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Abstract—We propose a segmentation method based on Polya’s
urn model for contagious phenomena. A preliminary segmen-
tation yields the initial composition of an urn representing the
pixel. The resulting urns are then subjected to a modified urn
sampling scheme mimicking the development of an infection to
yield a segmentation of the image into homogeneous regions.
This process is implemented using contagion urn processes and
generalizes Polya’s scheme by allowing spatial interactions. The
composition of the urns is iteratively updated by assuming a spa-
tial Markovian relationship between neighboring pixel labels. The
asymptotic behavior of this process is examined and comparisons
with simulated annealing and relaxation labeling are presented.
Examples of the application of this scheme to the segmentation of
synthetic texture images, ultra-wideband synthetic aperture radar
(UWB SAR) images and magnetic resonance images (MRI) are
provided.

Index Terms—Genetic algorithms, relaxation labeling, segmen-
tation, urn models.

I. INTRODUCTION

I MAGE segmentation is a fundamental problem in computer
vision which has been extensively studied. With the advent

of new image modalities such as synthetic aperture radar
(SAR) and magnetic resonance imaging (MRI), research into
methods of segmentation has attracted renewed interest.

We describe a segmentation method using contagion
urn schemes that rely on modified versions of the
Polya–Eggenberger sampling process [15]–[17]. This
biologically inspired sampling procedure was originally
designed to model the development of contagious phenomena.
Examples of applications of the Polya urn scheme include
modeling population growth [3], constructing splines
in function approximation theory [8], and modeling
communication channels [1]. In this work, the ability of
the Polya urn scheme to generate Markovian processes is
exploited to aid in the task of image segmentation.

For our segmentation purposes, we model an image as
being composed of distinct, contiguous regions, each of which
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is described by constant or homogeneous attributes such as
intensity or texture. An image of the scene is an imperfect
description of the scene. The imperfection may be due to noise,
which may be additive or multiplicative, or to blurring. In
other words, an image is a corrupted version of an underlying
piecewise smooth scene [14]. A natural approach to delineating
the regions in an image is to statistically estimate the attributes
of the regions and use the descriptions to differentiate between
the regions.

Many such approaches to segmentation have been studied.
Some of the classical methods include unsupervised segmenta-
tion approaches such as the nearest mean classification (NMC)
and the branch-and-bound procedure [6]. Supervised methods
generally proceed by formulating statistical model assumptions
for the region generation and the image formation processes.
Maximum likelihood (ML) or maximuma posteriori (MAP)
estimation is then used for segmentation. Examples of such
approaches abound in the literature [7], [12], [20]. Techniques
that model images as Markov random fields (MRF’s) have
been extensively investigated [7]. MRF’s attempt to represent
spatial dependencies, and the MRF-Gibbs distribution equiva-
lence allows for the computation of the maximuma posteriori
(MAP) estimate of the original image [7], [20].

Among the newer techniques for segmentation is the graph
matching and graph partitioning algorithm of Shi and Malik
[22]. For texture segmentation, the wavelet-based classification
methods of Unser [23] and Boviket al. [4] have been shown to
be successful. Recently, Rangarajan [19] unified deterministic
annealing and relaxation labeling approaches to derive a new
technique, called self-annealing, for matching and labeling
problems.

For the corrupted, piecewise smooth image model, segmen-
tation techniques that incorporate contextual information will
usually be able to label the pixels more accurately than those
that classify pixels independently. MRF’s provide a direct
mechanism for relating neighboring pixels. If segmentation of
the image into homogeneous regions is desired, it is intuitively
appealing to model the pixel labels as an MRF, since the MRF
relates the label of a pixel to the labels of its neighboring
pixels [12]. The Gibbs–MRF equivalence can then be exploited
by techniques such as simulated annealing (SA) or other
stochastic relaxation methods to derive the MAP estimate [7].
Unfortunately, techniques such as SA have high computational
costs. Indeed, theoretical convergence to the MAP estimate is
possible only when impractically slow annealing schedules are
followed. Instead, we propose to replace the annealing step by
an urn contagion process to model the spatial dependencies
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between neighboring pixels. Our motivation for employing an
urn scheme lies in its ability to generate MRF’s.

Algorithms such as relaxation labeling (RL) also make use
of contextual information in the form of constraints on or
supports for pixel labels. The presence of a label in a pixel’s
neighborhood imposes constraints on the possible labels of
the pixel. RL is a parallel process in which these constraints
reduce, and hopefully eliminate, ambiguity in the label of a
pixel.

