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On the Equivalence Between Maximum Likelihood
and Minimum Distance Decoding for Binary
Contagion and Queue-Based Channels With Memory
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Abstract—We study the optimal maximum likelihood (ML)
block decoding of general binary codes sent over two classes
of binary additive noise channels with memory. Specifically, we
consider the infinite and finite memory Polya contagion and
queue-based channel models, which were recently shown to ap-
proximate well binary modulated correlated fading channels used
with hard-decision demodulation. We establish conditions on the
codes and channels parameters under which ML and minimum
Hamming distance decoding are equivalent. We also present re-
sults on the optimality of classical perfect and quasi-perfect codes
when used over the channels under ML decoding. Finally, we
briefly apply these results to the dual problem of syndrome source
coding with and without side information.

Index Terms—Binary channels with finite and infinite memory,
Markov noise, ML and minimum distance decoding, block codes,
source-channel coding duality, syndrome source coding.

1. INTRODUCTION

HE fundamental results in coding theory are primarily

derived under the assumption that communication chan-
nels are memoryless in the sense that their noise is an inde-
pendent and identically distributed process (e.g., see [1]). In
fact, for such channels and in particular the memoryless binary
symmetric channel (BSC), the development of high performing
codes with rich algebraic structures has reached an advanced
stage. However, these codes are not necessarily good for other
channel models. Moreover, most real life channels have sta-
tistical memory [2], [3] and cannot be adequately represented
via memoryless channel models. As a result, current systems
commonly employ interleaving to spread channel error bursts
over the set of received codewords so that block decoding can
recover most of the corrupted codewords (if the number of
channel errors within a codeword is within the code’s error
correction capability) [1], [4], [S]. In other words, the use of
interleaving makes the channel appear memoryless to the block
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decoder. This method has immediate shortcomings as it fails to
exploit the channel memory (since channels with memory have
larger capacity than their memoryless counterparts in a wide
range of cases [6], [7]) while adding delay to the system (which
is substantial when long error bursts occur in the channel) [5].

It is therefore of interest to understand the structures of
ML decoders and the properties of optimal block codes for
channels with memory. Since the ML decoding of binary
codes over the BSC with crossover probability less than 1/2
is equivalent to minimum Hamming distance decoding, it is
natural to investigate whether a similar relation exists when the
channel has memory. Indeed when such equivalence holds, any
optimal or good code for the BSC will work well on the channel
with memory. In this work, we derive conditions on arbitrary
binary codes and on the channel characteristics, under which
the equivalence holds. The channel models considered are the
binary infinite and finite memory Polya-contagion channels [8]
and the queue-based channel (QBC) [7]. These additive noise
models, which subsume the BSC as a special cases, feature
desirable properties for tractable system analysis.

The infinite memory contagion channel (IMCC) is non-
ergodic, has a closed-form expression for its epsilon-capacity'
and admits a simple ML decoding rule. The finite memory
contagion channel (FMCC) and the QBC (which generalizes
the FMCC) both feature ergodic Mth-order Markov noise pro-
cesses and have a single-letter capacity expression. They were
shown to accurately model (in terms of replicating channel
capacity and noise autocorrelation function) ergodic discrete
fading channels composed of a binary modulator, a time-
correlated flat Rayleigh or Rician fading channel and a hard-
decision demodulator [7], [11]. Furthermore, it is demonstrated
in [12] that the QBC with small values of M approximates well
in terms of codeword error probability the packet error process
of the above discrete fading channels when block-coded via
Reed-Solomon codes.

The use of these binary channel models is relevant to the
following scenarios. In a wireless sensor network where hard-
decision demodulation is used at the sensors due to their limited
computational and storage resources, the end-to-end binary
system between any pair of sensors can be better represented by

!For a fixed epsilon between 0 and 1, the epsilon-capacity of a channel is the
largest asymptotic rate at which the channel can be encoded via a sequence of
block codes with error probability less than epsilon [9], [10]. Channel capacity
is then the limit of epsilon-capacity as epsilon tends to 0.
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the above models than the BSC by virtue of the time-correlated
nature of the fading links. Also, digital storage devices where
errors occur in clusters can be well approximated by these
models; indeed the IMCC and FMCC were originally studied
in light of the observation that failures in semi-conductor chips
are better characterized by a Polya “contagion” distribution [8].
Furthermore, the noise processes of the FMCC and QBC are
viable alternatives (in light of their explicit Markovian structure
and low number of parameters) to the typically used Gilbert-
Elliott channel (GEC) [13] error process and other hidden
Markov processes (e.g., see [14]) for capturing the packet loss
behavior in data networks, since in practical networks, packet
losses are often time-dependent due to a variety of causes
including congestion and buffer overflow.

