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Abstract—Three hybrid digital-analog (HDA) systems, denoted
by HDA-I, HDA∗ and HDA-II, for the coding of a memory-
less discrete-time Gaussian source over a discrete-time additive
memoryless Gaussian channel under bandwidth compression are
studied. The systems employ simple linear coding in their analog
component and superimpose their analog and digital signals
before channel transmission. Information-theoretic upper bounds
on the asymptotically optimal mean squared error distortion of
the systems are obtained under both matched and mismatched
channel conditions. Allocation schemes for distributing the chan-
nel input power between the analog and the digital signals are
also examined. It is shown that systems HDA∗ and HDA-II can
asymptotically achieve the optimal Shannon-limit performance
under matched channel conditions. Low-complexity and low-
delay versions of systems HDA-I and HDA-II are next designed
and implemented without the use of error correcting codes. The
parameters of these HDA systems, which employ vector quanti-
zation in conjunction with binary phase-shift keying modulation
in their digital part, are optimized via an iterative algorithm
similar to the design algorithm for channel-optimized vector
quantizers. Both systems have low complexity and low delay,
and guarantee graceful performance improvements for high
CSNRs. For memoryless Gaussian sources the designed HDA-
II system is shown to be superior to the HDA-I designed system.
When applied to a Gauss-Markov source under Karhunen-Loeve
processing, the HDA-I system is shown to provide considerably
better performance.

Index Terms—Broadcasting, hybrid digital-analog coding, joint
source-channel coding, linear analog coding, robustness, vector
quantization.

I. INTRODUCTION

WE consider the problem of transmitting a discrete-time
analog-valued source over a discrete-time memoryless

channel. Due to the often lacking channel information at the
transmitter, a robust system is desirable for a wide range of
channel conditions. In terms of the used modulation tech-
niques, systems can be generally categorized as analog, digital
or hybrid digital-analog (HDA).

One of the main advantages of digital communication sys-
tems is that they can be designed to (asymptotically) achieve
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the theoretical optimal performance for a fixed channel signal-
to-noise ratio (CSNR) via the separate design of optimal
source and channel codes [27], [4]. Systems designed based
on this principle are often referred to as tandem source-
channel coding systems. There are, however, two fundamental
disadvantages associated with digital tandem systems. One
is the threshold effect: the system typically performs well at
the design CSNR, while its performance degrades drastically
when the true CSNR falls below the design CSNR. This effect
is due to the quantizer’s sensitivity to channel errors and the
eventual breakdown of the employed error correcting code at
low CSNRs (no matter how powerful it is). The other trait is
the leveling-off effect: as the CSNR increases, the performance
remains constant beyond a certain threshold. This is due to the
non-recoverable distortion introduced by the quantizer which
limits the system performance at high CSNRs.

The threshold effect can be partly remedied via digital joint
source-channel coding (JSCC). By jointly designing the source
and channel codes, many results (e.g., [9], [17]) show that
noticeable gain can be obtained in terms of coding efficiency,
reconstructed signal quality, coding delay and complexity. In
particular, JSCC schemes are more robust than tandem systems
at low CSNRs. However, such JSCC systems still suffer from
the leveling-off effect at high CSNRs, since being digital sys-
tems, they employ quantization to “digitize” the source. On the
other hand, the leveling-off effect is not a problem for analog
systems (we call a discrete-time system analog if it uses an
analog modulation technique such as amplitude modulation);
actually, their performance can strictly increase as the CSNR
increases. However, it is usually hard to incorporate efficient
signal compression schemes in analog systems, particularly
when channel bandwidth change is required and/or the source
has memory.

Schemes that exploit the advantage of analog systems
are studied by Ramstad and his co-authors in [16], [10],
[6], [5], and [11]. These are based on the so-called direct
source-channel mapping technique: the output of a source
scalar/vector quantizer is mapped directly to a channel sym-
bol using analog (or nearly analog) modulation, i.e., ampli-
tude modulation or M -ary quadrature amplitude modulation
(QAM) with M � 1. The direct source-channel codes
also enjoy graceful degradation performance at low CSNRs.
In [16], a robust image coding system is presented which
combines subband coding and QAM. This system allows
various compression levels based on block-wise classification.
An improved image coding system is proposed in [6]; it
utilizes both bandwidth compression and bandwidth expansion
mappings, where the bandwidth expansion mapping employs a
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scalar quantizer and transmits both the quantized value and the
quantization error. Recently, a JSCC technique known as the
2:1 Shannon mapping was investigated in [11] and shown to
provide very robust performance. It employs the Archimedean
spiral to approximately map a point in a plane onto a point
on a line. Related works on analog coding methods include
[31] and [32].

To exploit the advantages of both analog and digital sys-
tems, one can allow part of the system to use digital modula-
tion to improve robustness against severe channel conditions,
while letting another part of the system use analog signaling to
obtain a graceful improvement at high CSNRs. Several recent
works have investigated such systems. In [19], a family of
HDA systems are introduced and studied theoretically; they
are shown to offer better distortion performance than purely
digital systems, have a graceful performance improvement and
(asymptotically) achieve the Shannon limit. An HDA system
design based on vector quantization (VQ) for bandwidth
expansion is investigated in [28], where an algorithm to design
optimized codes and performance evaluation are presented.
In [29], an HDA system for Gauss-Markov sources with
bandwidth compression/expansion is given. It employs the
Karhunen-Loéve transform to decorrelate the source, Turbo
error correcting coding in its digital part to improve the
system performance at low CSNRs, and superposition coding
of the analog and digital signals. This system allows for both
linear and non-linear mappings in its analog component. In
[26], systematic JSCC is studied and is demonstrated to be
optimal for a wide class of sources and channels. In [23],
an inner distortion bound for broadcasting a single Gaussian
source to two listeners over a Gaussian broadcast channel with
bandwidth expansion is derived. This bound is obtained based
on an HDA coding scheme, which includes one of the HDA
systems of [19] and the systematic coding scheme of [26] as
two special cases. In [25], systems using an HDA approach, a
progressive transmission approach, and a superposition coding
approach are compared for a slowly-varying fading additive
white Gaussian noise (AWGN) channel. It is shown that the
HDA approach has better performance than the other two
methods. Most of the gain of this HDA approach is due
to the presence of the linear analog part. Other HDA-based
techniques are studied in [13], [20], [22], and [12] and [2];
in particular, the works of [12] and [2] study the distortion
exponent (where the derived results are asymptotic in both
CSNR and source dimension) for HDA coding over multiple-
input multiple-output block fading channels.

In this work, we study the transmission of memoryless
Gaussian sources over an AWGN channel with bandwidth
compression. We investigate this problem within the HDA
coding framework. We consider three HDA systems. The first
system (referred to as HDA-I) is based on the recent work in
[29]. For this HDA system, we first obtain an information-
theoretical (mean squared) distortion upper bound for the
optimal HDA-I system with a linear analog part. As a direct
consequence, we obtain a similar distortion bound for the
mismatched HDA-I system where the encoder does not know
the true CSNR. An optimal power allocation formula between
the digital and the analog parts is obtained for this mismatched
system. The second system, HDA∗, and the simpler third HDA

system, HDA-II, are both shown to asymptotically achieve
the Shannon limit for a properly chosen power allocation
between the analog and digital parts of the systems. Distortion
bounds for these two systems under CSNR mismatch are also
provided.

For the HDA-I system, a low-complexity and low-delay
version is next designed and implemented without the use of
Turbo error correcting codes (unlike the scheme of [29]) and
is shown to be robust over a wide range of CSNRs. These
characteristics may be particularly appealing for telemedicine
and sensor networks applications where sensitive image data
need to be reliably communicated from remote locations
irrespective of the channel environment. The digital part of the
HDA-I scheme is formed with a VQ cascaded with a binary
phase-shift keying (BPSK) modulated hard-decision decoded
AWGN channel. As in [28], the HDA-I system parameters (in
both the digital and analog components) are optimized using
an iterative algorithm similar to that for channel-optimized
vector quantizer (COVQ) design. The HDA-II system is also
designed and implemented without the use of channel coding;
it uses a COVQ in its digital component. Simulation results
indicate that while the HDA-I system provides an inferior
performance to the HDA-II system for memoryless Gaussian
sources, its performance is significantly better for Gauss-
Markov sources (decorrelated via Karhunen-Loeve process-
ing). Comparisons are also made with purely analog and
purely digital systems, as well as the system in [29].

The rest of this paper is organized as follows. In Section II,
a general description of the HDA systems are given and
information-theoretic bounds on the distortion are derived.
Power allocation schemes for distributing the channel input
power between the system’s analog and digital components
for both systems are also obtained. In Section III, the HDA-
I system design is examined in detail. Simulation results
are given in Section IV. Finally, conclusions are stated in
Section V.