A “discrete” RL algorithm attempts to find a possibly
unambiguous label for each pixel. For real images, a more
appropriate strategy is to use the classical “probabilistic” RL
algorithm introduced by Rosenfeldet al. [21]. In this method,
probabilities are assigned to pixel labels. These probabili-
ties are updated according to positive and negative supports
provided by pixels in local regions. The nonlinear update
mechanism provided in [21] is based on the above heuris-
tic. The algorithm allows local information to propagate via
iterative processing [13].

The work presented in this paper models images using
contagion urn processes. The idea behind this method is
similar to that of RL; it iteratively propagates local information
by contagion. The motivation for employing urn schemes is
twofold: First, urn processes can generate Markov chains as
well as MRF’s [11]. Second, urn schemes are of particular
interest because they provide a natural probabilistic repre-
sentation for the image labels. Therefore, they constitute an
attractive generative process for the underlying image regions
which exhibit strong spatial dependencies. This approach is
related to the Gibbs sampling procedure [7], preserving key
features of the Gibbs sampler but using instead a contagion
sampling scheme. The spatial dependencies of the pixel labels
are captured by the contagious behavior which promotes
segmentation of the image into regions. The urn process is
analogous to RL algorithms, except that the urn process is not
deterministic [18], but stochastic. The urn sampling scheme is
also iterative and can be performed in parallel at each site or
pixel of the image.

In our scheme, each pixel is represented by an urn with
a mixture of balls of different colors, one color for each
class label. We begin by applying an arbitrary segmenta-
tion technique1 to the image to provide initial measures of
similarity of the pixels to each class. Next, these measures
are directly mapped into the initial composition of each
urn. A neighborhood is also defined for each pixel. The
balls of the urns in the neighborhood are then combined to
determine the next state of the urn. The iterative nature of
the algorithm incorporates temporal memory, while the use of
the neighboring urns in the updating process promotes spatial
contagion.

This paper is organized as follows. The contagion-based
smoothing process is described in Section II. In Section III,
the stochastic properties of the resulting image process are

1The choice of the arbitrary segmentation technique is independent of the
Polya urn process. This choice is largely determined by the type of image
being evaluated, i.e., for texture segmentation, wavelet-based algorithms [4],
[23] may be most appropriate. For SAR imagery, a Bayesian estimation
approach is usually adopted.

discussed. The relationships between the urn sampling scheme,
relaxation labeling, and simulated annealing are examined in
Section IV. Finally, experimental results on texture, SAR and
MR images are shown in Section V.

II. URN SAMPLING WITH CONTAGION

In this section, the concept of temporal and spatial contagion
for image segmentation is introduced, and the general urn
sampling scheme for pixel classification is outlined.

A. Temporal Contagion

Polya [16] introduced the following urn scheme as a model
for the spread of a contagious disease through a population.
An urn originally contains balls, of which are white and

are black Successive draws from the urn
are made; after each draw, balls of the same
color as was just drawn are returned to the urn. Let
and Define the binary process as follows:

if the th ball drawn is white;
if the th ball drawn is black.

It can be shown that the process is stationary and
nonergodic [5], [16]. The urn scheme has infinite memory, in
the sense that each previously drawn ball has an equal effect
on the outcome of the current draw.

B. Temporal and Spatial Contagion

The urn sampling scheme proposed in this paper incorpo-
rates both temporal andspatial contagion. Instead of repre-
senting an image by a finite lattice of pixels, we consider an
image as a finite lattice of urns. In the single-urn sampling
described above, the effect of each sample propagates through
time. For the lattice of urns, the sampled ball at each iteration
must depend not only on the composition of the pixel’s urn,
but also on the compositions of the neighboring urns to
encourage contagious behavior. Thus, we need to allow for
spatial interactions at each time instant by involving the urns
of the neighboring pixels in the determination of the newly
sampled ball.

C. Urns as a Probabilistic Image Labeling Representation

The following presentation considers an-ary labeling
problem. Let be an -ary label image of size

where is the label of pixel
at iteration , and where

We associate an urn with

each pixel at time where is the number of
balls of color in the urn. With this representation we define
a similarity function for each pixel as
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This can be interpreted as the probability that pixel
belongs to class

D. Contagion-Based Segmentation

The general class of algorithms for the contagion-based
segmentation process will now be described.