The contributions of this work include the following. For
general binary codes of block length n sent over the IMCC or
the QBC with memory M > n, we establish both necessary and
sufficient conditions for which minimum distance (MD) and
ML decoding are equivalent. We also give sufficient conditions
under which classical perfect and quasi-perfect codes are opti-
mal (under ML decoding). For the QBC with M < n, we restrict
our study to two cases: M = 1 (or equivalently the binary first-
order Markov noise channel or the FMCC with M = 1) and
M = 2. In both cases, we determine sufficient conditions for
the equivalence of strict MD (SMD) and ML decoding. We
also present sufficient conditions for the optimality of classical
perfect codes.

In a previous related work [15], it is proven that SMD and
strict ML (SML) decoding are equivalent for perfect codes of
minimum distance 3 over the first-order Markov noise channel
(i.e., the FMCC or QBC with M = 1). In [16], sufficient
conditions, under which SMD decoding of binary linear perfect
codes becomes equivalent to SML decoding, are derived for the
same channel. A near equivalence relationship between SMD
and SML decoding is also obtained for binary linear quasi-
perfect codes for a range of channel parameters and the codes’
minimum distance. In this work, we generalize the equivalence
conditions of [15], [16] to produce even tighter sufficient con-
ditions that apply for any binary code (linear or non-linear). We
also provide similar results for the QBC with M =2.In [17], a
sufficient condition on the IMCC is provided on the MD-ML
decoding equivalence for linear codes containing the all-one
codeword; this result is herein improved via both necessary and
sufficient conditions for general codes.

The rest of this paper is organized as follows. In Section II,
we describe the channel models. In Section III, we introduce a
generalized likelihood distance for additive noise channels with
memory. We then generalize the basic notions in coding theory
to this new distance and present two lemmas on the optimality
of classical perfect and quasi-perfect codes over channels with
memory. In Section IV, the MD/SMD-ML decoding equiva-
lence results are established for the considered channel models.
In Section V, we briefly discuss the numerical verification of
the derived results and translate them for practical codes with
short block lengths and covering radii. We also highlight how
our results apply in the contexts of syndrome source coding
with and without side information at the receiver. Finally, we
conclude the paper in Section VI.
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II. CHANNEL MODELS

We consider binary additive noise channels with memory. We
use the notation F» = GF(2) throughout. The output ¥, at time
instant n of the channel is given by ¥, =X, ®Z,, n=1,2,---,
where @ denotes modulo-2 addition and X,, and Z, are binary-
valued input and noise (error) symbols, respectively. The input
and noise processes are assumed to be independent from each
other. We study several channel models for representing the
noise process with memory.

A. Infinite Memory Contagion Channel

The IMCC is a communication channel with stationary non-
ergodic additive noise characterized by two parameters. It is
based on the contagion urn scheme of George Polya, a two-
color ball sampling scheme empirically shown to describe
well defects in semiconductor chips [8]. The channel noise
propagates and corrupts the transmitted signal by mimicking
the spread of an infectious disease through a population, in the
sense that the occurrence of an error (or “infection”, if we use
the contagion interpretation) increases the probability of future
errors, and hence may lead to a clustering or burst of errors (i.e.,
an “epidemic” in the population). For the IMCC, the probability
of an n-bit error pattern z| = (z1,22,---,2z,) can be written as
follows [8]:

where p = P(Z; = 1) is the channel bit error rate (BER), & > 0
is a noise correlation parameter, d is the Hamming weight of
the error pattern, and I'(+) is the Gamma function. We can see
that the probability distribution of an error pattern depends only
on its Hamming weight, and does not depend on how the errors
are clustered. The correlation Cor(+, -) between any two distinct
noise bits is given by

E[Z:Z;) -E[Z]|E[Z;] &
Var(Z;) 1438

e £ Cor(2,2;) = Vi j
where Var(Z;) = E[Z?] — E[Z]? is the variance of Z;. It is shown
in [8] that, for this channel, ML decoding reduces to either
minimum Hamming distance decoding or maximum Hamming
distance decoding. It is also proven in [8] that the all-zero
error word is the most likely among all error words of length
n generated by the IMCC. When we set & = 0, the IMCC
reduces to a BSC with crossover probability p(BSC(p)). It is
also shown that the IMCC (for & > 0) belongs to the class of
(non-ergodic) averaged channels with memory and admits a
closed-form expression for its epsilon-capacity.

B. Finite-Memory Contagion Channel

The FMCC with memory M is a channel model derived from
the IMCC (it has one more parameter than the IMCC, which is
its memory order M). It differs from the IMCC by making the
current noise sample independent of “older” samples given the
last M error bits. It is shown in [8, Section VI] that the generated
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noise process is stationary, ergodic and Mth-order Markovian
yielding a positive channel capacity that increases with the
memory M. The FMCC and its queue-based generalization,
which will be described next, were also shown in [11] to
model ergodic Rician fading channels more accurately than the
GEC [13].