Throughout the paper we will use the following notation.
Vectors are denoted by bold-faced characters superscripted
by their dimensions. Upper-case letters are used for random
variables and lower-case letters for their realizations. For a
given vector xn = (x1, · · · , xn)T , we let [xn]k1 and [xn]nk+1

denote the subvectors [xn]k1 � (x1, · · · , xk)T and [xn]nk+1 �
(xk+1, · · · , xn)T respectively, where T denotes transposition.
E(X) denotes the expectation of random variable X .

II. INFORMATION-THEORETIC CONSIDERATIONS

A. HDA-I System

The block diagram for the HDA-I system with bandwidth
compression is depicted in Fig.1(a). Samples of a memoryless
Gaussian source {Xi} with zero mean and variance σ2

s > 0
are grouped into blocks of size n (denoted by Xn) and sent to
a source encoder. The discrete output I , which is taken from a
finite set of indices, is then fed to a channel encoder/modulator
which produces a k-dimensional channel symbol sk

I , where
k < n. Here sk

I is taken from a finite set of possible symbols
and satisfies E‖sk

I‖2 ≤ k(1 − t)P , where P is the constraint
on the total input power per channel use and t ∈ [0, 1] is the
power allocation coefficient for the analog part. The source
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Fig. 1. HDA systems with bandwidth compression (k < n): (a) HDA-I system; (b) HDA-II system.

encoder and the channel encoder/modulator together will often
be referred to as tandem source-channel encoder/modulator.
The output index I is also sent to a source decoder to form
a reconstruction vector X̃n, which is subtracted from Xn to
form an error vector En. The first k components of En are
further sent to a linear (analog) encoder which performs simple
scaling so that the k-dimensional output Vk satisfies a power
constraint E‖Vk‖2 ≤ ktP . Now sk

I and Vk are superposed
and sent over a channel with AWGN Wk with per symbol
noise variance N . The channel output Rk, which is given by
Rk = sk

I +Vk+Wk, is sent to a channel decoder. The discrete

output J is sent to the source decoder resulting in vector ̂̃Xn

.
Simultaneously, a channel symbol is chosen according to J ,
which is subtracted from Rk. The result V̂k is fed to the linear
(analog) decoder to form an estimate Êk. The remaining n−k
components of the error vector are filled with zeros to produce

Ên which is then added to ̂̃Xn

to form an estimate X̂n. The
overall coding rate of this HDA-I system is r = k/n < 1
channel uses per source sample. The system normalized mean
squared error (MSE) distortion is

Dn(N) =
1
n

E

∥∥∥Xn − X̂n
∥∥∥2 . (1)

For the purpose of analysis, we first consider the system’s
asymptotic distortion, D(N) = lim

n→∞Dn(N), as the block
length n grows without bound (assuming that the limit exists).
The rate-distortion function for the memoryless Gaussian
source under the squared-error distortion measure is given by
R(D) = max

(
0, (1/2) log2

σ2
s

D

)
(bits/source sample) for any

distortion value D > 0 [27], [1]. The capacity of the AWGN
channel with input power constraint P and noise variance N
is given by C(N) = (1/2) log2

(
1 + P

N

)
(bits/channel use)

[27], [4]. From Shannon’s lossy JSCC theorem [27], [4] for
the memoryless Gaussian source-channel pair, we know that
if a code has asymptotic distortion D, then R(D) ≤ rC(N)
must hold. By letting R(D) = rC(N), a lower bound on
the asymptotic distortion of any code can be obtained. This
bound is also asymptotically achievable (under the assumption
that the noise variance N is known by both the transmitter
and the receiver), and is generally referred to as the optimal
performance theoretically attainable (OPTA). It is given by

Dopta(N) � σ2
s(

1 + P
N

)r . (2)

By examining the structure of the proposed HDA-I system
in Fig.1(a), we first obtain an upper bound on D(N) for
optimally designed HDA-I systems.

Proposition 1: (Upper bound) For a memoryless Gaussian
source with zero mean and variance σ2

s and an AWGN
channel with noise variance N (where N is known at both
the transmitter and the receiver), given fixed r, P and t, there
exists a sequence of HDA-I systems with asymptotic distortion
Dhda1(N) given by

Dhda1(N) = r
Dtan(N)
1 + tP

N

+ (1 − r)Dtan(N), (3)

where

Dtan(N) � σ2
s(

1 + (1−t)P
tP+N

)r . (4)

Proof. The proof is given in the Appendix.

Remark: It is easy to show that Dhda1(N) = Dopta(N) if
and only if t = 0. Furthermore, Dhda1(N) = Dopta(N) for
t = r = 1.
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Fig. 2. The best power allocation t (as a function of the true CSNR κtr)
for different HDA-I system parameters. For curves (a), (b) and (c), r = 0.5,
κdes = 0 dB, 10 dB and 15 dB, respectively. For curves (e), (f) and (g),
κdes = 5 dB, r = 0.75, 0.5 and 0.25 respectively.

We next examine the realistic situation where the AWGN
variance N is not known at the encoder. We assume that
the encoder only knows a range of values in which the true
noise variance Ntr lies; in particular, it chooses the encoding
operation for a fixed design noise variance Ndes. The receiver,
on the other hand, has full knowledge of Ntr and adapts the
decoding accordingly. For this mismatched HDA-I system,
when the true noise variance Ntr satisfies Ntr < Ndes, the
linear decoder can adapt to Ntr, resulting in a distortion given
by Dtan(Ndes)

1+ tP
Ntr

. The asymptotic performance of the tandem

coder part is still the same. We then obtain the following upper
bound on the distortion:

Dmis
hda1(Ntr, Ndes) � r

Dtan(Ndes)
1 + tP

Ntr

+ (1 − r)Dtan(Ndes) (5)

where Dtan(N) is given in (4).
We now consider the power allocation problem for this

mismatched HDA-I system with the encoder designed for
Ndes, while the true noise variance is Ntr. The best power
allocation coefficient t that minimizes (5) is given by the
following lemma.

Proposition 2: For Ntr < Ndes, P and r, the power allo-
cation coefficient t which minimizes the distortion expression
(5) at Ntr is given by

t = t1 �

√
1 + 4(κtr−κdes)

(1−r)κdes
− 1

2κtr
, (6)

where κtr = P
Ntr

is the true CSNR and κdes = P
Ndes

is the
design CSNR.

Proof. The minimizing t can be easily found by setting
the derivative of Dmis

hda1(Ntr, Ndes) with respect to t to
zero. The unique solution t ∈ [0, 1] is the optimal value
since a direct calculation shows that the second derivative
d2

dt2D
mis
hda1(Ntr, Ndes) > 0 if r < 1 and Ntr < Ndes. �

Since the optimal t is a function ofNtr, it is also unavailable
at the encoder. However, via a numerical study (see below) one

can choose a value of t which performs well for a large range
of CSNRs κtr. In Fig. 2, we plot the optimal t for different
system parameters as a function of the true CSNR κtr. We
observe the following.

• It is readily seen that as the true CSNR κtr increases, t
approaches 0. Furthermore, it is also easily seen from
(6) that the rate of decay of t to 0 is less than that
of 1/κtr. It is easy to see that as κtr → ∞, the
distortion performance of the mismatched HDA-I system
(5) approaches the constant (1 − r)Dtan(Ndes). Curves
(a), (f), (b) and (c) present the best power allocation for
an HDA-I system of rate 0.5, with design CSNR κdes

of 0 dB, 5 dB, 10 dB and 15 dB, respectively. They
indicate that, for a system with high design CSNR (which
is the case when performance at high CSNRs is the main
concern), the best power allocation coefficient at various
CSNR pairs (κdes, κtr) is smaller than that for the low
design CSNR case, i.e., the analog part of the HDA-I
system incrementally turns off as κdes increases without
bound.

• As κtr approaches κdes, t approaches 0. Thus the optimal
performance at the design CSNR is obtained by a “purely
digital” design, or equivalently, by an optimal tandem
coder which contains an optimal source code and an opti-
mal channel code, as predicted by Shannon’s theory [27].

• Curves (e), (f) and (g) show the best t for κdes = 5
dB and coding rate of 0.75, 0.5 and 0.25, respectively.
These curves demonstrate that t decreases as the coding
rate r decreases. Indeed, as r decreases, less components
of quantization error vectors are further coded via the
analog part, which reduces the importance of the analog
part relative to that of the tandem coding part.

In our system implementations, we fix a design CSNR κdes

and choose an adjusted value of t which is good over a large
range of true CSNRs κtr (> κdes); see Section IV for details.

