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Quantization of Memoryless and Gauss—Markov
Sources Over Binary Markov Channels

Nam PhamdoMember, IEEE Fady Alajaji, Member, IEEE and Nariman Farvardirenior Member, IEEE

Abstract—Joint source—channel coding for stationary memo- communication channels often have memory. In this paper,
ryless and Gauss-Markov sources and binary Markov channels e will consider two joint source—channel coding schemes
is considered. The channel is an additive-noise channel where,. -pannels with memory. More specifically, the channel is
the noise process is anMth-order Markov chain. Two joint . .
source-channel coding schemes are considered. The first is a@SSumed to be a binary stationary ergadiith-order Markov
channel-optimized vector quantizer—optimized for both source channel derived from the Polya contagion urn model [8].
and channel. The second scheme consists of a scalar quantizerThjs is an additive-noise channel where the noise sample,

and a maximum a posteriori detector. In this scheme, it is Z;, depends only on thesum of the previous M noise
assumed that the scalar quantizer output has residual redundancy ~*’

that can be exploited by the maximuma posteriori detector to samples(Zi_l,Zi_Q, -+, Z;—y).The motivation for the use
combat the correlated channel noise. These two schemes are therof this contagion-based channel model as opposed to the

compared against two schemes which use channel interleaving. Gilbert—Elliott channel model or others [9], is due to the
Numerical results show that the proposed schemes outperform ¢ that this model izompletelycharacterized by only three
the interleaving schemes. For very noisy channels with high noise . .
correlation, gains of 4-5 dB in signal-to-noise ratio are possible. Parameters. Furthermore, unlike the Gilbert model, the block
transition probability and the channel capacity of this model
have closed-form expressions that can be easily computed in
terms of the three-channel parameters. Hence, for analytical
purposes, this model offers an interesting and less complex
. INTRODUCTION alternative to the Gilbert model. Memoryless sources with
URCE and channel coding are two problems that hageneralized Gaussian distributions and Gauss—Markov sources
raditionally been dealt with independently. This is duwill be considered.
mainly to Shannon’s source—channel separation principle [1],We first consider the design of &dimensional, ratel?
[2], which states that the two problems can be treated sdjits/sample channel-optimized vector quantizer (COVQ) [10],
arately without loss of optimality. However, the separatiofil] designed for the given source and channel. The COVQ
principle holds only in the asymptotic case—when both dencoder output is transmitted over the Markov channel. For
lay and complexity are not constrained. Recent works [3}ach block oft source samples, the COVQ encoder produces
[4], [5] have shown that, when delay and/or complexity:R bits for transmission. We assume tligt is large enough
are constrained, treating these problems jointly (i.e., joimtith respect toAM (kR > M) so that the memory in the
source—channel coding) may result in improved performanckannel can be exploited k¥R channel uses. Thus by a proper
over the traditional technique of tandem source—channel catgsign of the COVQ, we exploit the intra-block memory of the
ing. channel—but not the inter-block memory. The COVQ design
With the exception of [6] and [7], most of the previouslgorithm is a straightforward extension of the algorithm
work on joint source—channel coding has assumed that thescribed in [10] and [11], where thg* x 2¢® channel
channel is memoryless, disregarding the fact that real-wotldnsition matrix is now given in terms of the transition
probabilities of the Markov channel.
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The performances of the two proposed schemes are comy,. R+ X Y v
pared against the performances of two interleaving schemes, covQ Markov covQ
In the interleaving systems, the Markov channel is rendered Encoder Channel Decoder
memoryless by an interleaver and de-interlehvetere, we
assume that the source and channel codes are designe
the memoryless channel. Thus, the purpose of the interleaver

and de-interleaver is to convert the Markov channel (Witthe previousM noise sampled.Thus fori > M + 1,
memory) into a memoryless channel. In the first interleaving

d:i?(.)rl. Block diagram of a COVQ system.

scheme, we consider a COVQ designed for a memoryless Pr{Zi =1Zi-m = ¢iona,- -+, Zica = Ci1}
channel with the same bit error rate as the Markov channel. i—1 i—1