Note that for a block length n < M, the FMCC becomes
analytically equivalent to the IMCC and the probability of an
n-bit error word z{ is given by (1). If n > M, the word error
probability is given by

P(Z} =)= L
o T [l M s8] T s8]
P yai] 1+Md 1+M3%
where
SM 1 6 M SM 1 l 5
H1:1 (1+16)
and for k > M,
k
Sk = 2 Zi-
i=k—M+1

The correlation coefficient of the noise process is given by

o BlZZ] “EIZIEZ) 8 3)
Var(Z;) d+1
foranyi,j=1,2,---,M and for any j =i+ 1 withi > M. As the
IMCC, when 6 = 0 (or equivalently € = 0), the FMCC reduces
to the BSC(p).

C. Queue-Based Channel

Introduced in [7] via a ball sampling mechanism involving
a finite queue, the QBC also features stationary ergodic binary
additive Mth-order Markov noise. It is a generalization of the
FMCC? (having one additional parameter) while remaining
mathematically tractable. Specifically, it has four parameters:
memory order M, bias parameter o, noise correlation coeffi-
cient € and BER p (see [18, Section 2.2.3]). For this channel,
the probability of an n-bit error pattern z{ is given by:

o If n <M, then

n—di—1 . dan
a_ =o' [1*P+Jﬁ]ﬂ': (P+its)
P(Z|=z})= ! L@
Do (1+it5s)
where d” 21 e (dg:()ifa>b)'

e Ifn> M, then

zi
n d; +0z;
(M) " o W"’P}
P(Zi =)= =
[T+ M—140)&]""

1—z;
dy ol —ziy)]e
1-— 5
—e +1-p 4)

><{[Ml

2Note that both the FMCC and the QBC are finite-state Markov channels.

where

M
(1= p)+ 5 T
e (1 +i%)

M—aM -1 .
Jon_ Mo (P+it%)

Lemma 1: The all-zero error word 0" is the most likely
among all error words of length n generated by the QBC.
Proof: See [18, Lemma 2.2]. |

Remark 1: (Summary of the QBC Features):

e If M =1, the QBC reduces to the FMCC with M = 1
(or equivalently, the binary first-order Markov additive
noise channel®) with identical BER p and noise correlation
coefficient €.

o If e =0, the QBC reduces to the BSC(p).

e If =1, the QBC reduces to the FMCC with the same
memory parameter M, the same BER p, and with the same
correlation coefficient €, or with & = 1 e

e If oo = 0, the QBC with parameters (memory M, BER p
and correlation coefficient €) reduces to the FMCC with
parameters (M — 1, p,€).

III. GENERALIZED CONCEPTS OF CODING THEORY

Consider a general binary additive noise communication
channel with a block probability transition matrix Pyx(-|-),
where X = (X1,X2,---,X,) and Y = (Y1, Y»,---,Y,) denote the
channel’s input and output vectors of lengths n, respectively.
Let D,, be the following generalized distance:

D, :Fl xFl >R
Pyx (y[x)
Dy(x,y) = —log;, m
R P(Z=y®Xx)
S TPz =)

where k£ > 1 is a constant, the addition & is component-wise

and Z = (71,25, -,Z,) is the channel’s noise vector of length
n. We denote by X (D,) the domain of this distance, i.e.
K(D,)={teR:3x,y e F;,.D,(x,y) =1}.

It is natural to associate with the distance D,, a weight function
W, defined as follows:

W, :F5—R

P(Z=¢e)

Wo.(e) = —log, PZ=0)

Definition 1: The generalized minimum distance of an
(n,M) code C is:

Pumin 2 min {Dy(e,¢'):c,d € Cande#¢'}.

Let C C F} be an (n,M) binary block code with M codewords,
each of length n. If the code has a minimum Hamming distance

3The first-order Markov additive noise channel is simply the Gilbert channel,
a special case of the GEC [13] realized by setting the probability for causing an
error to zero in the “good state” and to one in the “bad state.”



dnin, we use the notation (n,M,d,,;,) to describe the code. If a
codeword from C is sent over the channel and is received as y
at the channel output, one can use one of the following familiar
decoding rules to recover the transmitted codeword.

* ML Decoding: y is decoded into codeword ¢y € C if
Pyix(yleo) > Pyix(y|e) forall ¢ € C.

e MD Decoding: y is decoded into codeword ¢y € C if
wr(co®y) <wg(c@y) forall ¢ € C, where wy () denotes
the Hamming weight.

e SMD Decoding: 1t is identical to the MD rule with the
exception of requiring that the inequality holds strictly for
all ¢ # cp; if no codeword ¢y satisfies the strict inequality,
the decoder declares a decoding failure.

Recall that the ML and MD decoders are complete decoders
(i.e., they always select a codeword to decode the received
word) while the SMD decoder (like bounded distance decoders)
is an incomplete decoder as it declares a decoding failure when
there is no unique codeword of minimal decoding metric [1].
The later decoder is useful for situations where the decoder can
seek retransmission via a feedback link and where ties in the
decoding metric are best left unresolved (unlike complete de-
coders which typically break ties at random) so that undetected
errors are reduced and the decoder’s reliability in correcting
errors is increased.

Definition: The generalized packing radius p . of an (n,M)
code C with generalized minimum distance p,;;, is:

P pac £ max{r € K (D,) : Vy €F5,3 at most one error word
z € Sc(y) such that W, (z) <t},

where
Sc(y) 4 {ecF;:emdye C}.

