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Image Transmission Over the Polya Channel via
Channel-Optimized Quantization

Firouz Behnamfar, Fady Alajaji, and Tamás Linder

Abstract—We introduce two progressive methods for image transmis-
sion over binary channels with additive bursty noise modeled by the
finite-memory Polya (contagion) channel. The methods, which are based
on channel-optimized scalar quantization (COSQ) of the wavelet trans-
form coefficients, exploit channel memory to offer superior performance
over a number of more complex systems designed for the fully interleaved
channel.

Index Terms—Channel optimized scalar quantization, channels with
memory, convolutional codes, joint source-channel coding, subband
coding.

I. INTRODUCTION

The traditional approach to data compression and channel coding is to
treat these twotasks independently.Theperformanceof theresultingsys-
tems—often called tandem systems—may be far from optimal when re-
sources(computational/memorycomplexityanddelay)arerestricted.As
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a result, it is beneficial to perform source compression and channel error
protection jointly. This issue wasquantitatively studied, for example, re-
cently in [15], where joint source-channel coding is shown to outper-
form tandem coding if the systems have delay or complexity below a
certain threshold. Several methods have been proposed for joint source-
channelcodingofimages,includingunequalerrorprotection(UEP)[18],
[21], [23], [26], [27] andchannel-optimized scalar quantization (COSQ)
[4]. In [26], image compression is performed through subband coding
(withquadrature mirror filter (QMF) banks) followedbyvariable-length
coding, and channel protection is done using packetization, check sum
bits, and rate-compatible punctured convolutional (RCPC) codes. The
approach in [23] is similar to [26], but the source coder is replaced with
thestrongmethodknownassetpartitioning inhierarchical trees (SPIHT)
[22]. In [21], each subband is divided into a number of blocks. For every
block, the bits at each level of significance are encoded with a different
RCPC code rate. Finally, in [4], COSQ is used to transmit the transform
coefficients. As COSQ is a fixed-length code, it does not suffer from the
usual error propagation effect due to the use of lossless variable-length
source codes. COSQ also combines source and channel coding; hence, it
reduces the overall system complexity as compared with UEP methods.

In this correspondence, we present two COSQ-based image coders
for transmission of images over noisy channels with memory. Memory
is an important property of many real-life channels and is usually com-
bated using channel interleaving (since most coding techniques are de-
signed for memoryless channels). However, interleaving causes delay
and increases complexity. Furthermore, the resulting associated mem-
oryless channel has a lower capacity than the original channel with
memory (for the broad class of information stable channels [1]). One
salient feature of our COSQ methods is that they take into account the
channel intra-block memory [19]; hence, their performance improves
as channel noise becomes more correlated. Moreover, they provide rea-
sonable image quality at bit rates as low as 0.125 b/pixel and channel bit
error rates (BERs) as high as 0.1. They also outperform a typical UEP
scheme that uses scalar quantization and convolutional coding (with
and without channel interleaving).

In our systems, the source image is decomposed with discrete
wavelet transform (DWT) or QMF banks into a number of subbands.
As we begin the transmission of the data from the lower frequency
subbands (and hence the reconstructed image quality improves as more
data is received), the systems are progressive. For bit allocation among
the subbands, we employ a generalized version of the technique in
[28], which has low computational complexity. Finally, in the presence
of channel mismatch between the design and actual channel BERs,
the employed systems inherit the resilience of COSQ to outperform
one of the strongest UEP methods that is introduced in [23]. When
there is no channel mismatch, the UEP system of [23] (which employs
interleaving) has a better performance than our methods; however, it
has larger complexity and delay.

The rest of this correspondence is organized as follows. In Section II,
the structure of our image transmission systems is described. In partic-
ular, the image decomposition, subband modeling, channel modeling,
quantization, and bit allocation steps are addressed in detail. Simula-
tion results are presented in Section III. Finally, conclusions are stated
in Section IV.

