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A Discrete Queue-Based Model for Capturing
Memory and Soft-Decision Information in

Correlated Fading Channels
Cecilio Pimentel, Fady Alajaji, Senior Member, IEEE, and Pedro Melo

Abstract—A discrete (binary-input 2q-ary output) communi-
cation channel with memory is introduced to judiciously capture
both the statistical memory and the soft-decision information
of a time-correlated discrete fading channel (DFC) used with
antipodal signaling and soft output quantization of resolution
q. The discrete channel, which can be explicitly described via
its binary input process and a 2q-ary noise process, is shown
to be symmetric, thus admitting a simple expression for its
capacity when its noise is stationary ergodic. It is observed
that considerable capacity gains can be achieved due to the
channel’s memory and the use of as few as 2 bits for soft-
decision over interleaving the channel (to render it memoryless)
and hard-decision demodulation (q = 1). The 2q-ary noise
process is next modeled via a queue-based (QB) ball-sampling
mechanism to produce a mathematically tractable stationary
ergodic Markovian noise source. The DFC is fitted by the
QB noise model via an iterative procedure that minimizes the
Kullback-Leibler divergence rate between the DFC and QB
noise sources. Modeling results, measured in terms of channel
noise correlation function and capacity reveal a good agreement
between the two channels for a broad range of fading conditions.

Index Terms—Channel capacity, finite state Markov channels,
queue-based Markovian noise, quantization, Rayleigh fading
channels, soft-decision.

I. INTRODUCTION

W IRELESS communication channels are widely known
to undergo time-varying multipath fading that is rep-

resented as a time-correlated random process. Due to the sta-
tistical dependence of successive fading samples, such chan-
nels exhibit memory. The development of iterative decoding
schemes for codes (such as low-density parity-check and turbo
codes) that achieve the capacity limit of memoryless channels,
when they operate on binary (binary-input, binary-output)
channels with memory, was considered in [1]–[4]. These
works assume that the discrete channel (from the input of the
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modulator to the output of the hard-quantized demodulator)
is modeled as a binary finite state Markov channel (FSMC)
and incorporate the FSMC structure in the decoding process in
order to exploit the channel statistical memory. Significant per-
formance gains were reported relative to traditional schemes
that ignore the channel memory via perfect interleaving. In this
latter case, the achievable rates are smaller than those of the
original channel, since it is well known that memory increases
capacity for a wide class of information stable channels [5],
[6]. Furthermore, binary FSMC models have been shown to
accurately approximate hard-decision demodulated correlated
Rayleigh and Rician flat fading channels, e.g., see [7]–[13]
and the references therein. On the other hand, recent studies
have revealed that non-binary output information realized by
softly quantizing the channel output can significantly increase
capacity vis-a-vis hard output quantization for several classes
of channels, including additive white Gaussian noise (AWGN)
channels [14], [15], memoryless (fully interleaved) Rayleigh
fading channels [16], additive colored Gaussian noise channels
and intersymbol interference channels [14].

Motivated by the above results, we develop in this paper a
simple non-binary-output FSMC model for time-correlated flat
fading channels that effectively capture both their statistical
memory and their soft-decision information. The new channel
model may be used for designing novel coding/decoding
schemes for soft-decision demodulated fading channels with
memory that result in superior performance over systems that
ignore the channel’s memory (via interleaving) and/or soft-
decision information (via hard demodulation). Specifically, we
consider a discrete fading channel (DFC) which consists of a
binary phase-shift keying (BPSK) modulator, a time-correlated
flat Rayleigh fading channel and a q-bit soft-quantized coher-
ent demodulator. We first show that for this channel there
exists a 2q-ary noise process (independent from the input
process) such that its 2q-ary output process can be written as
an explicit function of the input and noise processes. We refer
to this binary-input 2q-ary output discrete channel as the non-
binary noise discrete channel (NBNDC). We prove that the
channel is symmetric in the sense that a uniformly distributed
memoryless input process maximizes its block input-output
mutual information. As a result, we derive a formula as well
as simple (asymptotically tight) upper and lower bounds for
the capacity of this channel when its noise is stationary and
ergodic (which corresponds to a stationary ergodic underlying
fading process). We also evaluate numerically the effect of
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the quantizer parameters and channel correlation parameters
on the capacity of the DFC. The capacity results indicate
that exploiting both the channel’s memory and soft-decision
information is more worthwhile than ignoring either of them
via channel interleaving or hard quantization.

We next model the noise process of the NBNDC via a 2q-
ary Markov process that generalizes the binary queue-based
(QB) noise proposed in [6]. The resulting non-binary QB
noise source is an M ’th order Markovian stationary ergodic
process with 2q + 2 independent parameters. Closed-form
expressions for several statistics and the entropy rate of the QB
noise process are established. In related work, the modeling
of non-binary channels via hidden Markov models has been
considered in [17], [18]. However, unlike what is herein devel-
oped, these works do not provide explicit expressions for the
channel statistics and capacity and are hence less amenable for
tractable mathematical analysis. We proceed by investigating
the appropriateness of the non-binary QB noise model for
emulating the DFC. The 2q + 2 parameters of the QB noise
are selected such that the Kullback-Leibler divergence rate
between the DFC and the QB noise processes is minimized.
The accuracy of the QB noise model is then measured in terms
of the channel noise autocorrelation function and channel
capacity. A good fit is obtained for a wide choice of fading
conditions.

The rest of the paper is organized as follows. In Section II,
we introduce the DFC and show that it can be represented via
the NBNDC. We next investigate the capacity of the DFC in
Section III from both analytical and numerical perspectives.
We establish a capacity formula in terms of noise entropy
rates as well as capacity upper and lower bounds (which are
asymptotically exact with increasing blocklength). We also
numerically illustrate the DFC capacity as a function of the
channel’s memory and soft-decision parameters. In Section IV,
we present a mathematically tractable non-binary stationary er-
godic Markov process with finite order to emulate the behavior
of the NBNDC’s infinite-memory non-binary noise process
induced by the DFC. We show that this Markovian noise
process, which is generated via a ball sampling mechanism
involving a finite-queue, features closed-form formulas for its
statistical and information-theoretic quantities. In Section V,
we use this QB Markovian noise process to approximate the
DFC noise process by choosing its parameters via an iterative
algorithm so that the Kullback-Leibler rate distance between
the two noise sources statistics is minimized. We then evaluate
the goodness of the fit by comparing the channels’ noise
autocorrelation functions and capacities. Finally, we conclude
the paper in Section VI.