In other words, p 4 is the maximum generalized weight of an
error word that the code C can correct under minimum gener-
alized distance decoding, which is equivalent to ML decoding
[19].

Definition 3: The generalized covering radius pg,, of an
(n,M) code C is:

Peoy = maxmin Dy (c,y).
yeF; ceC

In other words, any received word y is within at most p.,, from
at least one codeword in C.

Definition 4 (Generalized Perfect and Quasi-Perfect Codes):
A code C is called a generalized perfect code iff peoy = Ppac-
For such a code, every received word y is within at most p,y
from exactly one codeword in C.

A code Cis called a generalized quasi-perfect code iff ppqe <
Peov and At* € K (D) such that p g <1 < peoy.

Remark 2: The generalized definition of perfect (respec-
tively, quasi-perfect) codes reduces to the conventional defini-
tion when the distance D,, is given by the Hamming distance.

Theorem I (Theorem 1[19]): Generalized perfect and quasi-
perfect codes are optimal (i.e., have minimal codeword error
probability) under ML decoding among all codes with the same
length and dimension (i.e., number of codewords or size).
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We close this section by proving the following two results.
Lemma 2 (Optimality of Classical Perfect Codes Over Chan-
nels With Memory): Let C be an (n,M,d,,;,) perfect code (in
the classical sense) to be used over the general binary additive
noise channel. Define the set
\‘dmin -1 J }
2

where r.,, denotes the code’s (classical) covering radius. Now
consider the following condition. Condition (x): For any e € D¢
and any ¢ € F4, wy(e) <wpy(e') = P(Z=¢e) > P(Z =¢).

If condition (x) holds, then C is a generalized perfect code
and hence is optimal among all codes of the same length
and dimension under minimum generalized distance decoding
(which is equivalent to ML decoding).

Proof: Let C be an (n,M,d,,;,) perfect code satisfying

condition (x). Its generalized covering radius satisfies

De = {e eF; wy(e) <repy =

Pcov = max minD, (C, Y)
yeF; ceC

= maxminW,(c®
yeR! ceC n(e®y)

=max min W,(z)
yeF; z€5¢(y)

= max W, (z*(y)),
yEF]

(6)

where

z"(y) =arg min W,(z).
zeSe(y)
Now since C is a perfect code in the classical sense, then
Vy € F4,3 a unique error pattern Z(y) € Sc(y) (of minimal
Hamming weight) such that wy ((Z(y)) < reop. From condition
(%), Vz € Sc(y) such that z # 2(y),P(Z = 2(y)) > P(Z = z).
Hence, z*(y) = Z(y). Since C is a perfect code, then

{i(y):yeF,} ={z € ¥, :wy(z) < reew} = Dc,
which is the set of all coset leaders for C. Therefore,

Pcoy = Max W, (i(y»
yeF!

2

= max W,(z)
ZE@C

= max W, (z).

2€Dewy (2)=rcoy

The last equality is a result of condition ().

We now prove that the generalized packing radius p,q. of
C is the same as its generalized covering radius p.,,. By
definition, ppac < Peoy- ASSUme Ppge < Peov, then there exists at
least one word y € F)} with two error patterns z; and z> € Sc(y)
such that W,,(z;) < peoy and Wy, (22) < peov- Now for any z' € F2,

Wo(Z') < peoy =W, (') < max W, (z)

2€De:wy (2)=rcov

= P(Z=1)> max
2€Dewy (2)=rcoy

<~ P(Z=17)>PZ=1"),

P(Z=1z)
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where

z" =ar max P(Z=1z).
gZE@C:WH(Z):rCOV ( )

Since z* € D¢, from condition (*):
PZ=2)>PZ=1") < wy(2) <wy(z") = repp-

Therefore, both z; and z, have a Hamming weight of at most
reoy and they both belong to the error set of y, Sc(y). This is
a contradiction since C is a perfect code and hence any error
set can contain at most one error word with a Hamming weight
less than or equal to the covering radius of the code. Therefore,
Ppac = Pcov and hence C is a generalized perfect code. |

Lemma 3: (Optimality of Classical Quasi-Perfect Codes
Over Channels With Memory): Let C be an (n,M,d;,) quasi-
perfect code (in the classical sense) with covering radius 7.,
to be used over the general binary additive noise channel.
Consider the set

din — 1
FC:{eeFS:wH(e)Ser: {MZJ —H}

and the following condition.

Condition (*x): For any e € I'c and any € € F%, wy(e) <
wy(e) <= P(Z=¢)>P(Z=¢).

If condition (xx) holds, then C is a generalized quasi-perfect
code and hence is optimal among all codes of the same length
and dimension under minimum generalized distance decoding
(which is equivalent to ML decoding).