II. IMAGE CODING FOR THE BINARY POLYA CHANNEL WITH MEMORY

A. Structure

Fig. 1 shows the block diagram of the employed image coding sys-
tems which use the generic structure of [28]. It is assumed that the mean
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Fig. 1. Structure of the proposed image communication systems.

of the pixel intensities is removed. In the first method, the image is di-
vided into a number of blocks. Every block is then transformed using
the two-dimensional (2-D) DWT three times: every time on the lowest
resolution level of the previous decomposition level. If the block size
is L� L (we use 8 � 8), we next form L2 subsources by grouping all
c
(k)
i;j , k = 1; . . . ; K together, where K is the number of blocks, and

c
(k)
i;j is the coefficient at row i and column j of block k. This method

will be referred to as InterBlock. In the second method, the image is
treated as one block. It is decomposed four times using the 32-D QMF
banks of [14], resulting in 13 subbands, each of which is regarded as a
subsource. We will refer to this system as IntraBlock. In both of these
systems, the subsources are quantized using a COSQ for channels with
memory with rates determined as explained in Section II-D. The re-
sulting bit-stream is then sent directly over the channel. The receiver is
simply the inverse of the transmitter.

For COSQ design, we need a good model for the distribution of
the samples to be quantized. It is well known that the distribution of
the coefficients of every subband is well approximated by the general-
ized Gaussian distribution [4], [26], with a probability density function
given by

f(x) =
��(�; �)

2� 1
�

exp f� [�(�; �)jxj]�g

where �(�; �) = 1=�(�(3=�)=�(1=�))1=2 is the rate of decay, �2

is the variance, and �(�) is the Gamma function. For � = 1 and
2, the above yields the Laplacian and Gaussian distributions, respec-
tively. Based on our experiments on natural images and the results of
[4] and [26], we assume here that the subsources in all subbands have
the Laplacian distribution, and we quantize them using a COSQ trained
for such a source. The benefit of subsource modeling is that the code-
books will not be image dependent and require no side information.

B. Polya Contagion Model for Channels With Memory

Most real-world communication channels suffer from correlated
noise and/or fading distortions, often occurring in a bursty fashion.
The most commonly used binary channel model to represent the
equivalent discrete (hard-decision demodulated) fading channel with
memory is the well-known Gilbert–Elliott channel (GEC), which was
first introduced in [11] and later generalized in [7]. However, this
channel model, which is based on a hidden Markov error process,
is often difficult to mathematically analyze as it does not admit a
closed-form expression for its channel capacity, and its block transi-
tion distribution is not transparently expressed in terms of the channel
parameters. Recently, a simpler channel model assuming additive
channel noise was introduced in [1], where the additive error process
is generated by Polya’s contagion urn scheme with finite memory.
This noise process is a stationary ergodic Markov process of order
M . To further motivate the selection of our channel model, we note
that it has been recently shown (numerically) that the class of binary
channels with additive M th-order Markov noise (to which the channel
in [1] belongs as a special case) is a good approximation (and, indeed,
better than the GEC model) to hard-decision demodulated channels
with correlated Rayleigh and Rician fading [20]. The Polya channel
with M = 1 is identical to an arbitrary channel with stationary ergodic

first-order Markov noise; hence, it can approximate the Rayleigh
fading channel in certain conditions [20]. We adopt the finite-memory
Polya-contagion channel model in [1], which assumes that any noise
sample depends only on the sum of the M previous samples. If Xi,
Yi, and Zi represent the input, output, and noise in that order and � is
addition modulo 2, the channel input–output relationship is described
by Yi = Xi � Zi. Assuming that the input and noise are independent,
for i � M and any ei�1i�M 2 f0; 1gM , we have [1]

Pr Zi = 1jZi�1
i�M = ei�1i�M =

�+ � i�1
j=i�M ej

1 +M�

where � is the BER, and � � 0 controls the correlation coefficient of the
noise given by �=(�+1). The channel capacity (whose closed-form ex-
pression is derived in [1]) increases with �, suggesting that channel-op-
timized vector quantization (COVQ) may achieve less distortion for
channels with memory. This intuition was empirically validated by
[19], where a COVQ scheme was applied for the compression of ideal
sources over this channel model. If � is set to zero, the noise process
becomes memoryless and the channel reduces to a binary symmetric
channel (BSC). Note also that this model is less complex than the GEC
model [17] and is completely specified with only three parameters (�,
�, and M ). It has been recently adopted in several joint source-channel
coding studies that include wireless applications (e.g., [5], [12], [13],
and [25]).

C. COSQ Design

Let d = dH(x; y) be the Hamming distance between the binary
channel input block x = (x1; . . . ; xn) and the output block y =
(y1; . . . ; yn). The channel block transition probabilities are given by
the following (see [1]):

• For n � M , P(yjx) = L(n; d; �; �), where

L(n; d; �; �) =
d�1
i=0 (�+ i�) n�d�1

i=0 (1� �+ i�)
d�1
i=0 (1 + i�)

�

• For n > M

P(yjx) = L(M; sM+1; �; �)

�

n

i=M+1

� + si�

1 +M�

e

1�
� + si�

1 +M�

1�e

where ei = xi � yi, and si = ei�M + � � � + ei�1.
The significance of the above formulas is that unlike many other

channel models in the literature, they provide easy and computation-
ally inexpensive tools to implement the modified generalized Lloyd al-
gorithm (GLA) for noisy channels [9].