II. THE NON-BINARY NOISE DISCRETE CHANNEL MODEL

A. Discrete Fading Channel with Soft-Decision Demodulation

We consider a DFC composed of a BPSK modulator, a time-
correlated flat Rayleigh fading channel with AWGN, and a q-
bit soft-quantized coherent demodulator. We define the input
and output alphabets of the discrete channel by X = {0, 1},
Y = {0, 1, · · · , 2q − 1}, respectively. Let {Xk}, Xk ∈ X ,
k = 1, 2, · · · , be the input process to the discrete channel.

The sampled received symbol at the output of the matched
filter at the kth signaling interval is written as

Rk =
√
EsAkSk + Nk, k = 1, 2, · · ·

where {Sk} = {(2Xk − 1)}, Es is the energy of the
transmitted signal, {Nk} is a sequence of independent and
identically distributed zero-mean Gaussian random variables
with variance N0/2. Furthermore, {Ak} is the channel’s
fading process with Ak = |Gk|, where {Gk} is a time-
correlated complex wide-sense stationary Gaussian process
with zero-mean and autocorrelation function given by the
Clarke’s fading model [19] R[k] = J0(2πfDT |k|), where
J0(x) is the zero-order Bessel function of the first kind and
fDT is the maximum Doppler frequency normalized by the
signaling rate 1/T . As a result, each fading random variable
Ak is Rayleigh distributed with unit second moment. The
processes {Ak} and {Nk} are independent of each other and
of the input process. The random variable Rk is demodulated
via a q-bit (uniform) scalar quantizer to yield the discrete
channel output Yk ∈ Y according to the following operation

Yk = j, if Rk ∈ (T ′
j−1, T

′
j)

for j ∈ Y . The thresholds T ′
j are uniformly spaced with step-

size Δ, satisfying [16]

T ′
j =

⎧⎨
⎩

−∞, if j = −1
(j + 1− 2q−1)Δ, if j = 0, 1, · · · , 2q − 2
∞, if j = 2q − 1.

Setting δ � Δ/
√
Es and Tj � T ′

j/
√
Es as the normalized

step-size and thresholds, respectively, we can write Tj =
(j + 1 − 2q−1)δ, for j = 0, 1, · · · , 2q − 2. The conditional
probability qi,j(ak) � Pr(Yk = j | Xk = i, Ak = ak), where
i ∈ X , j ∈ Y and ak ∈ [0,∞), can be determined as follows

qi,j(ak) = Pr(T ′
j−1 < Rk < T ′

j | Xk = i, Ak = ak)

= Pr
(
Tj−1 − (2i− 1)ak < Nk√

Es
< Tj − (2i− 1)ak

)
= Q

(√
2γ (Tj−1 − (2i− 1)ak)

) −
Q
(√

2γ (Tj − (2i− 1)ak)
)

(1)

where γ = Es/N0 is the signal-to-noise ratio (SNR) and
Q(x) = 1/

√
2π

∫∞
x exp{−t2/2}dt is the Gaussian Q-

function. Due to the symmetry of the BPSK constellation and
the quantizer thresholds, we observe from (1) that qi,j(ak) =
q1−i,2q−1−j(ak). We may also write

qi,j(ak) = q
0, j−(2q−1)i

(−1)i
(ak)

for i ∈ X , j ∈ Y . For integer n ≥ 1, let Pr(yn | xn, an) �
Pr(Y1 = y1, . . . , Yn = yn | X1 = x1, . . . , Xn = xn, A1 =
a1, · · ·An = an). Thus

Pr(yn | xn, an) =

n∏
k=1

qxk,yk
(ak) =

n∏
k=1

q
0,

yk−(2q−1)xk
(−1)xk

(ak).

The DFC is thus probabilistically specified in terms of the
channel block (n-fold) conditional probability

P
(n)

DFC (yn | xn) � Pr(Y n = yn | Xn = xn)

= EA1...An

[
n∏

k=1

q
0,

yk−(2q−1)xk
(−1)xk

(Ak)

]
(2)
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where yn = (y1, · · · , yn), xn = (x1, · · · , xn) and EX [·]
denotes expectation with respect to the random variable X .
For n = 1, a closed-form expression for P

(1)
DFC (y|x), y ∈ Y

and x ∈ X , is given by [20]

P
(1)

DFC (j) = m(−Tj−1)−m(−Tj) (3)

where j = y−(2q−1)x
(−1)x ∈ Y , and

m(Tj) = 1−Q(Tj

√
2γ)−

[
1−Q

(
Tj

√
2γ√

1
γ +1

)]
e
− T2

j

( 1
γ

+1)

√
1
γ + 1

.

The expected value in (2) can be directly calculated for n ≤ 3
since the joint probability density function of arbitrarily cor-
related Rayleigh and Rician random variables is only known
in closed form for n ≤ 3 (e.g., see [21], [22]); for n > 3,
(2) can however be determined via simulations. Hence, it is
important to provide an effective model for P

(n)
DFC (· | ·). We

next provide an alternative representation for the DFC.

B. Alternative DFC Model: The Non-Binary Noise Channel

It is often convenient to express the channel output process
{Yk} as an explicit function of the input process {Xk} and a
noise process {Zk}, where {Zk} and {Xk} are independent
of each other (e.g., see [23, pp. 142-144]). In this case, one
can model the noise process via a finite-state Markov model
which is an important analytical tool for coding design and
performance evaluation for channels with memory.