This COVQ is then used over the interleaved channel (com- =Pr¢ Z;, =1 Z Z; = Z €j
bination of interleaver, Markov channel and de-interleaver). j=i—M j=i—M
This system is compared against the COVQ designed for ie1

the Markov channel. In the second interleaving system, we €+ Z ej |6

consider an SQ with its output transmitted over a memoryless j=i—M

(interleaved) channel. A sequence MAP detector, designed = 1+ Mo

for the memoryless channel, is then used at the receiver. h for i — i ] h .
This scheme is compared against the MAP detection schem&/Neréc; = 0orl, forj =i—M,--,i—1. The nonnegative

operating directly on the Markov channel (without interIez;uf-’mame,te'5 deter-m-mes the amqunt of correlgtlonﬂﬁi}. The
ing). correlation coefficient of the noise processj§1 + ). Note

The rest of this paper is organized as follows. In Sectiotnat i_f 6 " 0, the_ ”‘?ise pro_c§as$Zi} becomes in_depend(_el_ﬂt
Il, we present the Markov channel model. The two join?nd identically distributed (i.i.d.) and the resulting additive
source—channel coding schemes are described in Section'ljiS€ channel reduces to a binary symmetric channel (BSC)
Simulation results are provided in Section IV. In Section WIth BER . Finally, we note that the channel is entirely

comparisons between the proposed schemes and the co l;@_racterized by, 8, and M.

sponding interleaving schemes are made. Finally, conclusionsThe reader is referred to [8] fo'r' a full deggnpﬂon of
are stated in Section VI. the channel properties, block transition probability (see [8,

eg. (9)]) and capacity (see [8, eq. (12)]). The capacity is
monotonically increasing witla (for fixed ¢, M) and M (for
fixed €,6), and monotonically decreasing with (for fixed

II. CHANNEL MODEL 5, M)

Consider a discrete channel with memory, with common
input, noise, and output binary alphabets and described by ||| JoINT SOURCE-CHANNEL CODING SCHEMES
the following equationy; = X; ¢ Z;, for i = 1,2,3,---

where @ represents the addition operation modulo .2, ang Channel-Optimized Vector Quantizer (COVQ)
the random variables(;, Z; and Y; represent, respectively, ) _
the input, noise, and output of the channel. We assumelN€ ensuing formulation of COVQ follows that of [11].
that {X;} L {Z]}; i.e., the input and noise sequences afgonsider a real-valu_ed stationary and erg_odlc s_outte,:
independent from each other. Furthermore, the noise procégs}fil- The source is to be en(_:oded bycajlmer_wsmnal,n-
{Z;}22, is assumed to be a stationary mixing (hence, ergodilébtlvecmr COVQ whose output is to be transmlltted over the
Markov process of ordeM. By this we mean that the noiseb'”ar.y Markov channel. The godlng system, depicted inFig. 1,
sample,Z;, depends only on the previodd noise samples, consists of an encoder mapping,and a decoder mapping,
e, fori > M+1, The encoder mapping: R* +— {0,1}" is described in terms

- of a partition:

Pr{Z;=ci|Zy=ve¢1, -+ Zis1 = i1} P ={Sg CR*: z € {0,1}"}

=br{Zi=elZi—m = Cimm, - Zim1 = i ‘ , ,
i CilZiman = eimu L= Cimt} of R* according toy(v) = z if v € Sg,z € {0,1}"*, where

v = (v1,v2,- -, ) IS a block ofk successive source samples.
We assume that the marginal distribution of the noisehe channel takes an input sequemrcnd produces an output
process is given bfr{Z; = 1} = ¢ = 1-Pr{Z; = 0}, where sequence. It is given in terms of the block channel transition
¢ € [0,1/2) is the channel bit-error rate (BER). Furthermorematrix Q(y|z). Finally, the decoder mapping:{0,1}" — R¥
we assume that the proce§&;} is generated by the finite- js described in terms of a codebodk = {ey € RF: y €
memory contagion urn model described in [8]. According t00, 11"} according tos(y) = cy, Wherey € {0,1}".
this model, the noise samplg; depends only on theumof The encoding rate of the above system Rs = n/k
bits/sample and its average squared-error distortion per sample