Various algorithms have been proposed for COVQ design, among
which, we tried the modified GLA initialized by simulated annealing
[8], noisy channel relaxation [10], stochastic relaxation [29], and deter-
ministic annealing [16]. After some experiments with the above algo-
rithms, we decided to use the modified GLA with simulated annealing



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 2, FEBRUARY 2005 730

because of its computational efficiency. Unlike other methods, it com-
putes the codebooks for rates as high as 8 bits per sample in a reasonable
amount of time. In addition, the training distortion of the quantizers
trained with this method were the most consistent with many trials (see
Section III for more practical issues).

D. Bit Allocation

In subband coding of images, the end-to-end distortion is more sen-
sitive to errors in the low-resolution subbands. Therefore, when allo-
cating bits to the subsources, the subbands in which they are located
should be taken into account. For the sake of brevity, in what follows,
we explain the bit allocation strategy only for the IntraBlock method.
Bit allocation for the InterBlock method is essentially the same.

Usually, the distortion of subsource i is weighted bywi, which is the
L2 norm of the basis functions of the subband to which it belongs (see,
for example, [2] and [4] for the values of wi when DWT and QMF are
used, respectively). Using the mean-square error distortion measure,
we can write the end-to-end distortion as

D =

S

i=1

widi; di =
1

N2
i

N

m=1

N

n=1

c(i)m;n � ĉ(i)m;n

2

(1)

where S is the number of the subsources (there are S = 13 subsources
in our implementation of the IntraBlock method), ĉ(i)m;n is the recon-
structed value of c(i)m;n, and we have assumed that the ith subband has a
size of Ni�Ni.1 We employ dynamic programming for bit allocation.
In particular, we extend the work in [28] for the Markov noise channel
and for the case where the overall distortion has different sensitivities
to different subsources. The bit allocation problem is to minimize D
in (1) subject to 13

i=1N
2
i ri � B and 0 � ri � rmax, where ri is

the number of bits per sample allocated to the ith subsource, and B is
the total number of bits available. rmax is the maximum number of bits
per sample that may be allocated to a subsource. Note that the overall
bit rate is (1=RC) 13

i=1N
2
i ri, where the image size is assumed to be

R � C . We choose rmax = 8 bits to have small codebooks and fast
encoding.2 Modeling the subsources as independent Laplacian sources,
we can write each di in (1) as �2i dL(ri), where dL(ri) is the distortion
of a unit-variance Laplacian source quantized for a set of channel con-
ditions (i.e., �, �, M ), and �2i is the variance of the ith subsource. The
problem now is to allocate the available bits to 13 Laplacian sources,
each with variance wi�2i , given the channel conditions. We use the al-
gorithm in [28] to solve this problem, which is guaranteed to achieve
the optimal bit allocation.

Note that dL(ri) is calculated offline. In addition, although �2i is
image-dependent, it is not computed inside the algorithm. For a 512
� 512 image, the above algorithm requires a worst-case (unlikely)
number of 262 261 multiplications, 104 additions, and 3072r compar-
isons for the calculation of the �2i and rate allocation, where r is the
overall bit rate. These figures change to 262 720 multiplications, 512
additions, and 4032r comparisons for the InterBlock method (see the
Appendix for the number of operations in general). In both cases, the
number of operations is very small compared with those required in
UEP methods, where rate allocation forms a significant part of the com-
putations (see, for example, [3] and [24]).3

1For the InterBlock method, the overall distortion can be written as D =
w d , where d = (1=K) (c � ĉ ) .

2Using a larger value for r will enhance the performance, but the training
time and the size of the required codebooks will grow exponentially and tend to
be prohibitive for r > 8 (given our computational resources).

3In order to reduce the complexity of rate allocation for such UEP methods, a
parametric approach is developed in [18], where it is assumed that the logarithm
of the block error rate has a linear relationship with the reciprocal of the channel
code rate.

Fig. 2. Performance of various methods at 0.5 b/pixel, noiseless channel.