1) Initialization: As with most optimization techniques,
initialization is critical for the algorithm to converge to an
appropriate solution. For the Polya urn scheme, the preliminary
segmentation provides this initialization of the urn composi-
tions.

Many segmentation and labeling methods provide some
measure of confidence for the pixel label. Most of these
algorithms assign probabilities or derive a distance measure
for every pixel to each class label. For instance, in the ML
approach, every pixel has a probability associated with each
class label. In NMC (or -means clustering), a distance for
every pixel to each class label is calculated; a shorter distance
implies a higher confidence in that pixel label (see Appendix
B). In his wavelet-based segmentation algorithm, Unser [23]
employs the Mahalonobis distance measure, under a Gaussian
assumption for the Bayes classifier, to assign a confidence
measure. Each of these distances can be converted into a
probability measure by

Distance

Distance

(1)

where is the distance of pixel to class
label and is the probability that pixel belongs
to class Finally, the probabilities are mapped directly to the
urn composition of pixel by

(2)

where is the number of balls of color in pixel ’s
urn at time 0 and is the total number of balls initially in
the urn.

2) Iterative Urn Sampling:Once the urns are initialized,
the general modified Polya–Eggenberger urn sampling scheme
proceeds as follows.

For the urn composition of each pixel at time
is updated by sampling from a combination of the participating
urns with where is the
neighborhood system defined as in [7]

A simple, yet effective, sampling procedure is as follows: The
urn for pixel is updated by first combining the
balls of and the neighboring urns:

ASSOCIATE (3)

The ASSOCIATE function is a general function that forms a
collection of balls, from the urns of the neighborhood.
Examples of the ASSOCIATE function include grouping the

urns of into a “super” urn or sampling one ball from
each urn to form the collection.

Next, a selection operation on the new collection of balls,
is performed, i.e.,

(4)

The SELECT function is also a general function to determine
the next state of the urns. For instance, the SELECT function
may sample one ball from or choose the majority class

of

We denote by the outcome of the SELECT function

If add balls of color to urn This yields
a new urn composition for each pixel, given by

if ;

else.

The above procedure is iterated until At time
the final composition of each individual urn
determines the final labeling of the image. As described above,
each urn represents a probabilistic membership function on the
pixel labels.

For this paper, we have developed two specific methods
based on the general urn process. In method 1, the contents
of the urns in the neighborhood of pixel are collected
into a “super” urn. One ball is sampled from the “super” urn,
and balls of that color are added to the urn of pixel

In method 2, one ball is sampled from each of the
urns in the neighborhood to form the collection Then

balls of the majority color in are added to

III. STATISTICAL PROPERTIES

The idea behind our urn sampling scheme is to promote
spatial contagion of the pixel labels. At the end of the
iterative process, homogeneous regions should be described
by one label. It is in this sense that the urn process generates
MRFs; the label of a pixel is determined by the urns in its
neighborhood. In this section, we report asymptotic results to
provide insight as to why the urn sampling scheme allows the
initial majority color of a region to dominate the population
of the urns in that region.

A. Temporal Contagion

Consider the original, binary Polya sampling scheme. The
asymptotic properties of the joint distribution can be character-
ized in the temporal case, i.e., when all spatial interactions are
inhibited at each sampling step. In this case, it can be shown
[15]–[17] that the proportion of white balls in each urn after
the trial where

is a martingale [5] and admits a limit as the number of
draws increases indefinitely. Indeed, (or equivalently the
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sample average converges with probability
1 to [5]. This limiting proportion is a continuous random
variable with support the interval (0, 1) and beta probability
density function with parameters

if
otherwise

is the gamma function defined as

The behavior of this pdf can be interpreted as follows:
Assuming for simplicity, if the original fraction of white
balls in the urn is close to one, then the limiting distribution
of will be skewed toward one. A similar behavior is
obtained for the case whenis close to zero. Therefore, the
limiting pattern will reflect the underlying probability

For the -ary labeling case, the above observations gener-
alize with convergence to the Dirichlet distribution [11].

B. Temporal and Spatial Contagion

We now examine the asymptotic behavior of the two specific
sampling schemes given above.

Consider sampling from the “super” urn. Restating the
problem, suppose there are urns in the neighborhood of
pixel eachinitially with black balls and white balls,
and for all We put the contents
of all urns into a “super” urn, sample one ball, and add
balls of the same color into the urn of pixel The following
properties are easily derived.

The probability of sampling exactly black balls from
iterations of the “super” urn is

(5)

where and the beta function
(see Appendix A for proof).