Consider a binary-input 2q-ary output channel, which we
refer to as the non-binary noise discrete channel (NBNDC),
where the output Yk ∈ Y is explicitly expressed in terms of
the input Xk ∈ X and a noise Zk ∈ Y via

Yk = (2q − 1)Xk + (−1)XkZk (4)

for k = 1, 2, · · · , where the noise process {Zk} in (4) is
independent of the input {Xk} and is governed by the n-fold
distribution P

(n)
NBNDC(z

n) � P
(n)

NBNDC(Z1 = z1, · · · , Zn = zn), for
zk ∈ Y , k = 1, · · · , n. It directly follows from (4) and the
fact that the input and noise process are independent from
each other that the NBNDC n-fold conditional probability is
given for each n ≥ 1 by

P
(n)

NBNDC(y
n | xn) = P

(n)
NBNDC(z

n) (5)

where

zk =
yk − (2q − 1)xk

(−1)xk
, i = 1, · · · , n. (6)

Now given xn ∈ Xn and yn ∈ Yn, whenever P
(n)

NBNDC(z
n) is

set to be equal to (2) for each n ≥ 1 with each zk as given
by (6), we obtain that P (n)

DFC (yn | xn) = P
(n)

NBNDC(y
n | xn) for

each n ≥ 1. Therefore, the NBNDC provides an alternative
representation of the DFC. In Section V, we use this fact to
fit the DFC given by (2) via an NBNDC whose noise process
{Zk} is an M th order Markov source generated via a non-
binary queue of length M .

Observation 1: In the special case when q = 1 (hard-
decision demodulation), the NBNDC expression in (4) reduces

to the familiar expression Yk = Xk ⊕ Zk, for k = 1, 2, · · · ,
(where ⊕ denotes addition modulo 2) which is commonly
adopted to model binary (binary-input binary-output) additive-
noise discrete channels with memory (e.g., see [6], [8], [12]).
Furthermore, if {Zk} is memoryless, than we obtain the mem-
oryless binary symmetric channel (BSC) which represents the
fully interleaved DFC.

The channel capacity of the NBNDC with stationary ergodic
noise {Zk} is studied in the next section.1

III. DFC CHANNEL CAPACITY

A. Capacity Formula and Bounds

Consider the NBNDC described by (4) where the noise
process {Zk} is stationary ergodic. The channel capacity, in
bits per channel use, for this information stable channel is
given by [24], [25]

C = lim
n→∞C(n) = sup

n
C(n) (7)

where

C(n) � max
p(xn)

1

n
I(Xn;Y n)

where the maximum is taken with respect to all input distri-
butions p(xn) and I(Xn;Y n) denotes the block mutual infor-
mation between Xn and Y n (e.g., cf. [24], [26]). I(Xn;Y n)
can be written as follows

I(Xn;Y n) = H(Y n)−H(Y n | Xn) = H(Y n)−H(Zn)

where H(·) denotes entropy and the last equality follows from
(4) and the independence of Xn and Zn. Thus

C(n) =
1

n

(
max
p(xn)

[H(Y n)]−H(Zn)

)
. (8)

Note that C(n) is an increasing function of n [24]. The
capacity achieving input distribution that maximizes H(Y n)
is determined next.

Definition 1: Let W = {0, 1, · · · , 2q−1− 1} and let {Wk},
Wk ∈ W , be a process with n-fold probability distribution

Pr(Wn = wn) =
∑

xn∈Xn

Pr

(
Zn =

wn − (2q − 1)xn

(−1)xn

)
(9)

where Zn = (wn − (2q − 1)xn)/(−1)x
n

denotes the tuple
obtained from component-wise operations, i.e., (Z1 = (w1 −
(2q − 1)x1)/(−1)x1, · · · ,Zn = (wn − (2q − 1)xn)/(−1)xn).
The probability assignment (9) is valid since

1 =
∑

zn∈Yn

Pr(Zn = zn)

=
∑

wn∈Wn

∑
xn∈Xn

Pr

(
Zn =

wn − (2q − 1)xn

(−1)xn

)

=
∑

wn∈Wn

Pr(Wn = wn).

1Note that the stationary noise {Zk} defined by (5) and (2) is ergodic
when the covariance function of the fading process G̃(t) is asymptotically
vanishing (such as the Clarke covariance function).
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The process {Wk} is stationary since {Zk} is stationary;
indeed for any integer m > 0, wn ∈ Wn,

Pr(W1+m = w1, · · · ,Wn+m = wn)

=
∑

xn∈Xn

Pr

(
Z1+m =

w1 + (2q − 1)x1

(−1)x1
, · · · ,

Zn+m =
wn − (2q − 1)xn

(−1)xn

)

=
∑

xn∈Xn

Pr

(
Z1 =

w1 + (2q − 1)x1

(−1)x1
, · · · ,

Zn =
wn − (2q − 1)xn

(−1)xn

)

= Pr(W1 = w1, · · · ,Wn = wn).

It follows from Definition 1 that the random variables Zk and
Wk are related as follows:

Wk = min{Zk, 2
q − 1− Zk}, k = 1, 2, · · · . (10)

Example 1: Let q = 2 and αj = Pr(Zk = j). The
probability distribution of W1 is given by

(Pr(W1 = 0),Pr(W1 = 1)) = (α0 + α3, α1 + α2).

Let αi,j = Pr(Zk = i, Zk+1 = j). The probability distribution
of W 2 is given by

(Pr(W 2 = 00),Pr(W 2 = 01),Pr(W 2 = 10),Pr(W 2 = 11))

= (α0,0 + α0,3 + α3,0 + α3,3, α0,1 + α0,2 + α3,1 + α3,2,

α1,0 + α1,3 + α2,0 + α2,3, α1,1 + α1,2 + α2,1 + α2,2).

Consider the 2n × 2qn channel transition probability matrix
Qn = [P

(n)
NBNDC(y

n|xn)] corresponding to n channel uses, where
each row (resp. column) of Qn is indexed by a sequence xn

(resp. yn). We prove in Appendix A that Qn is symmetric
since its columns can be partitioned into 2(q−1)n submatrices,
where each submatrix is of size 2n×2n with the property that
its columns are permutations of each other and its rows are
permutations of each other [24, p. 94]. This symmetry implies
that the uniform input distribution over {0, 1}n maximizes
the channel’s block mutual information I(Xn;Y n) and hence
achieves its capacity [24, p. 94].

