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An Error Resilient Scheme for Image
Transmission over Noisy Channels with Memory

Philippe Burlina and Fady Alajaji

Abstract—This correspondence addresses the use of a joint source-
channel coding strategy for enhancing the error resilience of images
transmitted over a binary channel with additive Markov noise. In this
scheme, inherent or residual (after source coding) image redundancy
is exploited at the receiver via amaximum a posteriori(MAP) channel
detector. This detector, which is optimal in terms of minimizing the
probability of error, also exploits the larger capacity of the channel
with memory as opposed to the interleaved (memoryless) channel. We
first consider MAP channel decoding of uncompressed two-tone and bit-
plane encoded grey-level images. Next, we propose a scheme relying on
unequal error protection and MAP detection for transmitting grey-level
images compressed using discrete cosine transform (DCT), zonal coding,
and quantization. Experimental results demonstrate that for various
overall (source and channel) operational rates, significant performance
improvements can be achieved over interleaved systems that do not
incorporate image redundancy.

Index Terms—Channels with memory, DCT coding, error resilience,
joint source/channel coding, MAP decoding, unequal error protection.

I. INTRODUCTION

We address the problem of the reliable communication of images
over bursty channels. Traditional approaches to the design of visual
communication systems over noisy channels rely on Shannon’s
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source-channel coding separation principle [9], resulting in what is
known astandem source-channel coding schemes.The optimality
of this design principle holds only asymptotically; i.e., when no
constraints exist on coding/decoding complexity and delay [9]. An
alternate approach lies in joint source-channel coding (JSSC): this
strategy includes techniques such asmaximum a posteriori(MAP)
detection, channel optimized vector quantization, or adaptive source-
channel rate allocation. JSSC has recently received increased attention
(e.g., [5], [7], [11]), and has been shown to outperform tandem
schemes when delay and complexity are constrained. Most of the
work on joint source-channel coding of images [5], [7], [11] has
dealt with memoryless channels, disregarding the fact that real-world
communication channels—in particular, mobile radio or satellite
channels—often have memory.

In this work, we investigate the problem of MAP detection of
images transmitted over a binary Markov channel. The MAP detector
fully exploits the statistical image characteristics in order to efficiently
combat channel noise. It also exploits the larger capacity of the
channel with memory as opposed to the interleaved (memoryless)
channel. We first describe MAP detection schemes that directly utilize
the inherent image redundancy in uncompressed binary images and
bit-plane encoded grey-level images. The amount of needed overhead
information and the performance degradation when the decoder has
imperfect knowledge of the channel parameters are considered.

The MAP detection approach is then validated for systems employ-
ing image compression. The residual redundancy of quantized low-
frequency discrete cosine transform (DCT) coefficients is exploited
via unequal error protection (UEP) and MAP decoding. Experimental
results show that the proposed schemes exhibit very good perfor-
mance, in spite of their low complexity (which primarily resides
in the MAP decoder). Specifically, significant gains over systems
not exploiting image redundancy can be achieved, at relatively low
overall transmission rates.

II. CHANNEL MODEL

Consider a binary channel with memory described byYi = Xi�Zi,
for i = 1; 2; � � � whereXi; Zi and Yi represent, respectively, the
input, noise and output of the channel. The input and noise sequences
are assumed to be independent from each other. The noise process
fZig is a stationary ergodic Markov process described in [2], with
channel bit error rate (BER) denoted by�, where � 2 [0; 1=2),
and correlation parameter denoted by� � 0 (the noise correlation
coefficient is given by �

1+�
). When� = 0, the channel reduces to the

memoryless binary symmetric channel (BSC). The channel transition
and marginal probabilitiesQ(zn j zn�1) PrfZn = zn j Zn�1 =

zn�1g andQ(zn) PrfZn = zng, are given by

Q(0 j 0) Q(1 j 0)