LIt is assumed that the interleaver and de-interleaveidwmal so that the 2For M = 1, the model is general; i.e., it can represemty binary
Markov channel is perfectly rendered memoryless. first-order Markov chain with positive transition probabilities.
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is given by [11]
_ 5Q X; e {0,1}"
1 VieR Encoder
=3 [ iy X auialv-alt ta @ .
z z y Channel
where f(v) is the k-dimensional source probability density R $Q MAP
function (pdf). For a given source, channklandn, we wish Vi Decoder | g, | Detector Y,

to minimize D by a proper choice of andC.
From (1), we see that for a fixed the optimal partition Fig. 2. Block diagram of joint source-channel coding system using MAP
Pr = {S;;'-} is given by [11] detection (SQ-MAP).

v Z Oylz)|lv — @JHQ 313 the redundancy due to the nonuniformity of the distribution,
e redundancy due to the memory and the total redundancy,

respectively. We will assume thatr > 0. In the following,
we will make use of the redundancy i (the amount of
which is measured byr) to combat channel errors. This is
accomplished by using a sequence MAP detector. We first
consider the case whemé is i.i.d.

If Visi.id., soisX. Thuspy; = 0 and the only redundancy
is that due to the nonuniform distribution &F;. In this case the
sequence MAP detector is described as follows. The sequence

<Y Q@) — eyl vE € {0,1}" ¢,
Y
z € {0,1}". 2

Similarly, the optimal codebook’* = {cy} for a given
partition is [11]

ZQ(mx) fS:c vf(v) dv MAP detector observes a sequence
¢ x N niN
q‘/: . (3) Y :(y17y27"'7y1\7)€{071}
Y Q@) [g, () dv _
T and makes an estimate of the sequence
The COVQ design algorithm is a straightforward extension ¥ = (x1, 20, ,2zN) € {0,117

of the iterative algorithm in [11], [14]. The algorithm starts
out with an initial codebook’ (9. With this fixed, it finds the
optimal partition, V), using (2). WithP( fixed, it uses (3) # = arg max Pr{X" =YY =¢"}.
to find the optimal codeboo&(Y). This procedure is repeated z

until the relative change in distortion is sufficiently smalllt can be easily shown that (see [13])if> M,
Note that the average distortiod), forms a monotonically
nonincreasing sequence. Thus, the algorithm is guaranteed to
converge to a locally optimal solution (sind®@ > 0). We

will assume that, > M + 1. Therefore, the block channel + Zlog (eilei—1)p(z )]} 4)
transition matrixQ(y|z)will always be given by (9) in [8].

according to

& = arg max {log[Q(y; |z1)p(x1)]

where
B. MAP Detection

Next consider the system depicted in Fig. 2. Here, instead of
using COVQ we use a SQ. The SQ is also described bpd
3 as above—except that= 1 and R = n bits/sample. Instead and
of optimizing the SQ for the Markov channel, we make use _of plz;) = PriX; = z;}.
the residual redundancy of the SQ to combat channel noise.
This is in the spirit of the approaches in [12] and [13]. The S#ere, p(=;) is determined by integrating the marginal source
in Fig. 2 is designed using the Lloyd—Max formulation [15]pdf f(v;) on the intervalSy;,. Note that fori > 2,

e =z, dy, € {0,1}"
Qleilei_1) =PriZ; =e|Zi_1 =e;_1}

[16] which assumes the channel is noise-free. ni 519 FRECTS
Since the sourc® = {V;};2, is stationary andX; is a  Q(e;le;_1) = H {64“9] } [1 _cts }
function of V; for eachi, the SQ encoder output process, j=n(im1)+1 1+ M$ 1+ M$

X = {X;}2,, is also stationary. Let{.(X') be the entropy where
rate of X and H(X;) be the entropy ofX ;. Define

, , €i—-1= (Gn(i—2)+17 Cn(i—2)+2>"" "> en(i—l))
A A
pp = R H(Xy), pu = H(Xy) = Hoo( ) €i = (Cn(i—1)+1: Cn(i—1)42: """+ Cni)

and and

A
pr = pp +pm =R — Hoo(X) sj=¢e_1+-+ei_pm.
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As expressed in (4), the sequence MAP detector can be TABLE |

implemented using a modified version of the Viterbi algorithm,SNR (N dB) PErRFORMANCE 0FCOVQ AND COVQ-IL OPERATING OVER A
MARKOV CHANNEL WITH & = 10 AND M = 1; GENERALIZED GAUSSIAN

wherez; is the state at time instant The trellis ha®™ states SOURCE WITH SHAPE PARAMETER o = 1; R = RATE (BITS/SAMPLE);