Proposition 1: The value of H(Y n) under a uniform input
distribution over Xn = {0, 1}n is given by

max
p(xn)

[H(Y n)] = n+H(Wn). (11)

Proof: We need to calculate

H(Y n) = −
∑

yn∈Yn

Pr(Y n = yn) log2 Pr(Y
n = yn) (12)

for a uniform input distribution. In this case

Pr(Y n = yn) =
1

2n

∑
xn∈Xn

Pr

(
Zn =

yn − (2q − 1)xn

(−1)xn

)
.

(13)
According to the symmetry of Qn, the probability (13) is the
same for 2n distinct values of yn. Substituting (13) into (12)
and using Definition 1, we have

max
p(xn)

[H(Y n)] = −
∑

wn∈Wn

Pr(Wn = wn) log2

(
Pr(Wn = wn)

2n

)

and hence (11) follows.
Substituting (11) into (8) yields

C(n) = 1 +
1

n
[H(Wn)−H(Zn)]. (14)

Corollary 1: The channel capacity (7) is given by

C = lim
n→∞C(n)

= 1+ lim
n→∞

1

n
[H(Wn)−H(Zn)] (15)

= 1+H(W )−H(Z) (16)

in bits/channel use, where H(W ) � limn→∞(1/n)H(Wn)
and H(Z) � limn→∞(1/n)H(Zn) denote the entropy rates
of {Wn} and {Zn}, respectively.

Observation 2: In the case of hard-decision demodulation
(q = 1), the noise process becomes binary and the entropy
H(Wn) = 0 for all n, and the expression for channel capacity
in (16) reduces to the well-known formula C = 1−H(Z) (e.g.,
see [6]).

We can directly obtain upper and lower bounds on C using
(15) and (7), respectively. Since H(Wn)/n is decreasing in n
for a stationary process {Wn} (e.g., see [23], [26]), we have

C ≤ min

{
1, 1 +

1

n
H(Wn)−H(Z)

}
� C̄(n). (17)

Combining (17) with the lower bound C(n) ≤ C yields

C(n) ≤ C ≤ C̄(n)

where as n increases, C(n) increases while C̄(n) de-
creases; hence both bounds asymptotically coincide with C:
limn→∞ C(n) = limn→∞ C̄(n) = C. In the next subsection,
we conduct a numerical capacity study of the DFC to deter-
mine the optimal values for the channel q-bit quantizer step-
size δ and illustrate the potential gains in capacity due to the
DFC’s statistical memory and the use of soft-decision output
quantization.

B. Capacity Numerical Study

We herein examine the behavior of the capacity of the
DFC in terms of the quantizer parameters (q and δ), the
SNR (γ) and the normalized Doppler frequency (fDT ). As
shown in Section II, the DFC is an NBNDC described by
(4) with a stationary ergodic 2q-ary noise {Zk} whose n-
fold distribution is given by (2) for each n. As (2) cannot
be determined for n > 3, we generate a realization of the
noise process {Zk} via computer simulations for fixed DFC
parameters (γ, fDT , q, δ) and calculate {Wk} using (10). The
correlated Rayleigh fading samples are generated according to
the method proposed in [27]. We then evaluate Pr(Zn) and
Pr(Wn) numerically for several values of n and compute the
lower bound on the capacity C(n) using (14).

Fig. 1 presents C(n) versus the quantization step δ for
several values of n for a DFC with parameters γ = 10 dB,
fDT = 0.005 and q = 2. One objective is to determine the
optimal value of δ (in the sense of maximizing the channel
capacity). We observe that for n ≥ 5, C(n) is maximized for
approximately δ = 0.2. The curve C(1) corresponds to the
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Fig. 1. C(n) versus the quantization step δ for different values of n; DFC
with q = 2, fDT = 0.005, γ = 10 dB.

capacity of a memoryless DFC (the channel resulting when
perfect interleaving is employed on the DFC). In this case,
the optimal value of δ is 0.27. We may also obtain values of
the capacity for channels with hard quantization (q = 1), as
this channel is equivalent to a DFC with δ = 0. For example,
the capacity of this DFC with hard-quantized and perfectly
interleaved (obtained from the curve C(1) with δ = 0) is
0.846. We also remark that increasing n further than 7 does not
improve accuracy. Indeed recall that as n ↑ ∞, C(n) ↑ C and
yields the exact capacity. We denote the largest value of n for
which the increase in C(n) is negligible (i.e., < 10−2) by n�.
Table I summarizes the values of C(n�) for q = 1, 2 (obtained
for the optimal δ shown in the table) for selected values of
n� and γ. Note that the optimal values of δ provided in the
table for q > 1 are different from those calculated in [14]
for the memoryless DFC. We finally observe capacity gains
due to the channel’s memory and soft-decision quantization
(q > 1) relative to hard-quantization (q = 1) and ideal
channel interleaving (i.e., ignoring the channel’s memory). For
example, for γ = 5 dB, the capacity gain of C(10) (q = 2)
over C(10) (q = 1) is 13 %, whereas it is 19 % when compared
to the hard-quantized memoryless channel (with C = 0.656).
For γ = 2 dB, the gains are 18.5% and 25.5%, respectively (in
this case the capacity of the memoryless channel is C = 0.51).
These capacity gains indicate that exploiting the noise memory
and using soft output quantization (even with a resolution as
low as q = 2 bits) are more worthwhile than ignoring noise
memory via interleaving and using hard output quantization.

IV. NON-BINARY QUEUE-BASED MARKOVIAN NOISE

The binary queue-based channel was recently introduced
in [6] to model a binary channel with a stationary ergodic
binary M ’th-order additive Markov noise via a finite queue.
We herein generalize the binary queue set up of [6] to
produce a tractable non-binary Markovian noise model for
the NBNDC. The non-binary queue-based (QB) noise process
{Zk}∞k=1, Zk ∈ Y , is generated by slightly modifying the
two-parcel procedure in [6]: given that we now operate on
balls with |Y| = 2q different colors (instead of only two
colors). First, one of two parcels (an urn and a queue of size
M ) is selected with probability distribution {ε, 1 − ε}. The
urn contains balls labeled with symbols in Y satisfying the

TABLE I
LOWER BOUND ON CHANNEL CAPACITY, C(n) , IN (BITS/CHANNEL USE)

FOR DFCS WITH fDT = 0.005.