B. HDA∗ and HDA-II Systems

We note that the HDA-I system can be improved by allow-
ing two separate source encoders in its digital component.
In particular, the source vector Xn is first split into two
subvectors of dimension rn and (1− r)n, respectively, which
are sent to two source encoders. The outputs of the source
encoders are concatenated and fed to the (digital) channel en-
coder. Furthermore, the quantization error subvector resulting
from encoding the first source subvector of dimension rn is
transmitted using the analog part (as in the HDA-I system).
With this modified source encoding structure in the system,
which we denote by HDA∗, the quantization distortion is
now determined by two source codes, unlike in the HDA-I
system where a single source encoder is used. Specifically,
two different per-sample quantization distortions are realized
in the digital part of the HDA∗ system: distortion D1 for
the first source encoder (of dimension rn), and distortion D2

for the second source encoder (of dimension (1 − r)n). It
can be shown (using a proof along the same lines as that of
Proposition 1), that for a given noise variance N (known at
both the transmitter and the receiver), fixed P , r, and t ≥ 0
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such that

t ≤ t∗ �
(1 + P

N )r − 1
P
N

(7)

we can choose D1 and D2 to satisfy

D2 =
D1

1 + t P
N

and

r

2
log2

σ2
s

D1
+

1 − r

2
log2

σ2
s

D2
=
r

2
log2

(
1 +

(1 − t)P
tP +N

)
(8)

with D1 ≤ σ2
s . Then the overall asymptotic distortion (as n

grows to infinity), Dhda∗(N), is given by

Dhda∗(N) � r
D1

1 + tP
N

+ (1 − r)D2 = D2.

Substituting D1 = D2

(
1+ t P

N

)
into (8) yields D2 = σ2

s

(1+ P
N )r ,

so that

Dhda∗(N) =
σ2

s(
1 + P

N

)r ,
which is the OPTA distortion Dopta(N). Thus for all t ≤ t∗

there exists a sequence of HDA∗ systems that asymptotically
achieves the OPTA distortion. In particular, the choice t = t∗

results in D1 = σ2
s , which means that the first nr components

of the source need not be quantized at all.
Furthermore, under channel mismatch (where the encoder

is designed for a fixed design noise variance Ndes while the
receiver knows the true noise varianceNtr, with Ntr < Ndes),
the HDA∗ system’s distortion bound is given by

Dmis
hda∗(Ntr, Ndes) � σ2

s

(1 + P
Ndes

)r

(
1 − r + rα

)
, (9)

where

α �
1 + tP

Ndes

1 + tP
Ntr

and

0 ≤ t ≤ t2 �
(1 + P

Ndes
)r − 1

P
Ndes

. (10)

In Fig. 3, we compare the (asymptotic) performance of the
HDA-I and HDA∗ systems under channel mismatch (with
r = 1/2, κdes = P

Ndes
= 10 dB and κtr = P

Ntr
= 20

dB) by evaluating (5) and (9) for different values of the
analog power allocation t. The performance is in terms of the
source signal-to-distortion ratio (SDR), which is defined by
SDR = 10 log10(σ2

s/D) where D is the MSE distortion. We
remark from Fig. 3 that the HDA∗ system also considerably
outperforms the HDA-I system under channel mismatch. Note
that the expressions of the analog power coefficients that
maximize the SDR in the figure, t1 for system HDA-I and
t2 for system HDA∗, are given by (6) and (10), respectively.

Although system HDA∗ provides superior (asymptotic) per-
formance over system HDA-I, it is structurally more complex
as it requires the use of two source encoders in its digital
component. On the one hand, this means that the encoding
complexity of HDA∗ is less than that of HDA-I (searching in a
product codebook is faster than in an unstructured codebook).

0 0.05 0.1 0.15 0.2
5

5.5

6

6.5

7

7.5

8

power allocation coefficient t 

S
D

R
(d

B
)

 

 

hda1

hda*

.

.

t
1

t
2

Fig. 3. SDR performance (in dB) under channel mismatch for the HDA-
I system (curve hda1) and the improved HDA∗ (curve hda∗) system with
r = 1

2
, design CSNR κdes = 10 dB and true CSNR κtr = 20 dB; t1 and

t2 are the optimal analog power coefficients for systems HDA-I and HDA∗,
respectively.

On the other hand, the joint optimization of the system
components is already quite complex in the conceptually
simpler HDA-I system (see Section III), and the presence of
two codebooks makes this joint optimization procedure even
more difficult for HDA∗. For this latter reason, we will only
implement a simplified version of the HDA∗ system, called
HDA-II, which is depicted in Fig. 1(b).

In this system, instead of quantizing the first rn source
symbols and sending the quantization error via the analog
part, the first rn symbols of Xn are directly transmitted using
analog coding (without the quantization part). The last (1−r)n
source symbols are (as in the HDA∗ system) quantized and
sent over the digital component of the system (see Fig. 1.(b)).
Analogously to systems HDA-I and HDA∗, one can show
that the following distortion,Dhda2(N), can be asymptotically
achieved by the HDA-II system:

Dhda2(N) � r
σ2

s

1 + tP
N

+ (1 − r)
σ2

s(
1 +

(1−t)P
N

1+ tP
N

) r
1−r

. (11)

Remark: Note that system HDA-II can still (asymptotically)
achieve the OPTA distortion: by setting t = t∗, we obtain that
Dhda2(N) = Dopta(N).

Furthermore, the channel mismatch distortion bound for the
HDA-II system, is given by

Dmis
hda∗(Ntr, Ndes) � r

σ2
s

1 + tP
Ntr

+ (1− r)
σ2

s(
1 +

(1−t)P
Ndes

1+ tP
Ndes

) r
1−r

,

(12)
where Ntr < Ndes.
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Fig. 4. Proposed HDA-I system design with bandwidth compression.

III. HDA-I SYSTEM DESIGN

We next consider a concrete implementation of the HDA-I
scheme in Fig. 1(a). This system, which has low-complexity
and low-delay as it avoids the use of channel coding in its
digital part, is depicted in Fig. 4, and it employs VQ cascaded
with BPSK modulation in the digital part, and uses linear
coding in the analog part.

A. System Description

The upper part, referred to as the digital part, is formed by a
VQ cascaded with a binary symmetric channel (BSC) without
the use of channel coding. An output index I of the k-bit
n-dimensional VQ encoder ε1 is assigned a k-dimensional
channel symbol sk

I from a set {sk
i } of 2k possible symbols.

The index I also chooses a vector zn
I from the encoder

codebook {zn
i }, which is subtracted from Xn to form the

error vector En.
In the ideal case, for a memoryless source, the optimal

source code (in the sense of asymptotically achieving the rate-
distortion curve) splits source vectors into two asymptotically
orthogonal components, the quantizer output and the quan-
tization error (see, e.g., [19]). Furthermore, for memoryless
Gaussian sources, the distribution of the quantization error
is also approximately Gaussian as n → ∞ (see Appendix).
In the HDA-I system with linear analog coding, since the
output of the linear analog encoder is just a scaled version
of the quantization error, we model (as discussed in the
Appendix) the output of the linear encoder by a vector of
independent Gaussian random variable with variance tP which
is independent of the source. Hence, for the digital part,
a BSC is realized by using hard decision decoding on the
BPSK-modulated AWGN channel with input power (1 − t)P
and noise variance tP + Ndes. Consequently, if the BPSK
signals take values in {+√(1 − t)P ,−√(1 − t)P }, the tran-
sition probabilities {PJ|I(j|i)} of the BSC are PJ|I(j|i) =
qdH(i,j)(1−q)k−dH(i,j), where dH(i, j) denotes the Hamming
distance between the binary representations of the integers
i and j, and q = Q(√κdig) is the crossover probability,

where κdig � (1−t)κdes

tκdes+1 is the effective CSNR of the digital

part and Q(x) = 1√
2π

∫∞
x
e−t2/2dt. We remark that any

memoryless modulation constellation can be used besides
BPSK modulation. We choose BPSK modulation because it
is simple and it performs comparatively well at low CSNRs.

Given an input error vector En, the mapping α simply takes
the first k components of En and forms a scaled vector Vk

(to satisfy the average power constraint), which is added to sk
I

and sent over the AWGN channel. The received vector Rk is
first fed to decoder δ1 (which is a simple binary hard-decision
demodulator), resulting in index J , and the corresponding
reproduction yn

J is chosen through a lookup table. The channel
symbol sk

J is then subtracted from Rk and scaled by a constant
b, forming an estimate V̂k. The mapping β expands the
message V̂k back to n dimensions, by padding it with zeros in
the corresponding locations. The resulting Ên is added back
to yn

J to form the reproduction X̂n.