The above process can be regarded as being generated by
a sequence of independent Bernoulli trials with parameter

where is random with beta distribution. In fact, it is
identical with different parameters to the Polya–Eggenberger
distribution in the single-urn case given above.

The average number of black balls in the “super” urn at
any given time is

(6)

Therefore, the average proportion of black balls in the “super”
urn is

(7)

Remarkably, the average proportion of black balls in the
“super” urn at any time equals the original proportion of
black balls. This shows that the composition of the urn is
highly dependent on the original proportion of the balls.
Eventually, the majority class of the urns in a given neigh-
borhood will spread and dominate the population of balls
in that neighborhood. Therefore, we conclude that this urn
sampling scheme will reinforce the majority class in a spatial
neighborhood; it constitutes a positive-feedback system that
yields limiting patterns of the self-reinforcing type [2]. The
contagion effectively models the Markovian dependencies of
the pixel labels.

The second method is described as follows. We sample one
ball from each of the urns in pixel ’s neighborhood,

From this collection of balls, we compute the majority

class, denoted by We update urn in the same
manner described in the previous section, i.e.,

if

otherwise.

Eventually, the initial majority class of each urn in the neigh-
borhood will dominate its composition, thereby propagating
the label throughout the neighborhood.

It is difficult to find a general closed-form expression for
the probability that class is the majority of

the individual samples. The difficulty arises because we are
trying to find the majority of a set of samples of a non-i.i.d.
process. Hence, we resort to heuristic arguments.

The sequence of images generated by both methods exhibits
both spatial and temporal dependencies represented by a
Markovian relationship in terms of the urns more
specifically

where is the urn matrix associated with and
is the set of participating urns defined in the previous

section.

IV. COMPARISON OF METHODS

While there are many techniques for image segmentation,
here we briefly examine the relationships between the urn
sampling scheme and other methods with closely similar
flavors, namely relaxation labeling and simulated annealing.

The idea behind the urn sampling scheme is that within a
region, one label should be dominant. By repeatedly sampling
with replacement from an urn, or a group of urns, the most fre-
quently occurring color or label will asymptotically dominate
the populations in the urns. Hence, contagion will promote
the homogeneity of local regions.

Another interpretation of the urn process can be derived
from the fact that when the urns are initialized by the ML
estimate, the urn compositions represent the conditional prob-
abilities of the image pixels. The subsequent iterative process
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(a)

(b)

Fig. 1. ML segmentation of texture image. (a) Texture image. (b) ML
segmentation.

updates these probabilities by adding balls of certain colors.
The Polya–Eggenberger sampling process is such that it will
naturally emphasize the majority labels.

Relaxation labeling for pixel classification is a procedure
which assigns a best label to a pixel under certain constraints.
It is also an iterative process which updates “probabilities”
according to

(8)

(9)

(a)

(b)

Fig. 2. Comparison of texture segmentations using RL and urn process. (a)
RL segmentation. (b) Segmentation using urn process.

where is the probability that pixel belongs to
class at time is a constraint coefficient, and

is the compatibility coefficient for labels and
As noted by Kittler [13], the update mechanism is based

on heuristic arguments so that the update and resulting seg-
mentation is influenced by the predefined constraints between
class labels [10]. In the urn sampling scheme, improved
segmentation is achieved without imposing such constraints.
Indeed the population of each urn represents the support for
the labels at each pixel. The changing of the urn compositions
represents the changing of the supports; when one color
dominates the population, the ambiguity of the label of a pixel
is reduced.

Furthermore, for these experiments, the urns are initialized
by either the ML or NMC techniques. Neither method provides
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(a)

(b)

Fig. 3. ML segmentation of texture image. (a) Texture image. (b) ML
segmentation.

acceptable results. They are used here to illustrate how the
modified Polya urn scheme can improve upon a speckly or
noisy initial segmentation. The NMC and ML segmentation
methods are described in Appendix B.

The disadvantages of RL include the slow convergence
of the algorithm. Also, studies have shown [9] that little
improvement is gained after the first few iterations. Our results
in the following section give evidence that the urn sampling
scheme converges to the solution at a faster rate.

Simulated annealing may be employed when pixel clas-
sification is viewed as a function optimization problem,
i.e., when using the MAP estimate of the label. Since, by
Bayes’ rule, maximizing the posterior probability of the
pixel labels is equivalent to maximizing the product of the
conditional distribution of the image and the prior probability
of the labels, SA can also be viewed as a mechanism
which updates the conditional probability of each pixel.