Proof: See [18, Lemma 3.4]. |

IV. ML DECODING OVER CHANNELS WITH MEMORY

In this section, we study the problem of block ML decoding
of length-n binary codes over the IMCC and the QBC. For
the IMCC and the QBC with M > n, we provide necessary
and sufficient conditions for which ML and MD decoding are
equivalent. Furthermore, for the QBC with M = 1,2, we derive
sufficient conditions under which ML and SMD decoding are
equivalent. We first present the results for the IMCC and for the
QBC with M > n together and then we present the results for
the QBC with M = 1,2 (note that for M = 1, the QBC and the
FMCC are identical).

A. Infinite Memory Contagion Channel and Queue-Based
Channel With M > n

Theorem 2: For any (n,M,dy;, ) code C used over the IMCC
or the QBC with M > n, if the code’s (classical) covering radius
satisfies

- 1-2p

rC()V — 8 )

then the outputs of the MD and ML decoders are identical.
Proof: We only provide the proof for the IMCC (the proof
is identical for the QBC with M > n; see [18, Section 6.1].

Maximum 7.,
T T

T T T T

([}
co9
o ol

..
S

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 1. Plot of the condition in Theorem 2: maximum allowable r.,, over the
IMCC with respect to the correlation coefficient € = §/(1+ &) and for different
values of the BER p.

Lety! = (y1,y2, -, yn) be the received word. Define
dmin (y7) = mindy (e, y")
ceC
and
dmax (Y1) = maxdp (y1,¢).
ceC

Then we have that dyx(y]) < rcov from the definition of the
covering radius (with equality achieved for at least one word).
On the other hand, dya(y]) < n. (Note that there are codes
for which both inequalities can be satisfied with equality for

the same word y}.) Hence, |dua(y]) —u| < 5 — % and

| dmin(Y}) — | > 5 — %, where

1-2p n
= ——+ = 7
% 2 ™
and we have used the assumption that 7., < 1=2p Therefore,

for any received word ¥/, |dmin(¥}) — t| > |dpax(¥}) — p| which
by [8, Section III] (see also [18, Section 4.1]) directly means
that the MD decoding rule is always used. |

We illustrate the condition of Theorem 2 in Fig. 1 by plot-
ting, for different values of the IMCC BER p, the maximum
allowable value for a code’s covering radius for which ML and
MD decoding are equivalent. It is noted that as the channel’s
noise correlation coefficient decreases, larger values of r,, are
permissible; this is expected, since when the noise correlation
is set to zero, the channel reverts to the memoryless BSC for
which the MD-ML decoding equivalence holds for all block
codes. Furthermore, we can tighten the condition in Theorem 2
to obtain a necessary and sufficient condition on the code C.

Definition 5: Let y| = (y1,y2,---,ya) be the received word.
We define:

A
dsum (Y1) = |dmin (Y1) — dmin (1" @ ¥7)|,

and let

dsum(c) é max dgm (yrll) 5

n n
y1€F;

where 1" is the all-one word of length n, and d,;, (y]) is defined
above.



Theorem 3: For any (n,M,d,,i,) code C used over the IMCC
or the QBC with M > n, the outputs of the MD and ML
decoders are identical iff
1-2p

; <
dsum ( C) >~ S

Proof: Again, we only provide the proof for the IMCC

(as the proof is identical for the QBC with M > n; see
[4, Section 6.1]).
We start by proving the first direction (=): Assume

dgm(C) < %, and let y'f be the received word. Then:

dmin (Y1) + dmax (Y1) = dmin (Y1) +1— dmin (1" D y])

<n+dgm (y7])
§n+dsum(c)

1-2
<t

where u is given in (7). Hence, dyin(Y]) + dpmax(¥]) < 2u =
|dmin (Y]) — 11| > |dmax(¥]) — 1t i [8, Section III] (see
also [18, Section 4.1] directly means that for every y/| € F7, the
ML decoder picks the minimum Hamming weight error word
and hence reduces to the MD decoder.

We now prove the other direction (<=): Assume dy;,(C) >
%. From the definition of dy,,, (C), we know that there exist
at least one word y7 such that:

1-2p

nin (yrll) 3

- dmin (ln 52 )_’111) >
For this received word, we have

dmin (¥7) +

1-2p
> P
T3

in (1) + dimax (¥1) = n— dpin (1" ©FY)

=2u.

Hence, duin(¥]) + dnax(¥}) > 20 = |dpnin(¥]) — 1| <
|dmax(¥) — p|. The above means (by [8, Section III]) that for
this received word ¥/, the ML decoder picks the maximum
Hamming weight error word and hence the ML decoder is not
equivalent to the MD decoder. ]

Corollary 1: Let C be an (n,M,d,,) perfect (respectively,
quasi-perfect) code, in the classical sense, used over the IMCC
or the QBC with M > n. If

1-2p
Teoy < S

then C is a generalized perfect (resp., generalized quasi-perfect)
code for this channel and hence is optimal under ML decoding
among all codes of the same length and dimension sent over the
same channel.