Q(0 j 1) Q(1 j 1)
=

1

1 + �

1� �+ � �

1� � �+ �

andQ(1) = � = 1�Q(0). Note that this Markov model isgeneral;
it can represent any irreducible first-order two-state Markov chain.
The channel capacity is given [2] by

C = 1�H(Z2 j Z1) = 1� (1� �)hb
�

1 + �
� �hb

1� �

1 + �

wherehb(�) is the binary entropy function. The capacity is monoton-
ically increasing with� (for fixed �) and monotonically decreasing
with � (for fixed �). Note that for fixed�, as� ! 1; C ! 1:
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Fig. 1. MAP detection of two-tone Lena over the Markov channel with� = 0:1. (a) Binary Lena. (b) Lena received,� = 0: (c) MAP detected using
second-order model. (d) Received uncoded Lena,� = 10: (e) Decoded Lena: adaptive scheme.

III. U NCOMPRESSEDIMAGES

A. Image Models, MAP Detection, and Image Redundancy

Consider a two-tone imageU = [Ui;j ] of heightJ and widthK,
whereUi;j = 0 or 1; i = 1; � � � ; J; j = 1; � � � ; K. We assume that
the image satisfies a causal second-order Markov property such that
any pixel at location(i; j) depends on the pixels at locations(i�1; j)

and(i; j � 1). When the image is explored lexicographically, it can
be represented as a second-order Markov process1 fXng where

PrfXn = xn j Xn�1 = xn�1; � � � ; X1 = x1g

= PrfXn = xn j Xn�1 = xn�1;Xn�K = xn�Kg

for n > K. Note that this model is completely specified by four
transitional distributions. We also consider the following special cases
of fXng: the first-order Markov chain and nonuniform independent
and identically distributed (i.i.d.) models [4].

Consider the problem of transmitting the binary second-order
Markov sourcefXng over the Markov channel. The optimal detec-
tion technique that minimizes the sequence probability of decoding
error is the sequence MAP method [3]. More specifically, ifY n

=

yn = (y1; y2; � � � ; yn) denotes the received binary sequence at the
output of the channel, the MAP detector “guesses” the transmitted

1General Markov random field (MRF) models [8] are not used here, since
MAP estimation for these models would require computationally intensive
algorithms such as simulated annealing. We therefore restrict ourselves to
causal models that are easily implemented via sequential decoding algorithms.

sequencêxn according to

x̂
n
= arg max

x 2f0;1g
PrfXn

= x
n j Y n

= y
ng: (1)

It can be shown [4] that (1) is equivalent to

x̂
n
= arg max

x 2f0;1g
log(Q(x1 � y1)P (x1))

+

K

k=2

log(Q(yk � xk j yk�1 � xk�1)P (xk j xk�1))

+

n

k=K+1

log(Q(yk � xk j yk�1 � xk�1)

�P (xk j xx�1; xk�K)) : (2)

The sequence MAP detector described in (2) can be implemented
using the Viterbi algorithm. Here,xk denotes the state at timek;
the trellis will hence have two states, with two branches leaving and
entering each state. For a branch leaving statexk�1 at time k � 1

and entering statexk at timek, the path metric is

�log(Q(yk � xk j yk�1 � xk�1)P (xk j xx�1)); for k � K;

and

�log(Q(yk � xk j yk�1 � xk�1)P (xk j xx�1; xk�K));

for k > K:

The surviving path for each state is the path with the smallest cumu-
lative metric up to that state. The sequence MAP decoder observes
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the entire received sequenceyn in order to estimatex1; x2; � � � ; xn.
In this scheme, channel protection is achieved by utilizing the

natural source redundancy as well as the channel noise correlation.
The total redundancy contained in the sourcefXng is �T =

1 � H
1
(X), whereH

1
(X) is the source entropy rate. This total

redundancy can be written as�T = �D + �M [3], where �D
1�H(X1) denotes the redundancy due to the nonuniformity of the
marginal distribution (PrfX1 = xg), and�M H(X1)�H