γ n� q = 1 q = 2

C(n�) C(n�) optimal δ
2 dB 11 0.54 0.64 0.5
5 dB 10 0.689 0.78 0.4
10 dB 7 0.86 0.915 0.2
15 dB 3 0.939 0.969 0.12

probability distribution ρ = (ρ0, ρ1, · · · , ρ2q−1). If the urn is
selected, a noise symbol Zk = i is selected with probability ρi,
i ∈ Y . If the queue is selected, a noise symbol is selected with
a probability distribution that depends on M and a bias param-
eter α; see [6] for a detailed description of the procedure. The
resulting QB noise process is a stationary ergodic M ’th order
Markov source and has only 2q + 2 independent parameters
(as opposed to a fully general Markovian process which would
require in the order of 2qM number of parameters): the size of
the queue, M , the probability distribution of the balls in the
urn, and correlation parameters ε and α, where 0 ≤ ε < 1,
α ≥ 0. The state process {Sk}∞k=−∞ of the QB noise, defined
by Sk � (Zk, Zk−1, · · · , Zk−M+1), is a homogeneous first-
order Markov process with an alphabet of size 2qM .

Let pij denote the conditional probability that Sk = j
given that Sk−1 = i, where i = (i0, · · · , iM−1), j =
(j0, · · · , jM−1), for i�, j� ∈ Y , � ∈ 0, · · · ,M − 1. We let the
rows and columns of the state transition probability matrix,
denoted by P, be indexed by the vectors i and j, respectively.
It can be shown that the (i, j)th entry of the matrix P = [pij ]
is given as follows:

• For M = 1,

pij = pi0j0 = εδj0,i0 + (1 − ε)ρj0 ,

where

δi,j =

{
1, if i = j

0, if i 	= j.

• For M ≥ 2,

pij =

(
M−2∑
�=0

δj0,i� + α δj0,iM−1

)
ε

M − 1 + α
+ (1− ε)ρj0

if j�+1 = i�, for � = 0, · · ·M − 2, or otherwise pij = 0.

It can also be shown that the ith component of the state
stationary distribution column vector Π = [πi] is given by

πi =

2q−1∏
�=0

ξ�−1∏
m=0

(
(1− ε)ρ� +m

ε

M − 1 + α

)
M−1∏
k=0

(
(1− ε) + k

ε

M − 1 + α

) (18)

where
∏−1

k=0(·) � 1 and ξ� �
∑M−1

k=0 δik,�.
Example 2: For the case q = 2, M = 1, Π =

[ρ0, ρ1, ρ2, ρ3] and P is given by (19).
The QB noise block probability P

(n)
QB (zn) � Pr(Zn = zn) is

as follows:
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P =

⎡
⎢⎢⎣

ε+ (1− ε) ρ0 (1− ε) ρ1 (1− ε) ρ2 (1− ε) ρ3
(1− ε) ρ0 ε+ (1− ε) ρ1 (1− ε) ρ2 (1− ε) ρ3
(1− ε) ρ0 (1− ε) ρ1 ε+ (1− ε) ρ2 (1− ε) ρ3
(1− ε) ρ0 (1− ε) ρ1 (1− ε) ρ2 ε+ (1− ε) ρ3

⎤
⎥⎥⎦ . (19)

• For blocklength n ≤ M

P
(n)

QB (zn) =

2q−1∏
�=0

ξ′�−1∏
m=0

(
(1− ε)ρ� +m

ε

M − 1 + α

)
n−1∏
k=0

(
(1− ε) + k

ε

M − 1 + α

)
(20)

where ξ′� =
∑n

k=1 δzk,�.

• For blocklength n ≥ M + 1

P
(n)

QB (zn) =

n∏
i=M+1

[(
i−1∑

�=i−M+1

δzi,z� + αδzi,zi−M

)

× ε

M − 1 + α
+ (1− ε)ρzi

]
π(z1,··· ,zM) (21)

where the expression for π(z1,··· ,zM) is given in (18).
Note that (20) yields the marginal noise distribution by setting
n = 1: P

(1)
QB (z1) = ρz1 , where z1 ∈ {0, 1, · · · , 2q − 1}.

The correlation coefficient for the QB noise is a non-negative
quantity given by

CorQB =
E[ZkZk+1]− E[Zk]

2

Var(Zk)

=
ε

M−1+α

1− (M − 2 + α) ε
M−1+α

(22)

where Var(Zk) denotes the variance of Zk. We can prove
that the QB noise autocorrelation function (ACF), defined as
R[m] = E[ZkZk+m], satisfies the formula (23), shown at the
top of the next page. We conclude this section by establishing a
closed-form expression for the entropy rate HQB(Z) of the QB
noise. Let w0, · · · , w2q−1 be non-negative integers such that
w0+ · · ·+w2q−1 = M−1 and let the probability distributions
Γi, i = 0, · · · , 2q − 1, be defined as

Γi =

(
w0 ε

M − 1 + α
+ (1 − ε)ρ0, · · · , (wi + α)ε

M − 1 + α
+ (1− ε)ρi,

· · · , w2q−1 ε

M − 1 + α
+ (1− ε)ρ2q−1

)
.

Then

HQB(Z) =

M−1∑
w0

· · ·
M−1∑

w2q−1=0

(
M − 1

w0, w1, · · · , w2q−1

)
×

[
L(w0+1,w1,··· ,w2q−1)H(Γ0) + L(w0,w1+1,··· ,w2q−1)H(Γ1)

+ · · ·+ L(w0,w1,··· ,w2q−1+1)H(Γ2q−1)
]

(24)

where

L(w0,w1,··· ,w2q−1) =

2q−1∏
�=0

(
w�−1∏
m=0

(1− ε)ρ� +m
ε

M − 1 + α

)

M−1∏
k=0

(
(1− ε) + k

ε

M − 1 + α

) .