(a)

(b)

Fig. 4. Iterative improvement of texture segmentation. (a) After two itera-
tions. (b) After 15 iterations.

The conditional probability serves as an initial estimate
of the optimal point on a highly nonconvex surface; an
energy function for the prior distribution of the labels is
adopted, and the SA procedure iteratively adds or subtracts
from the conditional to arrive at the optimal point. The
drawbacks of this method are its computational burden
and its impractically slow schedule to converge to the
solution.

The concept of SA is derived from thermodynamics; it
models the way metals cool and anneal. When heated to
extremely high temperatures, the molecules of the metal are
at a high energy state and move relatively freely. When the
metal is cooled, the molecules gradually lose their mobility;
eventually they cool and converge to a lower energy state. If
the temperature is decreased slowly, the molecules will reach
their minimum energy state.
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(a)

(b)

Fig. 5. ML segmentation of UWB SAR image. (a) Original UWB SAR
image. (b) ML segmentation.

This analogy is incorporated in the Boltzmann probability
distribution

(10)

and represent the current and an alternate energy
level, respectively, of a function. Equation (10) states that the
function will always go from to if is lower than
it will go from to with probability
if is higher than In other words, if the function is
presented with a lower energy state, it will change to that state.
If it is presented with a higher energy state, it will change to
that state with a small probability.

(a)

(b)

Fig. 6. UWB SAR segmentation with SA and urn process. (a) Simulated
annealing. (b) Urn process.

It has been proved that if the temperature is decreased
according to the annealing schedule

(11)

where is a constant and is the temperature at theth
iteration, the algorithm will converge to the MAP estimate
[7]. The advantage of SA over greedy algorithms is that SA
is able to avoid convergence to local minima by having the
opportunity to jump to higher energy states.

Convergence to the true MAP segmentation of the image
requires approximately 10 iterations [7]. Clearly, for
practical applications, this is too long. The urn process does
not attempt to achieve function optimization. The asymptotic



1250 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 9, SEPTEMBER 1999

(a)

(b)

Fig. 7. Magnetic resonance images. (a) Proton density image. (b) T2 relax-
ation time image.

results of Polya’s sampling scheme ensure convergence by
eventually forcing one color to dominate the population.

V. EXPERIMENTAL RESULTS

For the examples given in this section, urn sampling method
1 is used; the contents of the urns of a pixel’s neighborhood
are put into a “super” urn, and a sample from the “super” urn
is used to choose the label or color that is incremented in the
pixel’s urn. Each urn is initialized with 100 balls, and the
number of balls added at each iteration, is ten. Urn sampling
method 2 gives similar results.

In Figs. 1–4, the ability of the urn process to segment
an image into regions of different textures is demonstrated.
The initial ML estimate is found by assuming that the tex-

(a)

(b)

Fig. 8. Segmentation of MR images using the urn process. (a) Noisy MRI
segmentation. (b) Segmentation using ten iterations of urn process.

tures can be described by a correlated Gaussian model with
This model is unable to describe the grainy texture

of the background, resulting in the inaccurate segmentation
1(b). The urn sampling process operates on the urns to
produce a smoother segmentation. Fig. 2 shows that the urn
process provides a better segmentation than RL. Note that the
contagion-based segmentation usually preserves the edges of
the texture regions better than the RL method. Fig. 4 illustrates
the iterative improvement resulting from the urn sampling
scheme. The noisy background segmentation causes the RL
algorithm to diverge to a nonsensical solution. However,
the urn representation allows the urn sampling scheme to
gradually adjust the urn compositions to achieve a smoother
segmentation.
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For foliage-penetrating SAR image analysis, it is helpful
to segment the image into foliage and nonfoliage regions to
improve the performance of image exploitation systems. The
images used in this study were obtained by the UWB SAR
developed at the Army Research Laboratory. The image shows
the Aberdeen Proving Grounds, Aberdeen, MD, during the
summer of 1995. In segmenting this image, we start with ML
segmentation with As shown in Fig. 5(b), the resulting
labeling is speckled, a characteristic of the ML segmentation
technique.