with 2™ branches leaving and entering each state. For a branch & =S:(/ECTORCDéMENSION; € = CHANNEL BER; IN TH(E:INTERLEAVED
; ; in STEM, VQ IS DESIGNED FORMEMORYLESS CHANNELS;
IeaV|~ng stater;—; and entering state;, the path metric is OPTA = OPTIMSL PERFORMANCE THEORETICALLY ATTAINABLE

log[Q(zi ® yilwi—1 & yi_1)p(zi)]-

If V has memory, it is in general difficult to characterize R] k [System [e=0.000[e=0.005[e=0.01[e=0.05 [e=0.1
the memory ofX. However, in this case, we will make a z|1jCovVQ | 755 | 6.99 | 654 ) 4.53 ) 4.52
L . . . COVQ-IL| 755 | 6.95 | 645 | 4.01 | 2.51
simplifying assumption thatt’ forms a first-order discrete 5 TCoVQ 883 T 809 T 757 | 670 [ 5.6
Markov chairf with transition probability matrix COVQ-IL| 883 | 803 | 741 | 475 | 3.31
3 [COVQ 948 | 871 | 816 | 7.27 | 6.32
P(zi|zi—1) = Pr{X;, = ;| X;-1 = zi—1} 5) COVQIL| 948 | 850 | 7.80 | 5.13 | 3.59

oo |[OPTA 12.66 12.57 | 12.49 | 11.93 |11.37
3|1 |COVQ 12.64 10.50 | 9.45 8.27 | 717

x;,x;—1 € {0,1}". In this case, (4) is replaced by

SN i COVQIL| 12.64 | 1049 | 917 | 521 | 3.62
& = arg max {log[Q(y,|z1)p(z1)] 5[COVQ | 14.35 | 11.88 | 10.97 | 10.00 | 8.64

N COVQ-IL| 14.25 | 11.67 | 10.28 | 6.60 | 4.47

A o 3 [COVQ 1516 | 13.01 | 12.43 | 10.68 | 9.48

+ Zlog[Q(eZ|eZ—1)P(‘”Z|‘”1—1)]} (6) COVQIL| 1516 | 11.52 | 10.67 | 7.08 | 4.84

=2 oo |[OPTA 18.60 | 1854 | 18.42 | 17.59 | 16.74

and the path matrix from statg_; to statex; is log[Q(z; & 4]1|COVQ | 18.08 | 13.57 | 13.19 | 10.54 | 8.61
iy oL . COVQ-IL| 18.08 | 1276 | 11.03 | 6.82 | 4.79

Yi|lzi—1 B yi_1)P(z:i|zi-1)]. The transition probability matrix 5TCOVQ | 20.00 | 1538 | 15.09 | 12.27 | 10.68
P(x;|z;—1) is determined by measuring the relative frequency COVQ-IL| 20.09 | 14.41 | 12.92 | 8.33 | 5.71
of occurences of a long training sequence (640000 source oo |OPTA 2474 | 2451 | 24.35 | 23.24 | 22.10

samples). From here on, the above scheme will be referred
to as SQ-MAP. We note that the complexity and delay of
SQ-MAP is due mainly to the MAP detector. where
In some special circumstances, the output of the MAP 1 1)
detector will always be identical to its input. In such cases, we e, o) = o [[(3/)/T(1/e)] ;a>0

say that the MAP detector is useless. As an example, M]enis the exponential rate of decay amélis distribution variance
is i.i.d. andM = n = 1, it is shown in [17] that the MAP P y '

detector is useless if Note that fora = 2 the above is the Gaussian p.d.f. koe 1,
it is the Laplacian p.d.f. Any i.i.d. source with distribution