B. System Design

For a total input power P , a fixed power allocation t
and a design noise variance Ndes, we derive an iterative
training algorithm to optimize the source digital transmitter
(both source encoder and source decoder) and both the digital
decoder codebook and the analog decoder. Given an arbitrary
encoder ε1, {zn

i }, {sn
i }, {yn

j }, and a and b, the end-to-end
average distortion can be expressed as (13) (see next page). To
considerably simplify the derivation of our results, we make
the following assumptions. We assume that a is chosen such
that the power constraint

a2
E
∥∥[Xn]k1 − [zn

I ]k1
∥∥2 = ktP (14)

is satisfied, that Wk is uncorrelated with both [yn
J ]k1 and

[sn
J ]k1 and that E[Wk|J ] = 0. It is worthwhile to point out

that the last two assumptions are valid when the channel is
noiseless; hence they provide good approximations in the high
CSNR regime and their merit will be assessed when evaluating
the performance of the resulting HDA-I system design in
Section IV.

Then distortion D1
n(Ndes) can be expressed as shown on

the next page, where the second equality follows from our
assumption that Wk is uncorrelated from [yn

J ]k1 and [sn
J ]k1 .

Lemma 1: Fix a set of encoder regions {Qi} of ε1. For any
digital decoder codebook {yn

j } and b, the digital source de-
coder codebook {[zn

i ]k1} that minimizes the average distortion
(13) is given by

[zn
i ]k1 = [ȳn

i ]k1 + b(sk
i − s̄k

i ), i = 0, · · · , 2k − 1. (15)

For any {[zn
i ]k1}, the average distortion (13) is minimized by

choosing b and {yn
j } as follows:

b =
E

[(
[Xn]k1 − E

[
[Xn]k1 | J])T Uk

]
kNdes + E‖Uk‖2

, (16)
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Dn(Ndes) =
1
n

E‖Xn − X̂n‖2

=
1
n

E

∥∥∥∥( [Xn]k1
[Xn]nk+1

)
−
(

[yn
J ]k1

[yn
J ]nk+1

)
−
(
b
(
a([Xn]k1 − [zn

I ]k1) + sk
I + Wk − sk

J

)
0

)∥∥∥∥2
=

1
n

E
∥∥[Xn]k1 − [yn

J ]k1 − b
(
a([Xn]k1 − [zn

I ]k1) + sk
I + Wk − sk

J

)∥∥2︸ ︷︷ ︸
�D1

n(Ndes)

+
1
n

E
∥∥[Xn]nk+1 − [yn

J ]nk+1

∥∥2︸ ︷︷ ︸
�D2

n(Ndes)

(13)

D1
n(Ndes)

=
1
n

E
∥∥[Xn]k1 − [yn

J ]k1 − b
(
a([Xn]k1 − [zn

I ]k1) + sk
I + Wk − sk

J

)∥∥2
=

1
n

E
∥∥[Xn]k1 − [yn

J ]k1 − b(sk
I − sk

J) − ba([Xn]k1 − [zn
I ]k1)
∥∥2

+
1
n
b2E‖Wk‖2

=
1
n

E
∥∥[Xn]k1 − [yn

J ]k1 − b(sk
I − sk

J)
∥∥2

+
1
n
b2a2

E
∥∥[Xn]k1 − [zn

I ]k1
∥∥2

− 2ab
1
n

E

[(
[Xn]k1 − [yn

J ]k1 − b(sk
I − sk

J)
)T (

[Xn]k1 − [zn
I ]k1
)]

+
k

n
b2Ndes

=
1
n

E
∥∥[Xn]k1 − [yn

J ]k1 − b(sk
I − sk

J)
∥∥2 +

k

n
b2tP

− 2ab
1
n

E

[(
[Xn]k1 − [yn

J ]k1 − b(sk
I − sk

J)
)T (

[Xn]k1 − [zn
I ]k1
)]

+
k

n
b2Ndes

[yn
j ]k1 =

2k−1∑
i=0

PI|J(i|j) ([x̄n
i ]k1 − ba([x̄n

i ]k1 − [zn
i ]k1)
)

− b

(
2k−1∑
i=0

PI|J (i|j)sk
i − sk

j

)
, j = 0, · · · , 2k − 1, (17)

[yn
j ]nk+1 =

2k−1∑
i=0

PI|J(i|j)[x̄n
i ]nk+1,

j = 0, · · · , 2k − 1, (18)

where, see (19) on the next page, and p(xn) is the pdf of xn.

Proof. We first focus on how the digital source decoder code-
books {[zn

i ]k1} should be chosen to minimize the distortion
Dn(Ndes) (note that the {[zn

i ]nk+1} are not needed since we
only transmit the first k error components). We note that the
only term in the above expression of D1

n(Ndes) that can be
influenced by changing {[zn

i ]k1} is the third one. We have
(20)–(23) (see next page), where (21) holds from the fact that

[Xn]k1 → i→ [yn
j ]k1 , s

k
j forms a Markov chain, and (23) holds

by the Cauchy-Schwarz inequality. For arbitrary given {yn
j }

and b, equality holds when we choose {[zn
i ]k1} as in (15), thus

minimizing the distortion D1
n(Ndes). Next, consider how the

digital decoder codebook {yn
j } should be chosen to minimize

the average distortion Dn(Ndes) in (13). Recall that

D1
n(Ndes) =

1
n

E
∥∥([Xn]k1 − ba([Xn]k1 − [zn

I ]k1)

− b(sk
I − sk

J + Wk)
)− [yn

J ]k1
∥∥2,

D2
n(Ndes) =

1
n

E
∥∥[Xn]nk+1 − [yn

J ]nk+1

∥∥2.
Thus, for arbitrary {[zn

i ]k1} and b, the {yn
j } which minimize

the average distortion (13) are obtained by letting {yn
j }

represent the minimum mean square error (MMSE) estimator
(see (24) on the next page), where (24) follows from our
assumption that E[Wk|J ] = 0. Choosing {yn

j } as above,
and defining Uk as in (19), the distortion can be rewritten
as shown after (24) on the next page. Minimizing the above
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Uk � a
(
[Xn]k1 − E

[
[Xn]k1 | J]− [zn

I ]k1 + E
[
[zn

I ]k1 | J])
+ sk

I − sk
J − E

[
sk
I − sk

J | J], (19)

x̄n
i � E [Xn | I = i] =

∫
xn∈Qi

xnp(xn)dxn,

ȳn
i � E [yn

J | I = i] =
2k−1∑
j=1

PJ|I(j|i)yn
j ,

s̄k
i � E

[
sk
J | I = i

]
=

2k−1∑
j=1

PJ|I(j|i)sk
j ,

PI|J (i|j) � Pr(I = i|J = j) = PJ|I(j|i)PI(i)/PJ (j),

PI(i) � Pr(I = i) = Pr(Xn ∈ Qi)

PJ(j) � Pr(J = j) =
2k−1∑
i=1

PI(i)PJ|I(j|i),

E

[(
[Xn]k1 − [yn

J ]k1 − b(sk
I − sk

J)
)T (

[Xn]k1 − [zn
I ]k1
)]

= E

(
[Xn]k1

T
[Xn]k1

)
− E

(
[Xn]k1

T
[zn

I ]k1
)

− E

[(
[yn

J ]k1 + b(sk
I − sk

J)
)T (

[Xn]k1 − [zn
I ]k1
)]

(20)

= E
∥∥[Xn]k1

∥∥2 − 2k−1∑
i=0

PI(i)

·
((

[ȳn
i ]k1 + b(sk

i − s̄k
i )
)T(

[x̄n
i ]k1 − [zn

i ]k1
)
− [x̄n

i ]k1
T
[zn

i ]k1

)
(21)

= E

[(
[Xn]k1 − [ȳn

I ]k1 − b(sk
I − s̄k

I )
)T (

[Xn]k1 − [zn
I ]k1
)]

(22)

≤
√

E
∥∥[Xn]k1 − [ȳn

I ]k1 − b(sk
I − s̄k

I )
∥∥2E
∥∥[Xn]k1 − [zn

I ]k1
∥∥2 (23)

[yn
j ]k1 = E

[
[Xn]k1 − ba([Xn]k1 − [zn

I ]k1) − b(sk
I − sk

J + Wk) | J = j
]

=
2k−1∑
i=0

PI|J(i|j) ([x̄n
i ]k1 − ba([x̄n

i ]k1 − [zn
i ]k1)
)