Application of simulated annealing for a limited number
of iterations generates only a slightly smoother segmenta-
tion of the image [Fig. 6(a)]. For SAR segmentation, SA is
implemented in the following manner: Assigning the energy
function for the prior distribution is arbitrary, since
the MRF-Gibbs equivalence states that completely
determines the form of Therefore, we define an
energy function [20]

(12)

The energy is summed over the second-order (33) neigh-
borhood of pixel Minimization of the energy function

encourages smoothing of the pixel labels into
homogeneous regions. The clustering parameteris a measure
of the smoothness incurred by the minimization of the function

Experimental results have shown that
provides acceptable segmentations [20]. The algorithm to
find the global minimum of this energy function proceeds as
follows: ML estimation of the pixel labels provides an initial
segmentation. Next, the pixels are revisited randomly at each
iteration. At each pixel, the energy is calculated under the
current and alternate pixel labels. If the alternate pixel label
yields a lower energy value, then the pixel is relabeled as the
alternate class. If it yields a higher energy state, the label is
changed with a small probability determined by the Boltzmann
distribution. At the end of each iteration, the temperature is
decreased according to the annealing schedule.

Likewise, Fig. 6(b) shows that only ten iterations of the urn
sampling scheme operating on the ML segmentation yield a
much smoother image.

To segment the MR image in Fig. 7, we obtain an initial
segmentation by NMC. The proton density and T2 relaxation
times are the components of the two-dimensional (2-D) feature
vector used for NMC. Since NMC is based solely on the means
of the vectors, the initial segmentation is especially sensitive
to the inherent noise of the MR image modality. The leads to
the speckled segmentation shown in Fig. 8(a). The distances
from a pixel’s feature vector to the centroids in feature space
determine the initial composition of the urns. The urn process
then operates on the urns to produce a smoother segmentation.
The output after ten iterations is shown in Fig. 8(b).

VI. CONCLUSION

In this paper, we have illustrated how modified Polya urn
sampling schemes can be implemented for image segmenta-
tion. Given an initial speckled segmentation, the contagion

process obtains a smoother segmentation into homogeneous
regions by its Markovian properties. Two general features
result in temporal and spatial contagion. First, iterative updat-
ing provides for temporal contagion. Second, sampling from
neighboring urns, similar to the Gibbs sampler, yields spatial
contagion.

In the context of RL, the urn compositions provide positive
support for the labels of each pixel. Polya’s sampling with
replacement ensures that one label will eventually have the
highest degree of support. In terms of SA, the urn scheme
also updates the conditional probabilities of each pixel in a
stochastic manner. Our examples show that the urn scheme
yields better segmentations in relatively small numbers of
iterations.

APPENDIX A
P-E DISTRIBUTION OF THE “SUPER” URN

We present the proof of (5), that the “super” urn is governed
by the Polya–Eggenberger distribution.

Consider again a binary sampling problem. Suppose there
are urns in the neighborhood of pixel each initially
with black balls and white balls, and that

Now, at each time instant, place all of the
balls into the “super” urn, and sample one ball from the “super”
urn. If the ball is black, add black balls to if it is
white, add white balls to

The probability of drawing a particular sequence ofblack
balls out of samples (such as BBB..BWW..W) is

(13)

Note that the order of a particular sequence does not affect the
probability, i.e., the process is exchangeable. Therefore, the
total probability of drawing black balls out of samples is

(14)

Knowing that and dividing through by
the probability becomes (15), shown at the top of the next

page, where and

APPENDIX B
INITIAL SEGMENTATION

When no a priori information on the image statistics is
available, general clustering algorithms such as NMC are
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(15)

usually applied. In the NMC method, an initial arbitrary
labeling is used from which centroids of the feature vectors of
each class are computed. Next, all samples are reclassified
to the cluster corresponding to the nearest mean, and the
centroids are recomputed. This process is iterated until a
stopping criterion is met [6].

On the other hand, when a stochastic model for the image
can be justified, it is possible to apply ML segmentation.
The conditional distribution of the image, i.e.,

is assumed. Here, is the given image data,
is the label for pixel and represents the pixel labels

of the th order neighborhood of pixel [7].
For our ML segmentation purposes, we estimate the pixel

labels by assuming that the conditional distribution of the
image given each class label, i.e., is a
correlated, multivariate Gaussian distribution. The parameters
for each class are estimated in the following manner: Training
data for each class is extracted. Nonoverlapping
blocks of pixels from the training data are lexicographically
ordered into vectors The empirical mean of these
vectors serves as the unbiased estimate of the mean vector for
class

(16)

Next, the unbiased estimate of the covariance matrix
of class is obtained by

(17)

After obtaining the parameters of the different classes, the
ML test determines the label for each pixel in the image. The
ML decision rule is

(18)

where

(19)
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