V. DFC MODELING VIA THE NBNDC WITH QB NOISE

In the following, we fit the DFC using the NBNDC with QB
noise. For this purpose, given a DFC with fixed parameters,
we estimate the 2q+2 independent parameters of the QB noise
process such that the QB noise block probability approximates
well the DFC channel block probability of (2). Specifically,
we select the parameters of the QB noise that minimize the
Kullback-Leibler divergence rate (KLDR) between the QB and
the DFC noise processes defined as [28]

D(PDFC||PQB) � lim
n→∞

1

n

∑
zn∈Yn

P
(n)

DFC (zn) log2
P

(n)
DFC (zn)

P
(n)

QB (zn)

for identical one-dimensional probability distributions and
noise correlation coefficients (we match the lower order statis-
tics for both processes). Closed-form expressions for P (n)

QB (zn)
are given in (20) and (21), while PDFC(z

n) of (2) is calculated
via computer simulations for n > 1. The minimization of
the asymptotic KLDR quantity assures that both processes are
statistically close for large blocklengths.2

Since the DFC noise process is stationary and the QB
noise process is M ’th order Markovian, the minimization
of the KLDR over the QB noise parameters reduces to
minimizing [9], [28]

DM
2 (PDFC||PQB)�−

∑
zM+1

P
(M+1)

DFC (zM+1) log2 PQB(zM+1 | zM )

(25)
where PQB(zM+1 | zM ) is the QB conditional probability of
the noise symbol zM+1 given the previous M symbols, which
is evaluated using the QB noise block probability (21) and is
given by

PQB(zM+1 | zM ) =

(
α δzM+1,z1 +

M∑
�=2

δZM+1,z�

)
×

ε

M − 1 + α
+ (1− ε)ρzM+1 . (26)

We match the one-dimensional probability distribution by
setting ρj = P

(1)
DFC (j), j = 0, · · · , 2q − 1, where P

(1)
DFC (j) is

given by (3) in terms of the quantization parameters (δ and q)
and γ. The remaining parameters (M , ε, α) are estimated as
follows. We compute CorDFC and match the noise correlation
coefficient CorQB = CorDFC. From (22) we can write the
parameter α as

α =
ε+ CorDFC(1−M) + CorDFC(M − 2)ε

CorDFC(1− ε)
. (27)

2The KLDR is an information measure that is widely employed to quantify
the asymptotic statistical similarity between two sources. Thus the minimiza-
tion of the KLDR between the noise sources of two channels attempts to match
the two channels’ statistical behavior for large blocklengths (note that large
blocklengths are required to achieve reliable communication by the channel
coding theorem).
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RQB[m] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E[Z2
k ], if m = 0

1

1− (M−2+α)ε
M−1+α

[
ε

M−1+αE[Z2
k ] + (1− ε)E[Zk]

2
]
, if 1 ≤ m ≤ M − 1

(1 − ε)E[Zk]
2 + ε

M−1+α

[
M−1∑
i=1

RQB[m− i] + αRQB[m−M ]

]
, if m ≥ M.

(23)

TABLE II
QB PARAMETERS FOR FITTING THE RAYLEIGH DFC WITH q = 2.

γ fDT = 0.001 fDT = 0.005 fDT = 0.01
M = 14 M = 11 M = 8

2 dB ε = 0.7978 ε = 0.7537 ε = 0.6846
(δ = 0.5) α = 0.7570 α = 0.6362 α = 0.5313

M = 13 M = 10 M = 7
5 dB ε = 0.8388 ε = 0.7967 ε = 0.7260

(δ = 0.4) α = 0.7819 α = 0.6318 α = 0.5286
M = 9 M = 7 M = 5

10 dB ε = 0.8060 ε = 0.7563 ε = 0.6765
(δ = 0.2) α = 0.7470 α = 0.5932 α = 0.4818

M = 6 M = 5 M = 4
15 dB ε = 0.7580 ε = 0.7076 ε = 0.6371

(δ = 0.12) α = 0.7282 α = 0.5511 α = 0.399

Minimization procedure: For fixed DFC parameters, we sub-
stitute (27) into (26) and the result into (25) and find the
value of ε that minimizes (25) for each value of M . For
that purpose, we apply the Newton-Raphson’s method (e.g.,
see [29]) to the derivative of (25), resulting in the following
iterative procedure for estimating ε. Given an iteration point
εn, we show in Appendix B that the next iteration point is
given by

εn+1 = εn +

∑
zM+1

PDFC(z
M+1)

AzM+1

AzM+1εn +BzM+1

∑
zM+1

PDFC(z
M+1)

A2
zM+1

(AzM+1εn +BzM+1)2

(28)

where

AzM+1 = [1 + CorDFC(M − 2)]δzM+1,z1 −(
M∑
�=2

δzM+1,z�

)
CorDFC − (1− CorDFC)ρzM+1 (29)

and

BzM+1 =

(
δzM+1,z1(1 −M) +

M∑
�=2

δzM+1,z�

)
CorDFC

+ (1− CorDFC)ρzM+1 . (30)

From the constraint that α ≥ 0, we have from (27) that

CorDFC(M − 1)

1 + CorDFC(M − 2)
≤ ε < 1.

In the algorithm, we used an empirically established estimate
for the initial point ε0 within this interval and observed con-
vergence for all considered DFC parameters. We repeated this
procedure for increasing values of M and chose a triplet (M ,
ε, α) to represent a specific DFC whenever DM

2 (PDFC||PQB)
converges within a prescribed threshold (we use a threshold
value κ varying between 10−3 and 5 × 10−3 for the results
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Fig. 2. DM
2 (PDFC||PQB) versus M . DFC with q = 2 and γ = 5 dB for

fDT = 0.01, fDT = 0.005 and fDT = 0.001.

of Table II3). Three typical curves for DM
2 (PDFC||PQB) as a

function of M are shown in Fig. 2 for q = 2 and γ = 5
dB (with fDT = 0.01, 0.005 and 0.001). The optimization
procedure was carried out for DFCs with q = 2, four
values of γ, and three values of fDT for each γ. We did
not observe an important variation in the optimal value of
δ for the considered fDT values, so we used the values
provided in Table I. The vectors ρ calculated from (3) are
ρ = (0.6953, 0.1962, 0.085, 0.0235) for γ = 2 dB and
δ = 0.5, ρ = (0.7822, 0.1536, 0.0538, 0.0104) for γ = 5 dB
and δ = 0.4, ρ = (0.9239, 0.0528, 0.0188, 0.0045) for γ = 10
dB and δ = 0.2, and ρ = (0.9722, 0.0201, 0.0064, 0.0013) for
γ = 15 dB and δ = 0.12. Table II provides the remaining
parameters of the QB noise process that fits a specific DFC.