1
(X),

denotes the redundancy due to the memory of the process. The type
and amount of redundancy exhibited by an image is important since it
dictates the behavior of the MAP detector. If�M � �D, the process
tends to behave like a symmetric Markov source. This results in
a mismatch situation (cf. [3, Section V]) that prevents the decoder
from fully exploiting the channel noise correlation (when the channel
capacity increases, the performance of the MAP detector deteriorates.)
If the redundancy due to the nonuniformity of a process is high
relative to its redundancy in the form of memory(�D � �M ),
then the process behaves like a nonuniform i.i.d. source and no
such mismatch occurs [3, Sec. IV]. Images and facsimile documents
exhibit very different types and degrees of redundancy.2 Furthermore,
redundancy varies within images themselves since images are hardly
stationary sources. This observation suggests the use of an adaptive
scheme, as will be proposed next.

B. Two-Tone Image Detection

We start by modeling the two-tone images according to the second-
order causal Markov chain. Image lines are each represented as a
Markov chain with transitional probabilities computed empirically,
and transmitted uncompressed in a lexicographic fashion over the
Markov channel. At the receiver, the sequence MAP decoder is
implemented according to (2). While the 2-D Markov model is
appealing, since it closely captures the spatial dependency specific to
image sources, simulation results suggest that the use of this model
often results in a mismatch between the source and the channel
[4]. This leads us to conclude that when images are modeled by
a second-order Markov chain and sent over the binary Markov
channel, the best performance is obtained when� = 0; i.e., when
the channel is fully interleaved and transformed into a memoryless
channel (BSC). Fig. 1(a)–(c) show the binary Lena image transmitted
over the interleaved channel with BER� = 0:1. The resulting average
decoding bit error probability is 0.039.

We next consider MAP decoding when the image is modeled as
a first-order Markov chain. Since images are nonstationary, image
lines can be classified in two ways: (a) Lines for which neither�M

nor �D are dominant, in which case no mismatch occurs. (b) Lines
having�M � �D, which are likely to result in mismatch. We hence
employ an adaptive encoding system on the image lines that takes
into consideration the line redundancy. Each image line, modeled as
a first-order Markov chain, is processed as follows: The empirical
distributions for the line are computed. If�M < T � �D, for some
thresholdT , we transmit the image line over the channel and MAP
decode it using the line statistics and first-order Markov assumptions.
Otherwise, if�M � T � �D , we first convert the redundancy in
the symmetric Markov sourcefXng from the form of memory
into redundancy in the form of nonuniform distribution via the
transformation, as follows [4]:3

Vn = Xn �Xn�1; n = 1; 2; � � � ; K.
We then transmitV K directly over the Markov channel, and MAP
decode it asV̂ K using i.i.d. source assumptions. The decoded
binary image stream is reconstructed usinĝXk = V̂k � X̂k�1;

2Computational studies that quantify natural redundancy inherent in two-
tone images are reported in [4]

3This is essentially equivalent to differential encoding for binary sources.

TABLE I
PERCENTAGE OFOVERHEAD FOR BINARY LENA. K = 512; R = 2.

TABLE II
BINARY LENA: ROBUSTNESSRESULTS FORADAPTIVE MAP DECODING SCHEME

IN PSNR (dB);T = 10; �d = DESIGN BER; �a = ACTUAL BER;
�d = DESIGN CORRELATION PARAMETER; �a = ACTUAL CORRELATION

PARAMETER. (a) ROBUSTNESS WITHBER (�d = �a = 10).
(b) ROBUSTNESS WITHCORRELATION PARAMETER (�d = �a = 0:1)

(a)

(b)

k = 1; 2; � � � ; K with X̂1 = V̂1. To prevent error propagation,
packetization is used by grouping source samples into blocks. An
example of adaptive MAP decoding(T = 10) of Lena over a very
noisy channel with high noise correlation(� = 0:1 and � = 10)

is shown in Fig. 1(d) (received as if it were not protected) and (e)
(MAP decoded). A 4.68 dB peak signal-to-noise ratio (PSNR) gain is
achieved by the adaptive MAP decoder over the case when no MAP
decoding is done. Detailed performance evaluation of this scheme for
various images is reported in [4].