[1 et 6} {1 — p} > 1 7) given by (8) is referred to as a generalized Gaussian source.
€40 p Numerical results for COVQ over binary Markov channels
where with § = 10 andM = 1 and generalized Gaussian source with

shape parametex = 1 are presented in Table | (additional
results fore« = 0.5 and 2 can be found in [18]). Signal-
If (7) does not hold, then the sequence MAP detector wiip-noise ratio (SNR) performances are given in decibels for
be useful for sufficiently largeV [17]. Detailed analyses of rates R = 2,3 and 4 bits/sample and channel BER=
the sequence MAP detector are given in [17] for the case @f), 0.005, 0.01, 0.05 and 0.1. Also provided in Table |
M=n=1. is the optimal performance theoretically attainable (OPTA)
In this paper, we are mainly interested in cases whepdtained by evaluatind(RC'), whereD(-) is the distortion-
M = 1 andn> 1. In these cases, little is known about thé&ate function of the source for the squared-error distortion
usefulness of the MAP detector. However, an important factdreasure and’ is the channel capacity in bits per channel use.
contributing to the performance of the MAP detector is how The COVQ results were obtained from 500000 training
the binary codewords are assigned to the SQ quantizati@ftors. A vector-quantization codebook (optimized for the
levels. This issue will be discussed in the following sectionhoiseless channel) with codewords assigned by a simulated
annealing algorithm (described in [19]) is chosen as the initial

p=Pr{X =0} € (1/2,1].

IV. NUMERICAL RESULTS codebook for the COVQ witls = 0.005. The final codebook
for e = 0.005 is chosen as the initial codebook fer= 0.01,
A. Memoryless Sources and so on.
Simulation results for SQ—-MAP are given in Table Il. The

In this section, we will assume that the source is i.i.d. with.

o . simulations were run 100 times, witt = 1000 source
distribution given by . . .
(0.0) samples used in each run. The average distortion, averaged
_ e, o o over the 100 runs, is given in decibels. The SQ’s used in
v) = ————~<exp{—|[n(a, o)|v 8 ) ) ' ) )
1) 2l'(1/e) pi=tnleno)ll"} (®) the simulations wergymmetric_loyd—Max scalar quantizers.

3This assumption is not accurate in general; even in the case Whisra As mentloned earlier, _hOW the quantlzatlon. Ieve|§ are mapped
first-order Gauss—Markov source. to binary codewords is an important consideration. We have



672 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 6, JUNE 1997

TABLE 1l
RESIDUAL REDUNDANCY (IN BITS/SAMPLE) OF SYMMETRIC LLOYD-MAX SCALAR
QUANTIZER; GG = GENERALIZED GAUSSIAN SOURCE; v = SHAPE PARAMETER;
GM = GAuss-MARKOV SOURCE ¢ = CORRELATION COEFFICIENT; R =

RATE OF SCALAR QUANTIZER IN BITS/SAMPLE; p;; = REDUNDANCY

Due 70 NON-UNIFORM DISTRIBUTION; pj; = REDUNDANCY DUE TO

MEMORY; p7 = TOTAL REDUNDANCY. (pas FOR GM SOURCE IS
ESTIMATED FROM TRAINING DATA USING THE MARKOV CHAIN ASSUMPTION)

Source | R l 125 ] oM I pr=pn+ pu
T T T I I T — . 7
NBC 000 100 010 110001 101 011 111 GG (e=1) 3 gjg gg gig
FBC 011 001 010 000100 110 101 111 4 0.50 0.0 0.50
Fig. 3. NBC and FBC codeword assignments for an eight-level Lloyd—Max GM (¢=0.9) 2 0.09 0.77 0.86
scalar quantizer; generalized Gaussian source with shape parametet; 3 0.18 1.03 1.20
MSB is the rightmost bit. 4 0.23 1.14 1.38

TABLE 1l
SNR (N dB) PERFORMANCES OFMAP DETECTION SCHEMES FOR AMarkov @ Sub-optimal encoder and a MAP decoder that minimizes the

CHANNEL WITH & = 10 AND M = 1; GENERALIZED GAUSSIAN SOURCE WITH error probability buthotthe mean squared error. For fixed,
SHAPE PARAMETER o = 1; R = RATE (BITS/SAMPLE); ¢ = CHANNEL BER; IN .
SQ-IL-MAP, MAP DeTECTOR 1S DESIGNED FORMEMORYLESS CHANNELS the effect of the intra-block memory of the channel becomes
more dominant a% R increases. Therefore, for large blocks
of kR bits (kR > M), the COVQ system outperforms the

R[System  [e=0.000]e=0.005]c=0.01] =0.05] c=0.1
2[SQ-MAP 754 | 711 ] 680 | 492 [ 3.68