We next use channel noise ACF and channel capacity as
metrics for measuring the accuracy of the NBNDC with QB
noise models of Table II in approximating the DFC. Figs. 3
and 4 compare the ACFs of the DFC and the QB noise
processes for several values of M , for a DFC with q = 2
where fDT = 0.005, γ = 10 dB and δ = 0.2 in Fig. 3,
while fDT = 0.001, γ = 15 dB and δ = 0.12 in Fig. 4.
The figures show a generally good agreement4 between the
ACF of the DFC and that of the QB noise model with the
values of M described in Table II, although in the slower
fading case (of fDT = 0.001), QB models with larger values
of M give a better ACF fit that the QB model of Table II. A
similar behavior is also observed for all QB models listed in
this table (curves not shown), thus indicating that QB models
satisfactorily approximate the ACF of the DFC process. The
expression of the ACF for the QB noise is given in (23), while

3Thus the values of M shown in Table II are chosen to be within κ from
the M∗ that locally minimizes DM

2 (PDFC||PQB) in order to avoid large values
of M and hence keep a manageable total number of states.

4Note that for small values of m, there is a mismatch between between
the ACFs of the DFC and QB models. This is due to the fact that, unlike the
ACF of the DFC, the ACF of the QB model is constant for 0 ≤ m ≤ M −1
(see the expression of RQB[m] in (23)).



PIMENTEL et al.: A DISCRETE QUEUE-BASED MODEL FOR CAPTURING MEMORY AND SOFT-DECISION INFORMATION IN CORRELATED FADING . . . 1709

0 10 20 30 40 50 60 70 80 90 100
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

Distance between samples (m)

R
[m

]

 

 
M = 3, α = 0.5865, ε = 0.5495
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Fig. 3. Comparison of ACFs: DFC with fDT = 0.005, q = 2, γ = 10 dB
and δ = 0.2 vs NBNDC with QB noise.
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M = 6, α = 0.7286, ε = 0.7580
M = 7, α = 0.7413, ε = 0.7860
M = 8, α = 0.7499, ε = 0.8079
M = 9, α = 0.7507, ε = 0.8259
M = 10, α = 0.7515, ε = 0.8406
M = 11, α = 0.7374, ε = 0.8564
M = 12, α = 0.7241, ε = 0.8647
M = 13, α = 0.7307, ε = 0.8729
DFC
(fDT = 0.001, γ = 15dB, q = 2, δ = 0.12)

Fig. 4. Comparison of ACFs: DFC with fDT = 0.001, q = 2, γ = 15 dB
and δ = 0.12 vs NBNDC with QB noise.

the ACF of the DFC noise is calculated numerically from the
P

(n)
DFC (zn) statistics of (2) obtained via simulations. In Fig. 5,

we plot the upper and lower capacity bounds C(n) and C̄(n)

versus the blocklength n for the QB model fitting the DFC
with q = 2, γ = 10 dB, fDT = 0.005 and δ = 0.2. We
clearly see that as n increases, C(n) and C̄(n) converge to
yield a good estimate of capacity. Fig. 6 assesses the lower
bound on the capacity of the DFC with the upper and lower
bounds of the fitting QB noise model, where the DFC values
of n� and δ given in Table I for each SNR γ and the values
of the QB noise are given in Table II. We observe a relatively
close match in the capacity curves of both channels.

Finally, we have compared the QB model (of 2q + 2
parameters) with the fully general Markov model (of 2qM

parameters) to assess any significant performance discrepancy
when both channels approximate the DFC. The full Markov
model is matched to the DFC by equating its M -dimensional
noise distribution to that of the DFC. The results indicate
that the QB model performs close to the full Markov model
for typical system conditions while requiring a substantially
smaller number of parameters (unlike the full Markov model,
the QB model’s number of parameters does not grow ex-
ponentially with M , whose value can be considerable for
slow fading and noisy conditions as shown in Table II; e.g.,
for typical values of q = 2 and M = 7, the QB model
has only 6 parameters while the full Markov model requires
214 = 16, 384 parameters). Thus the QB noise channel,
in virtue of its closed-form statistical expressions, offers a
practically effective model for the DFC.
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Fig. 5. Capacity of NBNDC with QB noise: upper and lower bounds vs
blocklength n. The NBNDC models the DFC with q = 2, γ = 10 dB,
fDT = 0.005 and δ = 0.2 and its QB noise parameters are M = 7,
ε = 0.7563 and α = 0.5932 (see Table II).
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Fig. 6. Capacity comparison: DFC capacity lower bound (with fDT =
0.005, q = 2 and n� as given in Table I) vs NBNDC with QB noise capacity
lower and upper bounds (with n = 15).

VI. CONCLUSIONS

We introduced a binary-input 2q-ary output discrete channel
(denoted by NBNDC) to properly represent both the statis-
tical memory and the soft-decision information of BPSK-
modulated time-correlated Rayleigh fading channels when
they are coherently demodulated via a q-bit output quantizer.
The NBNDC’s output is explicitly described in terms of its
binary input and a 2q-ary noise. This channel reduces to
the familiar binary channel with modulo-2 additive noise
when q = 1 (i.e., under hard-decision demodulation). We
derived a simple formula (as well as asymptotically tight upper
and lower bounds) for its capacity under stationary ergodic
noise. We also generalized the binary queue-based (QB) noise
process introduced in [6] to obtain a 2q-ary QB stationary
ergodic M th order Markovian noise model. We established
closed-form analytical expressions for the statistics and the
entropy rate of the 2q-ary QB noise process in terms of its
2q+2 parameters. Finally, we fitted the discrete soft-quantized
correlated fading channel via the NBNDC with QB noise and
validated the modeling in terms of autocorrelation function
and capacity.