− b

(
2k−1∑
i=0

PI|J(i|j)sk
i − sk

j

)
, [yn

j ]n
k+1

= E
[
[Xn]nk+1 | J = j

]
=

2k−1∑
i=0

PI|J(i|j)[x̄n
i ]nk+1 (24)

Dn(Ndes) =
1
n

E
∥∥Xn − E[Xn | J ]

∥∥2
− 1
n

2bE
[(

[Xn]k1 − 1
n

E
[
[Xn]k1 | J])T

Uk

]
+

1
n
b2E
∥∥Uk
∥∥2 +

k

n
b2Ndes.
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distortion by solving ∂Dn(Ndes)
∂b = 0 yields the expression of

b given by (16). �
Lemma 2: For a fixed digital decoder codebook {yn

j }, a
and b, fixed {[zn

i ]k1} as in (15), the optimal encoder regions
{Qi} for ε1 are given as follows:

Qi =
{
xn ∈ R

n : i = argmin
l

(
(ab− 1)2

∥∥[xn]k1 − [zn
l ]k1
∥∥2

+ hl +
2k−1∑
j=0

∥∥[xn]nk+1 − [yn
j ]nk+1

∥∥2 PJ|I(j|l)
)}

(25)

where

hl � E

[∥∥[yn
J ]k1 + b(sk

I − sk
J)
∥∥2 | I = l

]
− E

[∥∥[zn
I ]k1
∥∥2] . (26)

Proof. The distortion D1
n(Ndes) in (13) can be written as

shown on the next page, where hi is defined as (26). Com-
bining D1

n(Ndes) above with D2
n(Ndes) in (13) yields

Dn(Ndes)

=
2k−1∑
i=0

∫
Qi

d[xn]k1 p([x
n]k1)
{

(ab− 1)2
∥∥[xn]k1 − [zn

i ]k1
∥∥2

+ hi +
2k−1∑
j=0

∥∥[xn]nk+1 − [yn
j ]nk+1

∥∥2PJ|I(j|i)
}

+ kb2Ndes.

Therefore, the optimal encoder regions are given by (25). �

C. Some Special Cases

In Proposition 2, we derived the optimal power allocation
coefficient t (with respect to Dmis

hda (Ntr, Ndes)) as a function
of the design CSNR κdes. Here we discuss the special cases
of high and low κdes regimes and examine how the power
allocation coefficient t and the system distortion change with
κdes from the design point of view.

Assuming that the system is designed for a CSNR of
κdes = P/Ndes and a power allocation coefficient t, the
digital channel has an effective CSNR of κdig = (1−t)κdes

tκdes+1 ,
which means that the BSC transition probabilities PJ|I(j|i)
are calculated with the latter CSNR. Assume also that {Qi},
{[zn

i ]k1}, {yn
j }, and b are chosen according to the results of

Section III-B. We consider the following situations.
• Low noise case, κdes → ∞. In this case, κdig ≈ 1−t

t and
the PJ|I(j|i)’s no longer depend on κdes. Since decoding
the analog signal is dependent on the correct decoding
of the digital signal, we can allocate more transmission
power to the digital part (decrease t) to increase κdig ,
as long as tP � Ndes. As a result, the distortion due
to the digital transmission part decreases, which in turn
makes the analog part more useful. This choice of t is
consistent with the result of Proposition 2 (see Fig. 2).
As more power is allocated to the digital part (e.g., as
t decreases), PJ|I(j|i) → 0 for j �= i, hence, s̄k

I → sk
I ,

[zn
I ]k1 → [ȳn

I ]k1 → [yn
I ]k1 , and b → 1

a . As a result, the

encoder region {Qi} in (25) is simplified to QI =
{
xn ∈

R
n : I = argmin

l

(∥∥[xn]nk+1 − [yn
l ]nk+1

∥∥2)} since (ab−

1)2 → 0 and hl → 0. Thus the dominant distortion is the
non-recoverable quantization error from the rest of the
n−k components of the source vectors. This observation
is also justified by Proposition 1, where the first term of
(3) goes to zero as tP/N → ∞ (note that as κdes → ∞,
we also have κtr → ∞ since we assume that κtr > κdes).

• High noise case, κdes → 0. In this case b → 0, which
means that we will not decode the analog signal because
of its bad quality. Moreover, [zn

I ]k1 → [ȳn
I ]k1 in (15) and

yn
j →∑

i

PI|J(i|j)x̄n
i in (17), (18). Since∑

i

PI|J(i|j)x̄n
i =

∑
i

PI|J(i|j)E[Xn|I = i]

=
∑

i

PI|J(i|j)E[Xn|I = i, J = j]

= E[Xn|J = j],

we have yn
J → E[Xn | J ], which means that the digital

part approaches a COVQ [9]. In this case, it is best to
allocate all the power to the digital part.

D. Training Algorithm

The results of Lemmas 1 and 2 can be used to formulate
an iterative training algorithm as in [28], [33] for codebooks
design. The algorithm is summarized as follows: (1) Given
the design noise variance Ndes, total power P , power allo-
cation coefficient t, and two thresholds γ1, γ2, calculate the
corresponding transition probabilities PJ|I(j|i) of the digital
channel. Initialize the encoder regions1{Qi}; (2) Determine
the encoder centroids {x̄n

i } and the probabilities {PI(i)},
initialize [zn

I ]k1 = [x̄n
I ]k1 , initialize a to satisfy the power

constraint; (3) Iteratively compute b, {yn
j } and {[zn

i ]k1} using
Lemma 1, update a after each iteration to satisfy power
constraint, and stop when the changes of the codebooks {yn

j }
and {[zn

i ]k1} fall below the threshold γ1; (4) Redefine the
encoder regions {Qi} using Lemma 2, update a again, and
estimate the average distortion; (5) Repeat steps (3) and (4)
until the change of the average distortion falls below the
threshold γ2. In the simulations, γ1 = 10−5 and γ2 = 10−8

were used. We have the following remarks.

• Optimizing {[zn
i ]k1}, {yn

j } and b jointly is very complex.
Instead, in the design we use Lemma 1 for an iterative
approach similar to the one in [28]. First, we initialize
[zn

I ]k1 = [x̄n
I ]k1 . Then, we compute b using (16), and

compute {yn
j } using (17) and (18). We next update

{[zn
i ]k1} using (15) with the new value of b and {yn

j }.
The iterative algorithm is stopped when the changes of
the codebooks {[zn

i ]k1} and {yn
j } fall below a certain

threshold.
• In our derivation, we assume that the power constraint

(14) is satisfied with equality at all times. Strictly speak-
ing, there is no guarantee for this to hold at all iterations.
Therefore, convergence is not guaranteed. In our design,
the coefficient a is updated after each computation of
{[zn

i ]k1} to satisfy the power constraint. Our experimental

1Here we use the Voronoi regions of a VQ trained for a noiseless channel
for the same source under consideration. An alternative way is to use the
encoder of a COVQ [9] trained for the same digital channel {PJ|I(j|i)}).
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D1
n(Ndes)

=
1
n

E
∥∥[Xn]k1 − [zn

I ]k1
∥∥2 +

1
n

E
∥∥[yn

J ]k1 + b(sk
I − sk

J)
∥∥2

− 1
n

E
∥∥[zn

I ]k1
∥∥2 +

k

n
b2Ndes

− 1
n

2abE
[(

[Xn]k1 − [ȳn
I ]k1 − b(sk

I − s̄k
I )
)T(

[Xn]k1 − [zn
I ]k1
)]

+
1
n
a2b2E

∥∥[Xn]k1 − [zn
I ]k1
∥∥2

=
1
n

(ab− 1)2E
∥∥[Xn]k1 − [zn

I ]k1
∥∥2

+
1
n

E
∥∥[yn

J ]k1 + b(sk
I − sk

J)
∥∥2 − 1

n
E
∥∥[zn

I ]k1
∥∥2 +

k

n
b2Ndes

=
2k−1∑
i=0

1
n

∫
Qi

{
(ab− 1)2

∥∥[xn]k1 − [zn
i ]k1
∥∥2 + hi

}
·p([xn]k1) d[xn]k1 +

k

n
b2Ndes

studies suggest that the iterative algorithm does converge
to a stable solution.

• In our design, all the codebooks are precomputed off
line. During encoding, the digital encoder finds {Qi}
using Lemma 2. It is easily seen from (25) that, {hl}
can be precomputed. Given the input vector xn, most
of the computation needed to find the encoder region
involves the full COVQ-type search over the codebook
{yn

j } restricted to the last n − k dimensions, i.e., we

need to compute
∑2k−1

j=0

∥∥[xn]nk+1 − [yn
j ]nk+1

∥∥2PJ|I(j|l).
Thus, we can see that when a moderate block size n
is used (e.g., n = 24 is used in the simulation of
Section IV), the digital encoding part has low computa-
tional complexity and low delay. For the decoding part,
since we use hard-decision demodulation, and the digital
decoder codebook {yn

j } is precomputed off line, we only
need to perform table-lookup decoding. Thus, the digital
decoding complexity is low. As for the analog part, only k
multiplications are needed for linear encoding/decoding.