SQIL-MAP| 7.54 | 693 | 6.40 | 3.56 | 1.53 SQ-MAP system (e.g., fok = 1,R=4in Tables | and II).
SQ-IL 7.54 693 | 6.40 | 3.56 | 1.53 So far, we have only considered the case whdre- 1 and
3|SQ-MAP | 1264 | 10.78 | 9.75 | 6.01 | 3.98 6 = 10. In [18, Tables VIl and IX], we provide COVQ and
SQIL-MAP| 12.64 11036 ) 8.87 | 3.61 | 0.83 SQ-MAP results for source shape paramete= 0.5,6 =
SQ-I1, 1261 | 1036 | 887 | 3.61 | 0.83 )
4[SQ-MAP 18.13 12.90 | 10.86 | 5.73 | 3.43 10.0, rate R = 4 bltS/Sample and/ = 0,1,2,3,4. Note
SQ-IL-MAP| 18.13 | 12.14 | 9.71 | 3.711 | 1.11 that for almost all cases, the performances of both schemes
SQ-1L 18.13 § 12.14 | 971 | 3.15 | 0.09 increase ad/ increases. This is essentially due to the fact that

as the memonyM increases, both intra-block and inter-block

: . . r(riuemories increase; the MAP detector exploits this increase
examined two codeword assignments: the natural binary code . o

. In“combating channel errors. Similarly, the COVQ scheme

(NBC) and the folded binary code (FBC). An example of these _ . X L :

two codes is illustrated in Fig. 3. Note that the least si nificaﬁ%(ploIts the increase in intra-block memory as longasis

9. 3. g sufficiently larger tham/. Also in [18, Table X], we provide

bit (LSB) is the leftmost bit. Also, the FBC sign bit is the LSB.esuItS for parametersi = 0.5, M = 1, R — 4 bits/sample,

From our obseryations, FBC consistent'ly outperforms NB hdé =0,1,2,5,10. In general, the performances increase as
FBC was used in the SQ-MAP results in Table II. 8, and hence, channel capacity, incredses
Note that, wher/ = 1, Q(e;|e;—1) depends only oe; and ' ' '
Cn(i—1) (most significant bit (MSB) of;_;). Thus for fixed
y™¥, the path metric from state;_; to statex; depends only
onz; andz,(;_1y (MSB of z;_;.) Therefore, the MSB of the In this section, we consider a first-order Gauss—Markov
binary codeword plays an important role in the Viterbi searcGource which is described by the recursign= ¢V, + U,
Now note that, because of symmetry, the MSB of NBC ihere¢ € (—1,1) is called the correlation parameter of the
0 or 1 with equal probability. Hence, the MSB of NBC hadrocess andU/;} is an i.i.d. sequence of Gaussian random
zero redundancy. FBC, on the other hand, has the propet@fiables. Results for COVQ and SQ-MAP are given in
that the MSB is much more likely to be than 1. Hence, Tables IV and V, respectively, fop = 0.9. The SQ-MAP
the MSB of FBC has high redundancy. Therefore, it is easiegsults here are consistently better than the results for the
to determine whethee,,;_;y = 0 or 1 with FBC than with i.i.d. Gaussian source ([18]). This is expected since there is an
NBC. We believe that this is the reason for the superiori§dditional redundancy due to memory. The amounts of residual
of FBC over NBC in the SQ-MAP scheme. Also, note thdiedundancy of symmetric Lloyd—Max scalar quantizers are
the performance of the MAP detector tends to increase as fiséed in Table III.
amount of residual redundancy increases. The redundancies of
symmetric Lloyd—Max scalar quantizers are tabulated in Tatfe Channel Mismatch
lll. We next compare COVQ and SQ-MAP. Up to now, we have assumed that the channel parameters
The COVQ system is a (locally) optimal system that efec 6, M) are knowna priori. In this section, we consider
ficiently eXpIO_ItS the mtra-bloc!( me.mory' Both encodgr and 4There are, however, some instances where the SNR decreasesswhen
decoder of this system are optimal in the sense of minimizigg@es fromo to 1. For COVQ, this may be due to the poor choice of initial

the mean Squared error. However, this System does not mgq{@book ‘USEd in the design of the COVQ For SQ-MAP, we have observed
that the bit and symbol error probabilities of the sequence MAP detector

any use of the mter'blo‘:k memory' On the cher han.d' t @tually decreases @sincreases. However, this does not directly translate to
SQ-MAP system, which exploits both memories, consists af increase in SNR.