Proof: Immediate from Lemma 2 (resp., Lemma 3) and
Theorem 2. |
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Lemma 4: Consider any (n,M,d) code C that includes every
codeword along with its complement, i.e., if ¢ € C then (1" ®
¢) € C.If p < 0.5 then ML decoding over the IMCC or the QBC
with M > n reduces to MD decoding.

Proof: The proof follows directly from Theorem 3 by
noting that dy,,, (C) = 0. [ ]

B. Queue Based Channel With M = 1,2

The following quantities expressed in terms of the QBC
parameters and block length will be needed for the main results
(Theorems 4 and 5 and Corollary 2) of this subsection.

Definition 6: For the QBC with parameters (M = 1, €
p and o) and a block length n > 2, define

s ()

ni (Svp) = )
+(1— +(1—¢)(1—
In (S8 ) +in (ST

(n—1)In w +In (=2
ma(n,e,p) 2 ZIH(SJ(E“;%SP;I)) —Bln (151’ )

and

m*(n,e, p) 2 min {m (&, p),ma(n,e,p)}.

For the QBC with parameters (M = 2, €, p and o) and a block

length n > 2, define
1n{ [ o] [ S o] }
A

p(178+p)
ﬁ,ll((x78’p) = )
(I+o)e (1+(x)s
m{ [ ][ e 1) }
D+A’ if o > (1*2178)(1*8) -1

P+ p)(lfs+l -p)
7 A)C
mZ(naOngap) — Y\ D+B

&, otherwise,
and
ﬁl(rl?(x’g?p) é min{ml(a7€7p)7ﬁ12(n7a787p)}7
where
[ (1+a)
oo | [ +p} (1-p) (5 +1-7)
A=1n P )
1
P +p) |2+ 1)
S .
A [( o +p] (1Es+1_p)
B=1In

_p( _’_p){(lﬂx) L1 ]2-

[l

(1+oc)
+1-
et
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+ n=5,p=0.001
--=n=10, p=0.001
¢ | ——n=100, p=0.001

n=5, p=0.01
o n=10, p=0.01
S| = n=100, p=0.01

Fig. 2. Plot of m*(n,€, p) with respect to € for different values of n and for
p=0.001,0.01, QBC withoc=1 and M = 1.

Theorem 4: For any two error words z} and Z{ generated by
the QBC with M =1 (resp., M = 2) satisfying

i. wy(z]) =m, where 0 <m < § (resp., 0 <m < %),
ii. wy(zl) =m+i,where 1 <i<n—m

we have that

m <m"(n,&,p) (resp., m <in(n,0,€,p))

Proof: See the Appendix. ]
Theorem 5: Let C be any (n,K,d) code used over the
QBC with M =1 (resp., M = 2) and parameters o, € and
p. If the code’s classical covering radius r,, satisfies rqpy <
min{m*(n,&,p),5} (resp., reop < min{/m(n,0,¢€,p),5}), then
the output of the SMD decoder (when it does not declare a
decoding failure) is identical to the output of the ML decoder
for this code.
Proof: We only prove the result for M = 2 (the proof

for M =1 is identical). Let y be the received word. Let m £
mineecdy(y,¢). Clearly, m < r., < % (from the definition
of the covering radius). If there exists a unique codeword €
such that dg (y,€) = m, then the SMD decoding gives a valid
codeword. Since m < m(n, 0, ¢, p), it follows from Theorem 4
that all other error words of larger Hamming weights have a
smaller probability than the error word corresponding to the
SMD decision. Hence the ML decoder will give the same
output. |

In Figs. 2 and 3, we plot m*(n,€, p) and 7/i(n, 0, €, p) versus
the channel correlation coefficient € (ranging from 0.03 to 1) of
the QBC with parameter oo = 1 (hence the QBC reduces to the
FMCC) and for M = 1 and M = 2, respectively, for different
values of the BER p and the block length n. We notice from
these figures that the condition of Theorem 5 is restrictive for
channels with € > 0.1. In fact, for these channels, only codes
with a covering radius r.,, = 1 satisfy the condition (e.g., the
family of Hamming codes). For smaller €, more codes satisfy
the condition, and when € = 0 (i.e., when the QBC becomes
memoryless and reduces to the BSC), unsurprisingly all block
codes satisfy it.

Corollary 2: Let C be an (n,K,dy;,) perfect code (in the
classical sense) used over the QBC with M =1 or M = 2 and

..... - =3, p=0.001
---1=10, p=0.001
—n=100, p=0.001

n=5, p=0.01

o n=10, p=0.01
+ n=100, p=0.01

Fig. 3. Plot of m(n, o€, p) with respect to € for different values of n and for
p=0.001,0.01,QBC withoo =1, M =2.

parameters 0., € and p. If

o Ain — 1
rC()V -

J < min{m*(n,s,p),g} forM =1,

2
dypin — 1
Feoy = \‘ mmz J <min{l’71(n70(,8717)7%} forM:27

then C is a generalized perfect code for the corresponding

channel and hence is optimal (under ML decoding) among all

codes of the same length and dimension sent over the same
channel.