C. Overhead Information

As in all joint source-channel coding schemes, it is assumed that
the image statistics are available at the decoder. This can be achieved
by transmitting them along with the image using a forward error-
correcting code.4 We assume that a rate1=R convolutional encoder
is used to protect the source statistics. If the channel is very noisy,
we might need to use a more powerful convolutional code. This
can be achieved by increasing the number of states of the code or
increasingR. If l denotes the number of accuracy digits for each
source parameter, then the percentage of overhead information is
equal to

% Overhead=
mRdlog

2
(10l � 1)e

K

whereK is the image width andm is the number of source statistics
per line (m = 4 for the second-order Markov model,m = 2 for
the first-order model, andm = 1 for iid model). The amount of
overhead needed for the Lena two-tone image is presented in Table I
for R = 2 and l = 1; 2.

4Note that we can avoid transmitting overhead information about the source
statistics by using training images to estimate the statistics of the source.
This approach is justifiable in applications where the images belong to a
particular class—e.g., in the transmission of medical magnetic resonance
images (MRI’s).
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(a) (b)

(c)

Fig. 2. Transmission of grey Lena using MAP detection of bit-plane encoded images;� = 0:1; � = 10. (a) Original Lena. (b) Received uncoded;
PSNR = 14.45 dB. (c) Decoded Lena; PSNR= 19.53 dB.

D. Robustness Under Imperfectly Known Channel Statistics

Until now we have assumed that the channel statistics(� and
�) were knowna priori at the receiver. We investigate here the
robustness of the MAP decoding system when these parameters are
not known perfectly. This may occur due to inadequate estimation of
the channel parameters, particularly when the channel is time-varying
(e.g., mobile radio channels). Simulation results using the adaptive
MAP decoding scheme for the transmission of Lena are displayed in
Table II. In Table II(a), we present PSNR results when the receiver
misestimates the BER� with the correlation parameter� = 10. In
Table II(b), we provide PSNR results when the receiver misestimates
the correlation parameter� with the channel BER� = 0:1. We can
conclude that the MAP scheme isnot very sensitive to errors in
estimating� or �, provided that we do not design� or � to be zero
when the actual parameter is nonzero.

E. Bit-Plane Encoded Grey-Level Images

For illustrative purposes, we herein consider the application of
the MAP decoding method to bit-plane encoded images. In bit-plane
coding, each plane is traditionally compressed using binary image
coding techniques [6]. This method is very sensitive to channel errors
and typically yields low compression ratios leaving little room for

TABLE III
MAP-UNC VERSUSUNC: AVERAGE PSNR (IN dB) OF DECODED LENA OVER

MARKOV CHANNEL WITH BER� AND CORRELATION PARAMETER �. RESULTS

AVERAGED OVER 30 EXPERIMENTS. R IS THE OVERALL RATE IN B/PIXEL



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 4, APRIL 1998 597

TABLE IV
MAP-UEP I VERSUSML-IL-UEP I: A VERAGE PSNR (IN dB) OF DECODED

LENA OVER MARKOV CHANNEL WITH BER� AND CORRELATION PARAMETER �.
RESULTSAVERAGED OVER30 EXPERIMENTS.R IS THEOVERALL RATE IN B/PIXEL

protection against channel noise. Consider instead the problem of
directly sending the uncompressed bit-planes modeled as Markov
sources over the Markov channel. As in the case of two-tone images,
we use an adaptive MAP detection scheme taking into account the
source and the channel statistics applied on each bit-plane image
explored in a lexicographic fashion. Experimental results are shown
in Fig. 2 for the Lena grey-level image. Significant improvements
over the received images are achieved. For� = 10 and � = 0:1,
gains in excess of 5 dB are achieved.