B. Gauss—Markov Sources
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TABLE IV TABLE V
SNR (N dB) PERFORMANCES OFCOVQ AND COVQ-IL OPERATING OVER A SNR (N dB) PERFORMANCES OFMAP DETECTION SCHEMES FOR A
MARKOV CHANNEL WITH 6 = 10 AND M = 1; GAUSS-MARKOV MARKOV CHANNEL WITH 6 = 10 AND M = 1; GAUSS-MARKOV
SOURCE WITH CORRELATION COEFFICIENT ¢ = 0.9; R = RATE SOURCE WITH CORRELATION COEFFICIENT ¢ = 0.9; R =
(BiTs/SaMPLE); k& = VECTOR DIMENSION; ¢ = CHANNEL BER; IN RATE (BITS/SAMPLE); ¢ = CHANNEL BER; IN SQ-IL-MAP,
THE INTERLEAVED SYSTEM, COVQ IS DESIGNED FORMEMORYLESS MAP DETECTOR IS DESIGNED FORMEMORYLESS CHANNELS

CHANNELS; OPTA = OPTIMAL PERFORMANCE THEORETICALLY ATTAINABLE

R|System €=0.005[e=0.01[e=0.05e=0.1

R| k [System [e=0.000]e=0.005]e=0.01]e=0.05]e=0.1 2 [SQ.MAP 913 | 897 | 7.47 [ 6.12
2|1 |COVQ 9.26 8.62 8.08 | 5.69 | 5.90 SQ-IL-MAP| 9.11 8.89 | 7.32 | 6.57
COVQ-IL| 9.26 8.49 7.85 | 4.84 | 3.03 SQ-1L 8.50 7.84 | 4.58 | 2.41
2 |COVQ 13.46 | 11.93 | 11.02 | 10.08 | 8.97 3 [SQ-MAP 14.42 | 14.10 | 11.30 | 9.59
COVQ-IL| 13.46 11.52 | 10.33 | 7.26 | 5.29 SQ-IL-MAP| 13.85 | 13.19 | 10.11 | 7.74
3 1CcovQ 14.94 | 13.07 { 13.14 | 11.28 }10.30 SQ-IL 11.99 | 10.36 | 4.94 | 2.19
COVQ-IL| 14.94 | 1254 | 11.69 | 8.49 | 6.30 4 [SQ-MAP 19.42 | 18.74 | 14.45 | 12.29
oo |OPTA 19.25 19.16 | 19.08 | 18.51 {17.95 SQ-IL-MAP| 17.71 16.35 | 11.33 | 8.41
3|1 1(C0OVQ 14.57 | 1240 | 11.20 | 9.78 | 8.56 SQ-IL 13.83 | 11.35 | 4.84 | 1.89
COVQ-IL| 14.57 12.00 {1047 | 5.61 | 4.64
2 |COVQ 18.95 15.68 | 15.70 | 12.29 |10.57
COVQ-IL| 1895 | 14.69 | 13.54 | 9.27 | 6.77 TABLE VI
3 1COVQ 20.57 | 17.74 | 16.62 | 14.47 |13.00 SQ-MAP GHANNEL MismATCH RESULTSINSNR (NdB); R = 4, M = 1;¢4 =
COVQ-IL| 20.57 | 16.05 | 14.91 | 10.71 | 8.07 DesiGN BER; €, = ACTUAL BER; 64 = DESIGN CORRELATION PARAMETER,;
oo |OPTA 2527 | 25.13 | 25.01 | 24.17 |23.32 b4 = ACTUAL CORRELATION PARAMETER; GAUSS-MARKOV SOURCE WITH
4]1[COVQ 20.13 15.80 | 14.50 | 11.84 [10.64 CORRELATION COEFFICIENT ¢ = 0.9. (a) MiIsMATCH BER (64 = 6, = 10).
COVQ-IL!| 20.13 14.05 | 1177 | 821 | 5.84 (b) MismATCH CORRELATION PARAMETER (€4 = €4 = 0.01)
2 {COVQ 24.74 | 19.42 | 18.69 | 15.50 |13.77 “ s = 0.000]¢g = 0.010] ¢y = 0.100
COVQ-IL| 24.74 | 17.71 | 16.23 | 11.29 | 8.30 <. = 0.000] 2026 2092 19.60
oo |OPTA 31.29 | 31.11 | 30.94 | 29.83 |28.69 . = 0.010 11.89 1874 18.51
€, = 0.100 2.24 11.31 12.29