Proof: ITmmediate from Lemma 2 and Theorems 4 and 5.

|

Remark 3: Note that we can not make a similar statement to
the one in Corollary 2 for quasi-perfect codes, since two error
words of the same weight are not guaranteed to have the same
probability.

Remark 4: 1t should be pointed out that Corollary 2 directly
implies the result of [15, Theorem 1] stating that every binary
(classical) perfect of minimum Hamming distance three is
optimal among all other codes of the same block length and
dimension over any binary first-order Markov additive noise
channel (which is identical to the QBC and FMCC with M = 1)

with BER p and noise correlation coefficient € < 21(;_22 ik

V. DISCUSSION
A. Numerical Validation and Listing of Short-Length Codes

We have verified the conditions of Theorems 4 and 5 estab-
lished in the previous section by simulating over the IMCC
and the QBC the performance of several short-length codes,
including Hamming, Golay and Reed-Muller codes, as well as
a perfect nonlinear code due to Vasil’ev [20], [21]. As expected,
we observed that the probabilities of codeword error agree
under the different decoding regimes within the parameters of
the decoding equivalence conditions. Detailed numerical results
can be found in [18].

It is also worth pointing out that the above (Hamming, Golay
and Vasil’ev) perfect codes and other perfect codes satisfying
Theorems 3 and 5 will perform optimally (in terms of yielding
a minimal codeword error probability) among all binary block
codes of identical size and block length when operated on the
IMCC or the QBC under ML decoding.



TABLE 1
LARGEST POSSIBLE COVERING RADIUS VALUES AS SPECIFIED BY
THEOREMS 2 AND 5 FOR THE IMCC, THE QBC WITHM =1
(1.E., THE FMCC WITH M = 1) AND THE QBC WITH M =2
AND 0 = 1 DISPLAYED AS A TRIPLET (r¢0, (IMCC),
Feov(FMCC With M = 1), 7.0, (QBC With M = 2))
FOR DIFFERENT VALUES OF THE CHANNEL BER
p AND NOISE CORRELATION COEFFICIENT €

BER ¢
p 0.1 ‘ 0.2 0.5 ‘ 0.9
0.1 || (722 | G.L.D | 0.0.1) | (0,0.0)
001 || &.1,D) | G.L.D | (0.0,1) | (0,0,0)
0.001 || 8.1,1) | G.1.1) | (0.0.1) | (0,0,0)
TABLE I

EXAMPLE OF CODES WITH SMALL COVERING RADII

List of codes ‘ ‘

Tcov

1 |Family of Hamming codes, Vasil’ev nonlinear perfect code.
2 |(23,2'2,7) Golay code, family of extended Hamming codes,
(8,2%,4) Reed-Muller code.
3 |(24,2",8) extended Golay code, (23,2, 5) Wagner code,
(15,27,5) BCH code.
> 3((31,2',11) BCH code (reor = 7).
(16,25, 8) Reed-Muller code (reon = 6).

We next determine in Table I the largest possible covering
radii permitted by Theorems 2 and 5 for replacing ML decoding
by MD decoding over the IMCC and by SMD decoding over
the QBC with M =1 (i.e., FMCC with M = 1) and QBC with
M =2 and o = 1 for typical values of the channel parameters
p and €. It is observed that as the noise correlation coefficient €
increases, the class of codes for which the decoding equivalence
holds gets smaller (becoming empty when € = 0,9). In Table II,
we list examples of codes with short block lengths and covering
radii that can be handily chosen according to the channel
parameters of Table I. These codes can hence be useful for
practical delay and complexity constrained systems, such as
wireless sensor networks, when the systems’ end-to-end binary
channels are better approximated via the above channel models
than the BSC.

B. Application to Syndrome Source Coding

In light of the duality between source and channel coding
(e.g., see [22]-[25] and other works), the results that we derived
in this work can be directly applied to syndrome source coding
with or without side information at the receiver. Our results
extend similar work in [24].

The syndrome source coding scheme without side informa-
tion uses an (1,2, dyin) linear code C. The source encoder
computes the syndrome s}~ k of the source output €} and sends
it over a noiseless communlcatlon channel. The source decoder

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 1, JANUARY 2015

outputs its estimate &Y' of the source output from its syndrome. If
the n-bit source output is identically distributed to the n-bit error
pattern generated by one of the channels that we considered in
this work and if the linear code C satisfies the conditions we
presented for that channel, then we obtain the same equivalence
relation between the ML and the MD (or SMD) decoders.
Alternatively, in the syndrome source coding scheme with
side information at the decoder, the source gives two outputs
Y; and X;, where the latter is only available at the decoder. Let
U=X®Y,. In this scheme, the source encoder computes the
syndrome z|~ k of the n-bit source output y| and transmits it
over a nmseless communication channel. The source decoder
computes the syndrome of the second n-bit source output x| and
adds it bitwise to z’l'_k (modulo-2). It can be easily proven that
the result is the syndrome of uf = x| ©y/. Hence, the decoder
computes its estimate @] of u| from its syndrome and outputs
¥ = 0] @& x}. Similarly, if the U’ is identically distributed to
the n-bit error pattern of one of the channels that we considered
in this work and if the linear code C satisfies the condition we
presented for that channel, then we obtain the same equivalence
relation between the ML and the MD (or SMD) decoders.