IV. COMPRESSEDIMAGES

MAP decoding of uncompressed images relies on the significant
intrinsic source redundancy to help combat channel noise. Since
source coding schemes are not ideal, they always leave some residual
redundancy in their output bitstream that can similarly be exploited
at the receiver. A challenging issue lies in the use of the limited
redundancy residing in compressed images for channel protection.

A. Image Compression Scheme

Standard visual compression methods such as Joint Photographers
Expert Group (JPEG) and Motion Pictures Expert Group (MPEG)
are fragile to channel errors. Errors corrupting the compressed data
contribute unequally to the final distortion of the reconstructed image
or video stream. This observation justifies the use of unequal error
protection. We propose to improve the error resilience of compressed
images by designing several schemes that combine UEP and MAP
detection. Our objective is to characterize the effectiveness of these
methods for various levels of image compression.

Consider the case of JPEG encoded images, or that of MPEG1/2
or H.261/3 encoding of intraframes. These schemes incorporate
DCT coding, quantization and entropy coding. Clearly, the most
fragile module lies in the variable-length coding (either Huffman
or arithmetic), for which the occurrence of an error produces cat-
astrophic error propagation and total loss of the packet until the next

TABLE V
MAP-UEP II VERSUS ML-IL-UEP II: A VERAGE PSNR (IN dB) OF DECODED

LENA OVER MARKOV CHANNEL WITH BER� AND CORRELATION PARAMETER �.
RESULTSAVERAGED OVER30 EXPERIMENTS. R IS THEOVERALL RATE IN B/PIXEL

synchronization occurs. Error resilience in this case consist in the
reliable reception of synchronization messages or the packetization
of VL codes.5

Since the synchronization issue is outside the scope of this work,
we consider instead a compression scheme similar in spirit to the
above cited standards with the exclusion of entropy coding. More
specifically, our image compression scheme is as follows: The image
is first subdivided into 8� 8 blocks, and for each of these blocks the
DCT is computed. The resulting 64 DCT coefficients are uniformly
quantized using one of the quantization matrices proposed in [10]
derived from psychovisual thresholds. The coefficients are then
ordered in a zig-zag fashion. While the basic JPEG scheme would
Huffman encode the resulting stream on the basis of the coefficients’
amplitude and leading run-lengths of zeros, we proceed with zonal
coding and conversion to a binary bitstream. For zonal coding, we
use the first 15 zig-zag scanned coefficients. The retained quantized
coefficients are then converted to binary using a folded binary code
(FBC) representation. The bit rates used for converting each quantized
coefficient are those proposed for zonal coding in [10].

B. Channel Coding Schemes

Error resilience is provided by combining UEP and MAP
detection. Because of the high-energy compaction property of
the DCT for highly correlated sources [6], most of the signal
information is concentrated in the lower spatial frequencies. The DC
coefficient is the most important DCT coefficient since it measures
the average value of each block. An error in the DC coefficient
typically results in blocking artifacts. These artifacts are often
resolved through additional channel protection or postprocessing
techniques that employ edge-preserving smoothing operators on
the decoded image. However, traditional channel protection or
error-concealment operations disregard the source characteristics.
We propose instead to use MAP detection of channel encoded DC

5This issue is given much attention in current standardization efforts of
MPEG4.
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(a) (b)

(c) (d)

Fig. 3. Transmission of grey Lena usingS1 ordering method over Markov channel with� = 0:05; � = 20. (a) UNC; PSNR= 15.30 dB,R = 1.19 b/pixel. (b)
MAP-UNC; PSNR= 17.75 dB,R = 1.19 b/pixel. (c) ML-UEP-IL; PSNR= 19.72 dB,R = 1.31 b/pixel. (d) MAP-UEP; PSNR= 22.90 dB,R = 1.31 b/pixel.

coefficients. For enhanced protection, additional low frequency
DCT coefficients are included in this UEP scheme. This choice
results in slightly higher complexity and increased overall (source
+ channel) coding rates. The following schemes are considered.