IV. SIMULATION RESULTS

We evaluate the SDR performance for the transmission of
both i.i.d. Gaussian sources and Gauss-Markov sources over
the AWGN channel via the HDA-I and HDA-II systems,
designed without the use of channel coding in their digital
component.

For the i.i.d. Gaussian source, the source samples are
grouped into vectors of dimension n = 24, and transmitted
at an overall rate of 1/2 channel use per source sample.
We implement the HDA-I design system using the training
algorithm described in the previous section. Specifically, for a
fixed input power P = 1 and design noise varianceNdes = 0.1
(thus κdes = P/Ndes = 10), the training algorithm is
implemented to generate the source digital transmitter and
both the digital decoder codebook and the analog decoder.
In light of Proposition 2 and curve (b) of Fig. 2, we choose
t = 0.05 (this choice of t is expected to give good performance

0 5 10 15 20 25 30 35 40
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CSNR(dB)
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R
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)

HDA−I design with various power
allocation schemes:
     a: t=0.07
     b: t=0.05
     c: t=0.02
     d: t=0.01
     e: t=0 (purely digital system)

a

b

d

c

e

Fig. 5. SDR performance (in dB) of optimized HDA-I systems for various
power allocation coefficients t; i.i.d. Gaussian source over the AWGN channel,
κdes = 10 dB, r = 1/2 channel use/source sample.

in the true CSNR range of 12 to 20 dB for the asymptotically
achievable system). Apart from this choice of t, we carried out
simulations with other choices of t ∈ [0, 1] for the purpose of
comparison. Motivated by a broadcast scenario, we assume
(e.g., as in [28]) that the encoder is optimized for a given
power allocation and fixed design CSNR κdes, i.e., ε1 and
{zn

i } are designed for a fixed κdes, while the decoder knows
the true CSNR κtr and adapts to it, i.e., {yn

j } and b are adapted
to κtr. We also implement the HDA-II system using a simple
power scaling encoder and MMSE decoding adapted to the
true CSNR κtr in its analog component, and a rate-1 COVQ
source encoder (designed for κdes = P/Ndes = 10) and a
COVQ decoder adapted to κtr in its digital component.
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Fig. 6. SDR performance (in dB) of optimized HDA-I systems for various
power allocation coefficients t; i.i.d. Gaussian source over the AWGN channel,
κdes = 10 dB, r = 1/2 channel use/source sample.
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Fig. 7. SDR performance (in dB) of the optimized HDA-I, the unoptimized
HDA-I, the purely digital and the purely analog systems; i.i.d. Gaussian source
over the AWGN channel, r = 1/2 channel use/source sample. For the HDA-I
and purely digital systems, κdes = 10 dB.

For the Gauss-Markov source, we first employ Karhunen-
Loéve processing to the source vector. The HDA-I system then
transmits the first 12 error symbols with the largest variance
via the analog part. For the HDA-II system, the first 12 source
coefficients with largest variance are coded using the digital
method, the remaining 12 coefficients are transmitted using the
analog coding; since this is slightly different from the original
structure of HDA-II introduced in Section II, we refer to it as
HDA-II∗ in the simulation results presented in Fig. 10 (note
that HDA-II∗ performs better than HDA-II for the case of a
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Fig. 8. SDR performance (in dB) of various HDA systems; i.i.d. Gaussian
source over the AWGN channel, r = 1/2 channel use/source sample.
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Fig. 9. SDR performance (in dB) of various HDA systems; i.i.d. Gaussian
source over the AWGN channel, r = 1/2 channel use/source sample.

Gauss-Markov source).
We present simulation results for the optimized HDA-I

system with various power allocation coefficients t and the
HDA-II system, as well as an unoptimized HDA-I system, a
purely digital system, a purely analog system and the HDA-
Turbo system of [29]. All systems have a transmission rate of
1/2 channel use per source sample.

• The optimized HDA-I system performance is shown in
Figs. 5-10 for κdes =10 dB and various values of t.

• The HDA-II system performance is shown in Figs. 9
and 10 for κdes =10 dB and t = 0.1.

• The unoptimized HDA-I system uses the Linde-Buzo-
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Fig. 10. SDR performance (in dB) of various HDA systems; Gaussian-
Markov source (with correlation coefficient 0.9) over the AWGN channel,
r = 1/2 channel use/source sample.

Gray (LBG) algorithm [18] to design the digital encoder
ε1 and {zn

i }, and applies a linear encoder to the analog
part. The digital decoder codebook {yn

j } is adapted to
the true CSNR κtr,and a linear MMSE decoder (also
assuming knowledge of κtr) is applied to the analog part;
its performance is shown in Fig. 7 for t = 0.07.

• The purely digital system, which solely employs the
digital part of the HDA-I system, uses a COVQ source en-
coder [9] and a COVQ decoder codebook {yn

j } adapted
to the true CSNR κtr; its performance is shown in Fig. 7
for κdes=10 dB.

• The purely analog system, which solely employs the
analog part of the HDA-I system, transmits only half of
each source vector using linear coding and employs a
linear MMSE decoder with knowledge of the true CSNR;
its performance is shown in Fig. 7.

• For the HDA-Turbo system of [29], the digital part
consists of a 24-dimensional 6-bit VQ designed using the
LBG algorithm, and a high-delay (k = 768, n = 1536)
rate 1/2 Turbo encoder with generator (37,21) (punctured
to rate 1/2) and a random interleaver, and the analog
part employs the same methods as the proposed HDA-
I schemes. The digital decoder {yj} and the analog
decoder also has knowledge of κtr; its performance is
shown in Fig. 8 for t = 0.1 and t = 0.3 and in Fig. 10
for t = 0.1.

All systems are trained with 300,000 vectors, and tested
with a different set of 100,000 vectors. For comparison pur-
poses, we also present the following theoretical curves: the
OPTA curve (2) for the memoryless Gaussian source (shown
in Figs. 7-9) and the OPTA curve for the Gauss-Markov source
(shown in Fig. 10); the HDA-I bounds for both matched and
mismatched cases (shown in Figs. 7-9), described for a given
t by (3) and (5), respectively; and the HDA-II bounds for both

matched and mismatched cases (shown in Fig. 9), described
for a given t by (11) and (12), respectively. We can observe
the following:

• Figs. 5-6 indicate that the power allocation plays an
important role in the performance of the optimized HDA-
I system, especially for CSNRs above the design CSNR
of 10 dB. Although we choose t = 0.05 based on
Proposition 2, t = 0.07 turns out to be the best power
allocation shown by the simulation results. In particular,
the SDR increases as t increases from t = 0 (which is
equivalent to the purely digital system) to about t = 0.07
(see Fig. 5) and then declines as t varies from t = 0.07
to t = 1 (which is equivalent to the purely analog
system). While the optimal power allocation provided by
Proposition 2 is derived for the ideal case (which assumes
infinite block size), and the above numerical results are
derived using a block size of 24, we note that the best
choice (around t = 0.07) obtained by the numerical study
is consistent with the value t = 0.05 suggested by Fig. 2.
Another interesting observation is that when the true
CSNR falls below 10 dB (κdes), the SDR performance
gets better as t increases. This is because the digital part
degrades drastically when κtr < κdes (usually, the better
the digital part performs at the design CSNR, the more
drastic is its performance degradation for lower CSNRs).

• We observe from Fig. 7 that for t = 0.07, the optimized
HDA-I system outperforms the unoptimized HDA-I sys-
tem at all CSNRs. Moreover, it obtains a gain of 1 dB
over the unoptimized HDA-I system, and is within 0.3
dB of the performance bound for the mismatched HDA-I
system at high CSNRs (e.g., for CSNR ≥ 30 dB). The
HDA-I systems present a smooth and robust performance
for most CSNRs, and provide substantial improvements
over the purely digital system from medium to high
CSNRs. They also outperform the purely analog system
for a wide range of CSNRs. We also note that the
performance saturates at around 35 dB.