In light of the capacity gains shown in Section III-B, an
interesting direction for future work is to harness the structure
of the NBNDC model with QB noise for the construction
of practical high-performing (in terms of error rate) channel
codes that exploit both the channel’s noise memory and soft-
decision information for use over the correlated Rayleigh
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fading channel. In a recent related work [30], it is shown
that joint source-channel vector quantizers can be designed
for the NBNDC model with QB noise and can effectively be
used over the underlying fading channel to achieve signifi-
cantly improved performance in terms of mean-square error
distortion. Extensions to modeling non-binary modulated (e.g.,
pulse amplitude modulation) correlated fading channels with
soft-decision demodulation can also be studied in the future.

APPENDIX A
PROOF OF THE SYMMETRY OF THE TRANSITION MATRIX

We prove in this appendix that the matrix Qn =

[P
(n)

NBNDC(y
n|xn)] can be split into 2n(q−1) submatrices of size

2n × 2n in which the columns are permutations of each other
and also the rows are permutations of each other, and thus Qn

is symmetric [24].
Let X = {0, 1}, W = {0, 1, · · · , 2q−1 − 1}, and Y =

{0, 1, · · · , 2q − 1} be alphabets. We split the columns of Qn

into 2n(q−1) classes Cwn , wn ∈ Wn, defined as

Cwn =

{
yn ∈ Yn | yn =

wn − (2q − 1)vn

(−1)vn , vn ∈ Xn

}
.

(31)
It is worth noting that each yn can be associated to a single
wn and to a single vn whose components are given by

wk = min{yk, 2q − 1− yk} (32)

and

vk =

{
0, if yk ≤ 2q−1 − 1
1, if yk > 2q−1 − 1.

(33)

Recall from (5) that the n-fold conditional probability satisfies

P
(n)

NBNDC(y
n | xn) = P

(n)
NBNDC(z

n(xn, yn)) (34)

where

zk(xk, yk) =
yk − (2q − 1)xk

(−1)xk
. (35)

The next step is to prove that within each class Cwn , its corre-
sponding rows and columns in Qn are formed by permutations
of P

(n)
NBNDC(y

n | xn) = P
(n)

NBNDC(z
n(xn, yn)), for yn ∈ Cwn .

For this purpose, it is sufficient to prove that zn(xn, yn)
is permuted among the rows and columns of the submatrix
formed by yn ∈ Cwn , i.e.

1) Within each class, there are only 2n possibilities for
zn(xn, yn).

2) If xn
1 	= xn

2 , with yn fixed, then zn(xn
1 , y

n) 	=
zn(xn

2 , y
n).

3) If yn1 	= yn2 , with xn fixed, then zn(xn, yn1 ) 	=
zn(xn, yn2 ).

1) Let us associate yn to a class Cwn using (32) and to a
vector vn using (33). We then substitute the components of
yn ∈ Cwn defined in (31) into (35), yielding

zk(xk, yk) =

wk−(2q−1)vk
(−1)vk − (2q − 1)xk

(−1)xk

= (−1)xk+vk wk − (2q − 1)
(−1)vk vk + xk

(−1)xk
. (36)

Since xk, vk ∈ X , within a class Cwn , there are two possibil-
ities for zk(xk, yk) in (36), for each k, namely

zk(xk, yk) =

{
wk, if vk = xk

(2q − 1)− wk, if vk 	= xk.
(37)

Hence, in a class Cwn , there are only 2n possibilities for
zn(xn, yn). Thus, item 1 is satisfied.
2) Suppose that for yn ∈ Yn fixed and xn

1 	= xn
2 , it may occur

zk(x1,k, yk) = zk(x2,k, yk) for every k. Hence

yk − (2q − 1)x1,k

(−1)x1,k
=

yk − (2q − 1)x2,k

(−1)x2,k
. (38)

So (38) implies that xn
1 = xn

2 , which is a contradiction. Hence,
item 2 is satisfied.
3) Suppose now that for xn ∈ Xn fixed and yn1 	= yn2 ,
zk(xk, y1,k) = zk(xk, y2,k) for every k. Hence

y1,k − (2q − 1)xk

(−1)xk
=

y2,k − (2q − 1)xk

(−1)xk
. (39)

We conclude from (39) that xn
1 = xn

2 , which is a contradiction.
Hence, item 3 is satisfied which completes the proof.

APPENDIX B
APPLICATION OF THE NEWTON-RAPHSON’S METHOD TO

THE MINIMIZATION OF DM
2 (PDFC||PQB)

In order to minimize the divergence between the QB noise
distribution and the DFC distribution, we apply the recursion
formula given by

εn+1 = εn −
d
dεD

M
2 (PDFC||PQB)

∣∣
ε=εn

d2

dε2D
M
2 (PDFC||PQB)

∣∣
ε=εn

(40)

where DM
2 (PDFC||PQB) is given in (25). Recall that, for M

fixed, (25) is a function only of ε, if we use PQB

(
ZM+1|ZM

)
as in (26) and α as in (27). We then derive an expression for
the derivative of DM

2 (PDFC||PQB) in relation to ε:

d

dε
DM

2 (PDFC||PQB) = −
∑

ZM+1

PDFC

(
ZM+1

)×
d

dε

[
log2 PQB

(
ZM+1|ZM

)]
. (41)

Substituting (27) into (26) we obtain, after a few manipulations

PQB

(
ZM+1|ZM

)
=

1

1− CorDFC

(AZM+1ε+BZM+1) (42)

where the expression for AZM+1 and BZM+1 are given in (29)
and (30), respectively. We then have

d

dε

(− log2 PQB

(
ZM+1|ZM

))
=

−AZM+1

AZM+1ε+BZM+1

(43)

d2

dε2
(− log2 PQB

(
ZM+1|ZM

))
=

−A2
ZM+1

(AZM+1ε+BZM+1)
2 . (44)

We now substitute (43) into (41) and (44) into the derivative of
(41). The resulting expressions are then substituted into (40),
resulting in (28).
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