E. Side Information

Side information is the part of data in which no single bit error can
be tolerated. Therefore, this amount must be kept as small as possible.4

The amount of side information of our IntraBlock method is identical
to that in [4]. For a 512 � 512 image, the IntraBlock method needs
the image mean, 13 sub-source variances, and the bit allocation table.
Using 10, 10, and 3 bits for each of these amounts to a side information
of 0.000 68 b/pixel. For such an image and block size of 8 � 8, the
InterBlock method has 64 subsources, and its side information becomes
0.0032 b/pixel. In comparison to the above figures, the method in [21]
requires 0.07 b/pixel of side information, assuming that 1.5 significance
layers are encoded on average, and four different RCPC code rates are
used.

III. SIMULATION RESULTS

We implemented the proposed image coder for the compression and
transmission of gray-scale images over the contagion channel with
M = 1 and tested it for the image Lena (tests performed on other
images such as Goldhill, Baboon, and Peppers gave results consistent
with the Lena experiments). It takes around 20 hours to train the rate-8
b/s COSQs with 200 000 samples on Sun Ultra 60 machines. Over five
trials, the training distortion was the same within 0.1 dB.

Fig. 2 compares “IntraBlock with QMF,” which is the IntraBlock
method, “Chen and Fisher,” which is the method in [4], “IntraBlock
with DWT,” whose structure is identical to “IntraBlock with QMF”
but uses DWT, and InterBlock at an overall bit rate of 0.5 b/pixel for
a noiseless channel. The performance of each system is measured
in terms of the peak signal-to-noise ratio (PSNR), which is defined
as PSNR = 10 log10(255

2=
i;j
(xi;j � x̂i;j)

2) (dB), where xi;j
and x̂i;j are the original and reconstructed pixel values, respectively.
For DWT, we used the 9/7 Daubechies filters, which are used in the
JPEG2000 image compression standard [6]. Fig. 2 shows that Intra-
Block (with QMF) outperforms the best reported COSQ-based method
[4], which has exactly the same structure and filters as ours. This is due
to our improved bit allocation and selection of the wi weights in (1).
Note that the method in [4] is not suitable for channels with memory
and requires channel interleaving. Fig. 2 also demonstrates that using

4We assume that the side information can be transmitted without errors using
a very strong channel code. Since the amount of the side information is negli-
gible as compared with the image information, this will cause a minimal increase
in the overall bit rate.
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Fig. 3. Typical PSNR performance of various InterBlock methods over the
binary channel with memory at 0.25 b/pixel. Block size is 8 � 8.

Fig. 4. Typical PSNR performance of various IntraBlock methods over the
binary channel with memory at 0.25 b/pixel.

QMF banks yields better results than DWT filter banks (at the expense
of higher arithmetic complexity).

Figs. 3 and 4 compare our methods in noisy channel conditions at
a bit rate of 0.25 b/pixel with a typical UEP system, which is de-
noted by “UEP-IL” and comprises transform coding with QMF banks,
scalar quantization of the transform coefficients, convolutional coding,
and ideal channel interleaving (the plots for other bit rates show the
same behavior). The convolutional codes have 64 states, are nonsym-
metric, and are of rates 1/2 (g11 = 634, g12 = 564, dfree = 10),
1/3 (g11 = 574, g12 = 664, g13 = 744, dfree = 14), and 1/4
(g11 = 454, g12 = 574, g13 = 664, g14 = 724, and dfree = 20).
The UEP system without the channel interleaver is also implemented
and denoted by “UEP-no IL.” The UEP systems choose the source
and channel coding rates that maximize the PSNR for each set of the
channel conditions.5 We refer to our system as COSQ, followed by the
value of the channel correlation parameter (�) for which it is designed
(e.g., COSQ-5 and COSQ-10). COSQ-IL denotes the same system that
uses an ideal channel interleaver (� = 0), and hence, it is designed for

5The source and channel coding rates were found to be (1/8, 1/2), (1/8, 1/2),
(1/12, 1/3), and (1/16, 1/4) for BER = 0:005, 0.01, 0.05, and 0.1, respectively.

Fig. 5. Decoded image of various IntraBlock methods at 0.5 b/pixel
and BER = 0:1. From top to bottom: The best tandem coding scheme
(PSNR = 27:4 dB), COSQ-IL (PSNR = 23:5 dB), and the COSQ-based
system designed for noisy channels with memory (PSNR = 28:6 dB).

the BSC with the same BER as the channel with memory. The plots
show that the performance curves of the image coders designed for
the correlated channel are higher than those of the interleaved channel.
This demonstrates that substantial gains may be obtained from ex-
ploiting the channel memory instead of using interleaving, which in-
creases delay and memory requirements. It is also observed that re-
moving the channel interleaver to reduce the complexity of the UEP
system (with the structure used here) would have catastrophic results.
The plots also confirm the superiority of the IntraBlock over the In-
terBlock methods, as was seen in Fig. 2 for the noiseless channel.