• In Fig. 8, we compare the optimized HDA-I system
with the HDA-Turbo system of [29] for t = 0.1 and
t = 0.3. We remark that for a proper choice of t, e.g.,
for t = 0.1, the optimized HDA-I system outperforms
the HDA-Turbo system for CSNR ≥ 13 dB, and obtain
a large gain for medium to high CSNRs. This behavior
can be explained as follows. During the linear encoding
process, we discard half of the components of each
quantization error vector. For memoryless sources, all
components of the error vectors have approximately the
same variance. Since the optimized HDA-I system has
higher quantization rate than that of the HDA-Turbo
system (the HDA-I scheme does not employ channel
coding while the HDA-Turbo system uses a rate 1/2
Turbo code), each component of the quantization error
vector has a smaller variance than the corresponding
quantization error component in the HDA-Turbo system.
As a result, the distortion introduced in the optimized
HDA-I system by this dropping-off process in the analog
part is less severe than that for the HDA-Turbo system.
On the other hand, the Turbo code plays an important
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role for CSNRs ranging from 5 to 10 dB. For CSNRs
over 10 dB, channel coding becomes superfluous and
most of the system distortion is due to quantization noise.
Fig. 8 shows that in the CSNR range of 25 to 40 dB, the
optimized HDA-I system has a gain around 1.5 dB over
the HDA-Turbo system.

• In Figs. 9 and 10, we compare the HDA-I and the
HDA-II/HDA-II∗ systems with t = 0.1 for both i.i.d.
Gaussian and Gauss-Markov sources. As predicted by
the theoretical curves of Fig. 3, the HDA-II bounds
are superior to the HDA-I bounds for the memoryless
Gaussian source (even though both simulated systems
do not use channel coding). Note from the figure, that
for CSNR= 19 dB, curve (b) of the HDA-II bound (11)
meet the OPTA performance (curve (a)). This is indeed
expected from our study in Section II, since at for this
CSNR, we obtain from (7) that t∗ = 0.1, and hence we
should have that Dhda2(N) = Dopta(N). Furthermore,
in the simulation results, the HDA-II system (curve (f) in
Fig. 9), outperforms the HDA-I system (curve (g)) for a
wide range of CSNR, with about a 0.6 dB SDR gain for
CSNR varying from 20 to 40 dB.
However, in the simulation result for the Gauss-Markov
source, the HDA-II∗ system is inferior to the HDA-I
system for CSNRs above 11 dB; compare curves (d)
and (b) in Fig. 10. The SDR gain of HDA-I over
HDA-II∗ is substantial for high CSNR’s (about 2.5 dB).
Furthermore, the HDA-II∗ system performs worse than
the HDA-Turbo system for CSNRs above 14 dB. We
conclude that for the memoryless Gaussian source, the
HDA-II performs better than the HDA-I system, while for
the Gauss-Markov source, the HDA-I system provides a
superior performance. Thus if the source is known to be
Gaussian, but it is not known whether it is memoryless
or Gauss-Markovian, the HDA-I system would serve as a
good compromise for a low-complexity and robust HDA
system.

V. CONCLUSION

Three HDA joint source-channel systems with bandwidth
compression for the reliable communication of Gaussian
sources over AWGN channels are studied. All systems have a
simple linear analog coding component. Information-theoretic
distortion upper bounds (under both matched and mismatched
channel conditions) for the case of memoryless Gaussian
sources are established. It is shown that two of the HDA
systems (HDA∗ and HDA-II) can asymptotically achieve
OPTA under matched channel conditions for optimally chosen
power allocations between the analog and digital parts of the
systems, thus theoretically outperforming the first scheme,
HDA-I. Then, a practical HDA-I scheme which employs a
VQ cascaded with BPSK modulation in the digital part is de-
signed and implemented. A training algorithm is presented to
iteratively optimize the source digital transmitter (both source
encoder and source decoder) and both the digital decoder
codebook and the analog decoder. A system design of the
HDA-II scheme is also conducted. Both implemented HDA-I
and HDA-II schemes are similar to the system considered in

[29], but they are simpler as they do not use Turbo error-
correcting coding. Numerical results show that both HDA
schemes offer a robust and graceful performance improvement
for a wide range of CSNRs (medium to high CSNRs), and
substantially outperforms purely digital and purely analog
systems for a large range of CSNRs. The HDA-II is superior
to the HDA-I system for the memoryless Gaussian source;
however, for the Gauss-Markov source, the HDA-I system
performs substantially better than the HDA-II system. The
advantages of the HDA schemes are as follows: (1) they
have low complexity and low delay; (2) they guarantee a
graceful performance improvement for high CSNRs; (3) for
the HDA-I system, the joint source-channel design of the
codebooks enables smooth degradation for medium CSNRs.
In [33, Chapter 3], an image communication application that
illustrates the effectiveness of HDA coding is presented by
combining the HDA-I system with the bandwidth expansion
system of Skoglund et al. [28].

APPENDIX: PROOF OF PROPOSITION 1

First we give an informal derivation of the upper bound,
and then we provide the outline of a rigorous derivation
which uses common randomization at the encoder and the
decoder. Some straightforward but tedious details will be
omitted. For the source encoder and decoder in the upper
“digital” part of the system let (ϕ(n)

e , ϕ
(n)
d ) be a sequence of

source codes (vector quantizers) with encoder ϕ(n)
e : R

n →
{1, . . . , 2nR} and decoder ϕ(n)

d : {1, . . . , 2nR} → R
n, having

rate R = r
2 log
(
1+ (1−t)P

tP+N

)
bits per source sample. We choose

(ϕ(n)
e , ϕ

(n)
d ) so that it asymptotically achieves the distortion-

rate function at rate R of the i.i.d. Gaussian source with zero
mean and variance σ2

s . Thus letting X̃n = ϕ
(n)
d (ϕ(n)

e (Xn))
and Dn � 1

nE‖Xn − X̃n‖2, we have

lim
n→∞Dn = σ2

s2−2R =
σ2

s(
1 + (1−t)P

tP+N

)r = Dtan(N). (27)

The output index I = ϕ
(n)
e (Xn) from the source encoder is

fed to the channel encoder which operates on blocks of k = rn

channel symbols. The sequence of channel codes (ψ(k)
e , ψ

(k)
d )

with encoder ψ(k)
e : {1, . . . , 2nR} → R

k and decoder ψ(k)
d :

R
k → {1, . . . , 2nR} has rate

n

k
R =

R

r
=

1
2

log
(
1 +

(1 − t)P
tP +N

)
bits per channel use. This is the capacity of an AWGN
channel with noise variance tP+N and input power constraint
(1−t)P , and we choose the channel code to satisfy this power
constraint and such that its error probability is asymptotically
(i.e., as k → ∞) zero when it is used on this AWGN channel.
Letting En � Xn − X̃n, the linear encoder-decoder pair
(α(n), β(n)) is defined as

Vk � α(n)(En) =
√
tP

Dn
[En]k1 ,

Ên � β(n)(V̂k) =
(√

tPDn

tP +N
(V̂k)T , (0n−k)T

)T

(28)
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where [En]k1 denotes the first k components of En. Since the
source code asymptotically achieves the rate-distortion func-
tion, one can easily show using a standard information theo-
retic argument that the normalized relative entropy (Kullback
Leibler divergence) [4] between En and an n-dimensional
Gaussian random vector with i.i.d. components of zero mean
and variance Dtan(N) converges to zero as n → ∞. This
indicates that the distribution of En is well approximated by
that of the Gaussian vector for large n. It is also easy to
show that En and X̃n are (asymptotically) uncorrelated (see,
e.g., [19, Lemma 1]). To simplify the informal derivation,
let us assume that the following stronger versions of these
approximations hold: (i) En is independent of X̃n; (ii) En

is Gaussian with independent components of zero mean and
equal variance Dn.