VI. CONCLUSION

In this work, we presented sufficient conditions on general
binary codes under which SMD and ML are equivalent over the
QBC with M = 1,2. We also established sufficient conditions
under which classical perfect codes are optimal under ML
decoding over these channels with memory. For the IMCC and
the QBC with M > n, we provided both necessary and sufficient
conditions on binary codes for which ML and MD are equiva-
lent. As intuition suggests, it is generally observed that the class
of block codes for which the MD-ML decoding equivalence
holds gets larger as the channels’ noise correlation decreases.
Furthermore, we determined sufficient conditions under which
classical perfect and quasi-perfect codes are optimal under ML
decoding over these channels; these codes can hence be benefi-
cial to deploy in delay and complexity constrained applications
where the underlying binary-input binary-output end-to-end
channel is better represented by the above channel models than
the traditional memoryless BSC.

APPENDIX

Proof of Theorem 4: For the sake of brevity, we only
include a proof for the case of the QBC with M = 2. Interested
readers can find the full proof in [18, Theorems 5.1 and 6.4]. We
present the following two lemmas without their proofs which
can be found in [18, Lemmas 6.1 and 6.2].

Lemma 5: The error pattern z{ of Hamming weight 0 <
m < n where all zeros and ones are consecutive (e.g., z} =
00...011...1) is the most likely among all other error patterns
of the same length and weight generated by the QBC with
M=2.

Lemma 6: Consider the error words of length n having a
Hamming weight 0 < m < 3. The pattern b} = (001001 ...00)
is the least likely among all patterns of the same length and
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weight generated by the QBC with M = 2. Define a//(r) and
b’/ () to be the following n-bit patterns of Hamming weight 7:

af (1) =(000...111) for0 <t <n,

b(1) = (001001...000) for0 <t < g

In other words, a/f(r) contains ¢ consecutive ones at the end of
its sequence (with 0 < 7 < n) and b{(r) consists of the pattern
001 repeated ¢ times followed by n—r zeros (with 0 <7 < n/3).

We first prove the first direction (=): Consider the follow-

ing three cases:

* Case 1 :m =0 In this case, z] is the all-zero error pattern.

From Lemma 1,
P(Z}=0")>P(Z)=1)).

e Case2:0<m<gzand 1 <i<n—m—1

1 =2))
P(Zy =7
minz”EFg:wH(z’l’):mP(lel = zrll)

~ max 2R WH(ZII):mHP(Z'{ = Z’ll)

_ P(Z=bi(m)
P(Z} =al(m+1i))

1 —
:[f‘iH—Pr e Skl [f_eﬂ’} '
I=p p p

PP T UESTCH B Ly S S L
X
P 1* l—p

—(m+i-2)

where the first equality follows from Lemmas 5 and 6.

Thus,
@ =) [ ol 1= (10
n __sn\ — 2
P(Z}=1)) {(1:0;)8 +p} [(Hoc) 11— }
[“”) +1-p]' [<li°é)€+p]2
e p | p(+p)
p(Et1-p) (e t1-p)
2
[(llto;)s_i_p} [(lﬂx) L1 }
<1
[(1+oc) 11— } [(ll-roc)a_i_p}
x Lt ®)
Pt +p)
> 1. )

We have inequality in (8) since we set i = 1 (indeed, the
term raised to the power i is greater than 1 and hence is
increasing in i where i > 1). Inequality (9) is a result of the
condition m < 7ty (0., €, p).

o Case3:0<m<%andn—m—lgign—m In this
case, foo0(Z]) = too(Z}) = 0. We have

P2 =)
Pz =7) ~

P(Z} =bj(m))
P(Z} = al}(m+1i))

(1+oc) 41— n

r m

p(i5+1-p) (%5 +1-p)(1-p)
| (- )TMW}

\/

i

l—p
(14+o0)5 +p

1-¢

r 2
_wﬂ?} (1-p) (5% +1-p)

I—¢

P( er) [(H(x) L1 }2

>1.

The last inequality is a result of the condition m <
ﬁlZ(n7aa87p)'

We now prove the other direction (<=):

e Assume m > i (a,€, p): In the proof of Case 2, all the
inequalities except the last one can be met with equality
by choosing the error patterns as follows: z| = b’ (m)

and Z{ = aj(m+ 1). Under the assumption that m >
my ((X,E,p), we get:

P(Zi =)

sz —am = I
P(Z} =1Y)

Therefore, we proved that there exist at least two words z}
and Z} satisfying:

i. wy(z]) =m,where 0 <m <%
iil. wy(zj)=m+i,wherel <i<n—m

such that:

e Assume m > fip(n, 0., €, p): The proof follows a similar
reasoning as above, only this time we choose Z{ to be the
all-one error word (while z{ is unchanged). |
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