1) MAP-UNC: In this case, no channel coding is performed.
For each block, the FBC bitstream is modeled as an i.i.d.
nonuniform source, sent over the Markov channel and decoded
via a MAP detector. The channel memory and the residual
redundancy due to the nonuniform distribution of the FBC data
are utilized by the MAP detector to combat channel noise. The
performance of this scheme is compared to that obtained using
an uncoded system of equal overall rate, and referred to as
UNC.

2) MAP-UEP-I: Here, we use UEP by providing additional pro-
tection to all image DC coefficients: they are channel encoded
via low complexity four-state, rate-1/2 convolutional encoder.
The convolutionally coded DC bitstream is modeled as an iid
source, sent over the interleaved Markov channel, and MAP
decoded. This is achieved by interleaving the DC bitstream
among the data of the AC coefficients. Interleaving is per-
formed for the DC coefficients since the convolutional code
introduces memory in the bitstream; hence, a bursty channel
noise behavior can cause an error propagation in the decoder.

As for the AC coefficients, they are sent without interleaving
over the Markov channel and MAP detected.

3) MAP-UEP-II: In this scheme, the firstN (N > 1) low order
zig-zag scanned DCT coefficients are selected for UEP. UEP
is provided as inMAP-UEP-Iby using MAP channel detection
of the convolutionally encoded coefficients.

The two latter schemes, MAP-UEP-I and MAP-UEP-II are com-
pared to systems with identical overall rate and similar complexity
denoted by ML-UEP-IL-I and -II: These schemes represent traditional
tandem source-channel coding schemes with the same UEP technique
as MAP-UEP-I and MAP-UEP-II but using maximum likelihood
(ML) decoding over the interleaved Markov channel (with� = 0).

We use two different binary bitstream ordering methods for trans-
mitting the FBC data over the binary channel. In the first method
(denoted byS1), the bitstream is simply formed by sequentially
sending the data block by block: Each block is scanned lexico-
graphically, and each DCT coefficient within that block is converted
to its FBC representation. The second stream method (denoted by
S2) is designed to exploit the interblock redundancy. While DCT
coefficients should be uncorrelated,6 coefficients across neighboring
blocks do exhibit significant dependency (and hence redundancy).

6They are uncorrelated for ideal sources generated by first order Markov
processes.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Transmission of grey Lena usingS2 ordering method over Markov channel with� = 0:05 and � = 10. (a) UNC; PSNR= 15.54 dB,R = 1.19
b/pixel. (b) MAP-UNC; PSNR= 19.01 dB,R = 1.19 b/pixel. (c) ML-IL-UEP I; PSNR= 19.47 dB,R = 1.31 b/pixel. (d) MAP-UEP I; PSNR= 24.76 dB,
R = 1.31 b/pixel. (e) ML-IL-UEP II; PSNR= 21.55 dB,R = 1.53 b/pixel. (f) MAP-UEP II; PSNR= 25.68 dB,R = 1.53 b/pixel.

This is traditionally exploited in JPEG by using differential pulse
code modulation (DPCM) coding of the DC coefficients across
blocks. This redundancy is herein exploited in theS2 method: the
bitstream is obtained by taking the bitstreamS1 and grouping the bits
corresponding to the same DCT coefficient and the same bit position
in the coefficient’s FBC representation, and by zig-zag scanning the

blocks in the image. Note that this representation is amenable to
progressive and scalable decoding of the image whereby the DCT
coefficients for the full image are transmitted and decoded in order
of increasing spatial frequency.

