on the BER; however, as
will be shown in the sequel, the resulting BER upper bound is
very loose even at medium CSNRs.

In this work, we show how to use the symbol PEP results
to derive bounds for the SER and BER of STOB codes via
establishing two algorithmic Bonferroni-type upper and lower
bounds. The bounds are general (upper/lower) bounds on the
probability of a union of a finite number of events
which are expressed in terms of the individual probabilities

, as well as the probabilities of intersections
of pairs of events , [6]. When
specialized to the STOB codes setting, the overall error event of
the system can be represented by such a finite union of events,
where is the PEP, and is the two-dimensional
(2-D) pairwise error probability which we determine in closed
form. One important feature of the bounds is that they hold
for arbitrary constellations and signal mappings since they do
not depend on the geometry of the system at hand. Numerical
results indicate that the bounds for STOB codes often coincide
with the true error probabilities obtained via simulations even
at low CSNRs. Furthermore, the computational complexity
of these algorithmic bounds is very modest even for large
constellations and larger number of antennas.

The rest of this letter is organized as follows. The channel
model and a review of space-time orthogonal block codes
are presented in Section II. Section III briefly describes the
algorithmic lower and upper bounds of [6] and derives the
exact probability expressions needed for applying the bounds
to STOB coding systems. Numerical and simulation results are
given in Section IV. Section V concludes the paper.
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II. SYMBOL PAIRWISE ERROR PROBABILITIES OF SPACE-TIME

ORTHOGONAL CODES

The multiantenna communication system considered here
employs transmit and receive antennas. The input to the
system is an independent and identically distributed (i.i.d.)
uniform bit-stream. The complex baseband constellation points
are denoted by where is a positive integer. We
assume that the signal constellation has an average energy of
one. In order to have an average CSNR of at each receive
antenna, the modulators weight the symbols by (see
(1)). The channel is assumed to be Rayleigh flat fading, so
that the complex path gain from transmit antenna to re-
ceive antenna , , has a zero-mean unit-variance complex
Gaussian distribution, denoted by , with i.i.d. real
and imaginary parts. We assume that the receiver, but not the
transmitter, has perfect knowledge of the path gains. Moreover,
we assume that the channel is quasi-static, meaning that the
path gains remain constant during the transmission of a code-
word. The additive noise at receiver at symbol interval ,

, is assumed to be distributed with i.i.d. real and
imaginary parts. The signal at receive antenna can be written
as , where is the
signal sent from antenna , or in matrix form

(1)

where , ,
, and denotes transposition. is

the path gains matrix with elements . We assume
that the input, noise, and fading processes are all independent.

Let be a vector of consecutive constella-
tion points and be the space-time code cor-
responding to it, where is the codeword length. In the case
of STOB codes, we have , where is the coding gain
and , where is the identity matrix and

represents complex conjugate transposition. As an example,
for the code in [14], , and , and for
Alamouti’s code [2], and .

It can be verified that the PEP conditioned on the path gains
is given by

(2)

where denotes the event that has a larger metric than
when is sent ( and are a pair of symbols input to the

STOB encoder), , and

(3)

is the sum of the squared magnitudes of all path gains.1

Using the moment generating function of Gaussian random

1We assume here that all path gains contribute equally in Y . This assumption
is valid for most orthogonal codes used in the literature, including Alamouti’s
G code and the G and G codes of [14].

variables, it can be verified that the probability density func-
tion of is

(4)

where . As noticed in [3], the PEP of diversity reception
systems with maximum ratio combining has a form similar to
that of (2) with the exception that is given by .
Therefore, the conditional PEP for those systems is the same as
(2). MRC systems were previously analyzed in, for example,
[8], [12], whose results can be used to obtain the expected value
of (2) as

(5)

III. ERROR RATE BOUNDS FOR SPACE-TIME

ORTHOGONAL BLOCK CODES

In this section, we show how the algorithms in [6] for two
tight Bonferroni-type upper and lower bounds can be used for
space-time orthogonal block codes.

A. The Bonferroni-Type Lower and Upper Bounds

For a positive integer , let be events in an
arbitrary probability space. A stepwise algorithm is given in [6]
to find a lower bound for the probability of the union of the .
The bound is given by

(6)

where . Also, a greedy algorithm is de-
scribed in [6] which finds an upper bound for the probability
of the union of , which is given by

(7)

where is the set of all spanning trees of the indices, i.e., the
trees whose set of nodes is the set of indexes . The
greedy algorithm in [6] is as follows. First, each pair of nodes

is connected via edges of weight to form a
fully connected graph. To form the tree , the algorithm starts
from the edge with the largest weight (the with the largest

). Then, at each step, the edge with the largest weight
is added to , subject to the constraint that there is no cycle in

. This step is executed until all of the nodes are in .