Note that since I is a function of X̃n, these assumptions
imply that the channel codeword sk

I = ψ
(k)
e (I) is independent

of Vk =
√

tP
Dn

[En]k1 , and furthermore,

1
k

E‖sk
I +Vk‖2 =

1
k

E[‖sk
I‖2] +

1
k

E[‖Vk‖2] ≤ (1− t)P + tP

(29)
so that the total input power constraint P on the channel is
met. By assumptions (i) and (ii) the actual channel noise Vk+
Wk at the channel decoder can be regarded as an AWGN
vector with per sample variance tP +N which is independent
of the channel encoder input. Under these assumptions the
channel code has asymptotically vanishing error probability,
i.e.,

lim
n→∞Pr{I �= J} = 0. (30)

It is well known that for the i.i.d. Gaussian source an asymp-
totically optimal source code can be chosen such that its
codevectors lie on a sphere of radius

√
n(σ2

s −Dtan(N)),
i.e., we can assume 1

n‖ϕ(n)
d (i)‖2 = σ2

s − Dtan(N) for
all i. Using this fact and noting that (30) is equivalent to

limn→∞ Pr{X̃n �= ̂̃Xn

} = 0, we obtain

lim
n→∞

1
n

E
∥∥X̃n − ̂̃Xn∥∥2 = 0. (31)

For simplicity we in fact assume that X̃n = ̂̃Xn

for large n.
In this case, the average distortion can be written as

1
n

E
∥∥Xn − X̂n

∥∥2 =
1
n

E
∥∥(X̃n + En) − ( ̂̃Xn

+ Ên)
∥∥2

=
1
n

E
∥∥En − Ên

∥∥2. (32)

On the other hand, from (28) we have

1
n

E
∥∥En−Ên

∥∥2 =
1
n

∥∥∥∥[En]k1−
√
tPDn

tP +N
V̂k

∥∥∥∥2+
1
n

∥∥[En]nk+1

∥∥2
(33)

where V̂k = Vk + Wk + sk
I − sk

J . It is well known that
the channel codewords can be chosen to lie on a sphere of
radius

√
k(1 − t)P (such an equi-energy codebook is often

called a Gaussian codebook). Since (30) is equivalent to
limk→∞ Pr{sk

I �= sk
J} = 0, we obtain

lim
k→∞

1
k

E‖sk
I − sk

J‖2 = 0. (34)

Again, for simplicity we actually assume sk
I = sk

J , so that
V̂k = Vk + Wk (for large n). Using (28), (33), and the
assumption in (ii) that the components of En have equal
variance Dn, we obtain2

lim
n→∞

1
n

E
∥∥Xn − X̂n

∥∥2
= lim

n→∞
1
n

E
∥∥En − Ên

∥∥2 (35)

= lim
n→∞

(
r

Dn

1 + tP
N

+ (1 − r)Dn

)
(36)

= r
Dtan(N)
1 + tP

N

+ (1 − r)Dtan(N) (37)

as desired. The preceding argument in fact forms the basis
of a rigorous proof. The crucial point is to prove (30), i.e.,
the existence of a channel code of rate R/r having vanishing
error probability which also meets the total power constraint
as in (29). Indeed, assuming (30) holds, we clearly have (31)
and (34). It is then straightforward to show that (31) implies
(35), and that (34) implies (36) as long as we have

lim
n→∞

1
k

E
∥∥[En]k1

∥∥2 = Dtan(N). (38)

It is easy to make sure (38) holds. Let � be a positive integer
which divides n and assume the n-dimensional source code
is the n/�-fold product of an �-dimensional vector quantizer
Q(�) having rate R (i.e.,Q(�) is used n/�-times when encoding
Xn). If �→ ∞, then the rate-distortion performance (27) can
be achieved by Q(�), and if in addition we have �/n → 0,
then (38) clearly holds.

Thus the entire proof hinges on the existence of channel
codes with asymptotically vanishing error probability (30)
under the power constraint P . In the remainder of the proof
we show that such codes exist if one allows common random-
ization at the encoder and decoder. Common randomization,
already used in the context of both source and channel coding
(see, e.g., [34], [7], [8] and [3]), ensures that the total input
power meets the power constraint and also makes the transmit-
ted channel codeword and the “noise” Vk +Wk independent.
In what follows we first show that the average channel noise
1
k‖Vk + Wk‖ is concentrated near its expectation tP + N
with large probability, and then use this fact in showing that
the desired channel code exists.

Recall that Dtan(N) = σ2
s2−2R is the distortion-rate

function at rate R of a memoryless Gaussian source with
variance σ2

s . It is known (see., e.g., [24] or [15]) that one
can choose Q(�) so that its codevectors lie on a sphere of
radius

√
�(σ2

s −Dtan(N)) and it has asymptotically optimal
distortion lim�→∞ 1

� E‖X� −Q(�)(X�)‖2 = Dtan(N), which
implies (27) since Dn = 1

� E|X� −Q(�)(X�)‖2 by the source
code construction.

Since [En]k1 is the concatenation of m′ = k/� independent

copies of X�−Q(�)(X�), and Vk =
√

tP
Dn

[En]k1 , we have that

‖Vk‖2 is the sum of m′ = k/� independent random variables
with mean tP

Dn
E‖X� −Q(�)(X�)‖2 = �tP . Thus if � is fixed,

2With these assumptions,
√

tPDn
tP+N

V̂k becomes the MMSE estimate of
[En]k1 .
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the weak law of large numbers implies

lim
k→∞

Pr
{∣∣∣∣1k ‖Vk‖2 − tP

∣∣∣∣ > ε

}
= 0 (39)

for all ε > 0. Clearly, we can choose an � sequence such
that � → ∞, �/k = �/(rn) → 0 and (39) still holds.
For the rest of the proof we assume that � increases with
n (and k) in this fashion. We have 1

k‖Vk + Wk‖2 =
1
k‖Vk‖2 + 1

k‖Wk‖2 + 2
k (Vk)T Wk, where 1

k‖Wk‖2, being
the average of k i.i.d. random variables of mean N , converges
to N in probability as k → ∞. A direct calculation shows

that E

[(
1
k (Vk)T Wk

)2]
= N

k2 E‖Vk‖2 = N
k tP, which

converges to zero as k → ∞, implying through Chebyshev’s
inequality that Pr

{∣∣ 2
k (Vk)T Wk

∣∣ > ε
} → 0 as k → ∞ for

all ε > 0. Combining these facts with (39) we obtain that for
all ε > 0,

lim
k→∞

Pr
{∣∣∣∣1k ‖Vk + Wk‖2 − (tP +N)

∣∣∣∣ > ε

}
= 0. (40)

Now consider the fictitious k-dimensional vector channel
with input power constraint k(1 − t)P and additive noise
which is independent of the input and has the same distribution
as Vk + Wk. The key point is that (40) allows us to use
Theorem 1 in [14] which, when applied to our setup, states
that given an additive noise channel with power constraint
k(1 − t)P and input-independent, possibly non-ergodic noise
which satisfies (40), there exists a sequence of channel codes
(ψ(k)

e , ψ
(k)
d ) which has rate 1

2 log
(
1 + (1−t)P

tP+N

)
and equi-

energy (Gaussian) codebook and whose error probability on
this channel approaches zero as k → ∞. (Thus, in effect, a
channel code designed for the worst case AWGN noise also
works for non-Gaussian channel noise of equal power.)

We will use common randomization to apply (ψ(k)
e , ψ

(k)
d )

to the real system where Vk + Wk is not independent of
the channel input. Let Π denote a random permutation of
the indices 1, . . . , 2nR which is uniformly drawn from the
set of all (2nR)! permutations and is independent of the
source Xn and the channel noise Wk. Assume that Π is
know at both the encoder and the decoder. At the encoder
apply Π to the output index I of the source encoder before
channel coding, so that the input to the channel encoder is
Π(I). At the decoder side, if J is the output index at the
channel decoder, then Π−1(J) is sent to the source decoder,
where Π−1 denotes the inverse of Π. It is easy to see that
the channel with input I and output Π−1(J) is statistically
equivalent to the discrete channel realized when (ψ(k)

e , ψ
(k)
d )

is used on the fictitious channel with a uniform distribution
on its input index set. Since (ψ(k)

e , ψ
(k)
d ) has asymptotically

vanishing error probability on the fictitious channel, for the
real system we also have limk→∞ Pr{I �= Π−1(J)} = 0.
It remains to show that the total power input power on the
channel does not exceed P . Since sk

Π(I) = ψ
(k)
e (Π(I)) is

independent of Vk,

1
k

E‖sk
Π(I) + Vk‖2

=
1
k

E‖sk
Π(I)‖2 +

1
k

E‖Vk‖2 +
2
k

E[sk
Π(I)]

T
E[Vk](41)

where 1
k E‖sk

Π(I)‖2 = (1 − t)P and 1
k E‖Vk‖2 = tP . Let

m� � E[X� −Q(�)(X�)]. Then

Dn =
1
n

E‖X� −Q(�)(X�)‖2

=
1
�
E‖X� −Q(�)(X�) − m�‖2 +

1
�
‖m�‖2

≥ Dtan(N) +
1
�
‖m�‖2

where the inequality holds since Q(�)(X�) + m� is a rate
R quantizer for X�. This implies lim�→∞ 1

�‖m�‖2 = 0.
Since 1

�‖m�‖2 tP
Dn

= 1
k‖E[Vk]‖2, applying Cauchy-Schwarz

inequality yields limk→∞ 1
k E[sk

Π(I)]
T

E[Vk] = 0. Substitut-
ing this into (41) shows that limk→∞ 1

kE‖sk
Π(I) + Vk‖2 =

(1 − t)P + tP ; thus, the power constraint is (asymptotically)
satisfied. �
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