@
the case of channel mismatch, i.e., these parameters are not

known perfectly. Channel mismatch results for COVQ are [ 8=0 T &4=5 [ &=10

presented in [19] for BSE.Here, we investigate the chan- gu fg ijg; }g-gi 12-32
nel mismatch situation for SQ-MAP and the binary Markov =10 1333 1850 18"7*4
channel. In Table Vi(a), we present the SNR results when o

there is mismatch in the channel BERor the Gauss—Markov
source with¢ = 0.9,R = 4, M = 1,6 = 10. Also, in

Table Vi(b), we provide SNR results for mismatch in th%etter off designing our system “optimally” for this channel. In

correlation paramete¥ with fixed BER ¢ = 0.010. It can be . . o
. L the following, we examine how much the quantization system
clearly seen that SQ-MAP is not very sensitive to channe . .

) ) . . . can be improved with knowledge of the channel memory
mismatch ine or in 6 (provided that we do not design

e or 6 to be zero when the actual parameter is nonzero paracteristics.
Finally, we can conclude from the results that it is bett The first interleaving scheme, COVQ-IL, consists of a

. . COVQ optimized for a BSC and an interleaver. It is assumed
to overestimate the true parameters than to underestlm%tgt the interleaving lenath is sufficiently la that th
them. I aving ieng y farge so that the
combination of interleaver, Markov channel and de-interleaver
is equivalent to a BSC. The SNR performances of this scheme
are given in Tables | and IV. COVQ-IL is compared against
The traditional technique for handling a channel with men€OVQ (optimized for the Markov channel). Observe that in
ory is to use interleaving. In the following, we consider twoalmost all cases COVQ outperforms COVQ-IL. When COVQ
channel interleaving schemes and compare their performanbeats COVQ-IL, the largest gain is 5.47 dB which occurs in
against COVQ and SQ-MAP. The reasoning for making sudtable IV for R = 4 bits/samplef = 2 ande = 0.1. In general,
comparisons is the following. Suppose we are given a chandels-dB gain is possible for large values ofind high noise
with memory. Suppose further that we know exactly howorrelation(§ = 10). The gain of COVQ over COVQ-IL is
the channel memory is characterized (say, by the Markaue to the fact that COVQ exploits the noise memory whereas
condition). Then how much improvement in our system do&OVQ-IL does not.
this knowledge provide us? If we know nothing about the The second interleaving scheme, SQ-IL-MAP, consists of
channel memory, the best approach is to use interleaviagsymmetric SQ designed by the Lloyd—Max formulation, an
to render the channel memoryless and then design a sysiaterleaver/de-interleaver combination and a sequence MAP
for the memoryless channel. On the other hand, if we knastetector. The SQ binary codewords are assigned by FBC. The
exactly how the channel is characterized, then we may hegument here is that FBC is a good codeword assignment for
SWe expect a similar behavior regarding channel BERmismatch results BSC [20] and the purpose of the interleaver/de-interleaver is
for COVQ over the binary Markov channel. to convert the Markov channel into a BSC. The MAP detector

V. COMPARISONS WITH INTERLEAVING
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. . —865, Nov. .
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most of the cases. The largest gain is 3.88 dB which occurs structured and multi-stage vector quantization for noisy chann&gg

; — — ; i Trans. Inform. Theoryvol. 39, pp. 835-850, May 1993.
in Table V f.or R. 4 and e 0.1 (gal_ns as hlgh_ as 6.2 F. Alajaji, N. Phamdo, and T. Fuja, “Channel codes that exploit the
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! 1993.

in the interleaving scheme for small values ©fSince the (8] F. Alajaji and T. Fuja, “A communication channel modeled on con-
interleaver renders the channel memoryless and the source is tagion,” IEEE Trans. Inform. Theoryvol. 40, pp. 2035-2041, Nov.

: 1994,
also memoryless, the sequence MAP detector is aCtua”y [Q] L. Kanal and A. Sastry, “Models for channels with memory and their

memoryless MAP detector. That is, each observalignis applications to error control,Proc. IEEE vol. 66, pp. 724—744, July
decoded independently of every other observation. For such a 1978.
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