B. Symbol Error Rate

For a constellation of size , where is a positive
integer, and an i.i.d. uniform bit stream, the SER is given by

(8)
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where is the conditional probability of error
given that was sent, and indicates the event that has a
larger metric than . Note that is the PEP and is given
in (5). In order to find lower and upper bounds on the probability
of each union in (8) via (6) and (7), respectively, we need to find
the probability of the intersection of and , the 2-D PEP
of symbols and with . This can be done by averaging [6,
eq. (7)], i.e.,

(9)

where ,
( and are the real and

imaginary parts, respectively), , is defined in
(3), and

(10)

with . As and are nonnegative, we
can use the result of [10] to write (10) as

(11)

where , and

is defined here as for negative . Using the pdf
of in (4), we find the expected value of each of the integrals
in (11) as follows:

(12)

(13)

where is a given nonnegative function of . The step from
(12) to (13) follows (for example) by writing the inner integral in
(12) in terms of the derivative of the Laplace transform
of the unit step function. Using (13) with and
[12, eq. 5A.35], we have

(14)

where

with , , and
if and 0 otherwise. Therefore, from (9),

(11), and (14), we obtain the following expression for the 2-D
PEP:

(15)

C. Bit Error Rate

The same algorithm can be used as outlined in [6] to estimate
the BER. We have

where is the bit error probability when is sent and is
given by

(16)

where is the Hamming distance between the bit assign-
ments of and , is the probability that
is decoded given that is sent, and is the event that has
a larger metric than . From the above, it is clear that finding
upper and lower bounds on the BER requires evaluating lower
and upper bounds on the probability of the union in (16). These
bounds, in turn, require the computation of

as well as

(17)

where is defined in (14) and if the second and the third
arguments of are nonnegative. If at least one of the two
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Fig. 1. Results for 32-PSK signaling withK = 2,L = 4, and G STOB code
(5 bits/s/Hz).

Fig. 2. Results for 64-QAM signaling with K = 2, L = 2, and G STOB
code (6 bits/s/Hz).

arguments are negative, the function can be written as
sum of a number of functions with nonnegative argu-
ments as shown in the equation at the bottom of the page. In
this case, we can also obtain an expression for the 2-D PEP as
shown in (17).

IV. SIMULATION RESULTS

For this part, the length of the input bit-sequence is
. The computation time of

the algorithmic Bonferroni bounds is negligible for our code

Fig. 3. Results for 8-PSK signaling with K = 3, L = 1, 2, and 4, and G
STOB code (1.5 bits/s/Hz).

Fig. 4. Results for Star 8-QAM signaling and quasi-Gray mapping withK =

4, L = 1, and G STOB code (1.5 bits/s/Hz).

that is written in C and run on a SUN Ultra 60 machine. The
Chernoff and the union bounds are also given for the SER.

The SER and BER versus CSNR curves are presented in
Figs. 1–4 for various , , space-time codes, and -ary PSK
and QAM constellations with Gray or quasi-Gray mappings.
Figs. 1 and 2 show the performance of Alamouti’s code [2],
while the performance of the codes and of [14] are pre-
sented in Figs. 3 and 4, respectively. The lower and upper Bon-
ferroni bounds based on the 2-D PEP formulas for both SER and
BER curves are very tight and can hardly be distinguished from
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each other and from the performance curve obtained via sim-
ulation. It can be seen that as the constellation size grows, the
union bound becomes less reliable and the Chernoff bound gets
farther from the other curves, while the lower and upper bounds
based on the exact 2-D PEP remain very tight. Fig. 3 shows our
BER upper and lower bounds as well as simulation results for
a system with three transmit and , 2, and 4 receive an-
tennas for a wide range of CSNRs. The bounds are tight even
at negative CSNR values and high diversity orders. Notice that
the Star 8-QAM constellation of Fig. 4 (with signal points at

, where and
a corresponding quasi-Gray bit mapping given by {000, 100,
001, 101, 011, 111, 010, 110}) is not a regular square QAM nor
8-PSK, but the bounds are still very tight.

An upper bound on the BER can be computed by upper
bounding in (16) by the PEP to get

where is the Hamming distance between the bits corre-
sponding to and . This bound is also plotted in all figures.
It is clearly observed that our upper bound is much tighter, par-
ticularly for larger constellations.

As Gray mapping is used in the above systems (except for
Fig. 4), it is expected that at high enough CSNRs the BER of
PSK-modulated systems converges to [8] ,
where is the constellation size. The curves labeled with
“ ” in Fig. 1 show this approximation. We also observe
that as the constellation size shrinks or the number of the re-
ceive antennas grows, this estimate becomes tighter. Therefore,
at high enough CSNR values, it would be enough to find only
one of the SER bounds to obtain a good estimate of system SER
and BER. For example, for 16-PSK signaling and at a CSNR of
15 dB, the coinciding SER lower and upper bounds are equal to
0.195 682. The above approximation yields ,
while the lower and upper bounds on the BER coincide and
equal 0.051 838. It is also important to note that although we
have only presented the BER results for the Gray or quasi-Gray
signal mappings, our bounds also apply to any other mapping
and show the same behavior.

V. CONCLUSION

We derive very tight Bonferroni-type lower and upper bounds
on the symbol and bit error rates for space-time orthogonal
block codes with arbitrary signal constellations. The lower and
upper bounds derived for these codes have very close values
(up to six identical significant digits) even at low channel

signal-to-noise ratios. Several constellation types and sizes,
space-time codes, and diversity orders were considered in
the numerical results. Simulations support the tightness and
accuracy of the formulas derived.
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