The value of the source compression ratio and the amount of
image residual redundancy directly constrain the performance of
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the MAP detector. Source coding rate control should be carried
out by modifying the original quantization matrix and accordingly
determining the optimal bit rate allocation for each coefficient. We
use instead a suboptimal scheme to achieve higher compression
rates: Varying rates are obtained by modifying the size of the
zonal mask and discarding additional high-frequency DCT coef-
ficients. If 15 coefficients are kept, and the bit allocation set to
(8; 7; 7; 6; 6; 6; 4; 5; 5; 4; 3; 4; 4; 4; 3), a total of 76 b are used per
block, yielding a rate of 1.19 b/pixel. When only six (respectively,
three) coefficients are kept, the source coding rate decreases to 0.62
(respectively, 0.34) b/pixel.

The average PSNR obtained for the transmission of Lena using
schemes 1, 2, and 3 is reported in Tables III, IV, and V. Note
that in each case, schemes of comparable rates and complexity are
compared to each other7. We look at the performance for various
values of the channel correlation�; BER�, and overall operational
rate R (in b/pixel). In each table, three different overall rates are
used: they correspond to three different source coding rate allocations,
representing zonal masks of size respectively equal to 15, 6, and 3.
These tables are obtained by using the bit ordering methodS2. Lastly,
for MAP-UEP-II, N = 3 is selected. In general, we can clearly
observe from the results that the MAP-� schemes offer superior
performance, particularly when the channel is quite noisy (high�) and
strongly correlated (high�). The best overall performance is obtained
by the MAP-UEP schemes. Significant performance improvements
are obtained by introducing even limited UEP, especially at low
BER, at the cost of often only moderate increases in overall rate
(compare MAP-UNC at(�; �; R) = (�; 0:01; 1:19) to MAP-UEP-I at
(�; �; R) = (�; 0:01; 1:31)). It may be observed from these tables that
MAP methods are able to exploit higher channel correlation. This is
less pronounced in cases when UEP is used. Since MAP methods
almost consistently yield a performance superior to that obtained by
their ML counterpart for situations of interleaved channels(� =
0), clearly the use of prior distribution translates into appreciable
performance gain. It is apparent also from Table III that for *-UNC
schemes, lower source coding rates translate in lower improvement
margins between the MAP method and the UNC method. However,
even at 0.35 b/pixel overall transmission rate, for� = 0, the MAP
method is still able to provide appreciable (over 2 dB) PSNR coding
gain over the UNC method. The same coding gain is observed for
schemes using UEP.

Similar subjective performance improvements can be observed in
Figs. 3 and 4. The bit orderingS1 was used in Fig. 3, whileS2
was used in Fig. 4. Blocking artifacts resulting from the loss of low
DCT coefficients are easily canceled using UEP. Also notable is the
fact that whileS2 bit ordering provides more redundancy (due to
the interblock DCT correlation) to be exploited by the receiver, any
burst of error arising on one of the DC coefficient MSB’s results in a
diagonal streak in the image. This is not the case for images using bit
orderingS1. But again, these streaks are easily canceled using UEP.

V. CONCLUSION

We investigate the problem of reliably transmitting images over
binary bursty channels. Several schemes exploiting the redundancy
of uncompressed and compressed image sources are employed.
Experimental results indicate that substantial objective as well as
subjective performance improvements can be achieved over uncoded
systems and systems that employ interleaving and do not take into
consideration the image characteristics. In particular, we demonstrate

7The channel raterc
UNC

resulting from the received uncoded scheme UNC
is equal to the channel raterc

MAP-UNC for the MAP-UNC scheme. Similarly,
r
c

MAP-UEP-I = r
c

ML-UEP-IL-I and r
c

MAP-UEP-II = r
c

ML-UEP-IL-II. The
source coding rates are also identical.

that low-complexity error resilient systems that use limited channel
protection resources and no entropy coding can be designed if the
inherent redundancy of the (uncompressed or compressed) image is
exploited at the decoder, and this can be achieved even at moderate
overall transmission rates. The compressed system utilized here is
generic and incorporates some of the features of standard image
coding schemes such as JPEG. It is expected that similar results
would extend for the case of subband-coded images.

Future work will address the use of soft decision information
in conjunction with trellis coded modulation (TCM) for the MAP
channel decoding of compressed images over noisy channels.8
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