The output image of three IntraBlock methods for the image Lena
at a rate of 0.5 b/pixel is shown in Fig. 5. The figure shows that our
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TABLE I
BER MISMATCH RESULTS IN TERMS OF PSNR IN DECIBELS FOR A RATE

OF 0.5 b/pixel AND DESIGN BER OF 0.01

method, which exploits channel memory, provides a higher quality de-
coded image than the systems that use channel interleaving.

Thus far, our image coding methods assume perfect knowledge of
the channel parameters at both the transmitter and the receiver. How-
ever, in real-life situations, channel parameters are time-varying, re-
sulting in channel mismatch. Table I compares our two coders in the
presence of BER mismatch and that of Sherwood and Zeger [23], which
is one of the best UEP schemes reported and is designed for the ide-
ally interleaved channel (in [3] and [27], schemes that outperform [23]
have been presented, but these works do not report on mismatch per-
formance). It is observed that the IntraBlock system is the most robust
against BER mismatch. Although the substantially more complex Sher-
wood–Zeger scheme performs better than ours by about 4 dB at no mis-
match, it performs nearly 10 dB worse than our method in the presence
of mismatch due to the variable-length lossless source code employed
by that method. Resilience against mismatch is indeed a property of
COSQ-based systems, which is inherited by our methods.

IV. CONCLUSION

Two progressive image coding methods for the Polya contagion
channel, which is a binary noisy channel with memory, are presented.
Both systems are based on transform coding, subband modeling, and
COSQ. Encoding an entire subband is observed to be better than
dividing the image into blocks and encoding one coefficient from
each block. The main result is that it is more beneficial to exploit the
channel memory in the COSQ design, as opposed to suppressing its
effect through channel interleaving, which also increases delay and
complexity. COSQ was shown to outperform typical UEP schemes
with or without channel interleaving. It is also observed that the
performance of COSQ-based methods degrades gracefully (as is
typical of such systems) in the presence of BER mismatch, whereas a
powerful UEP method based on variable-length coding breaks down.

APPENDIX

In the following, we briefly explain the number of operations for rate
allocation needed for our methods. In the IntraBlock method, S = 13
subbands are formed. Then, the variance of the subbands are com-
puted and multiplied by the training distortion of a Laplacian source,
trained for the given channel conditions. Finally, the rate is allocated
in a bit-by-bit fashion to the subband that maximizes the reduction in
the overall distortion. In the InterBlock method, the image is first di-
vided into L � L blocks (L = 8 in our case), and there are a total
of K blocks. Each subsource contains one coefficient from each block
(at a given position). For both methods, the same rate allocation algo-
rithm is used but with different input. The number of operations for
each method is as follows.

IntraBlock Method
• RC + S multiplications to find the variances �2i ,
i = 1; . . . ; S;

• S�rmax multiplications to find �2i �dL(ri), i = 1; . . . ; S,
ri = 1; . . . ; rmax;

• S�rmax subtractions to find�DL(ri)
�
= �2i (dL(ri�1)�

dL(ri)), i = 1; . . . ; S, ri = 1; . . . ; rmax. (dL(0) = 1);
• S � 1� RCr=((R=16)(C=16)) = 256(S � 1)r compar-

isons to find the best sub-source to allocate one bit (one with
maximum �DL(ri), i = 1; . . . ; S).

InterBlock Method
• RC + L2 multiplications to find the variances �2i , i =
1; . . . ; L2;

• L2 � rmax multiplications to find �2i � dL(ri),
i = 1; . . . ; L2, ri = 1; . . . ; rmax;

• L2 � rmax subtractions to find �2i (dL(ri � 1) � dL(ri)),
i = 1; . . . ; L2, ri = 1; . . . ; rmax;

• L2 � 1 � RCr=((R=L)(C=L)) = L2(L2 � 1)r compar-
isons to find the best subsource to allocate one bit.
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Quasi-ML Period Estimation From
Incomplete Timing Data

Nicholas D. Sidiropoulos, Ananthram Swami, and Brian M. Sadler

Abstract—Given a noisy sequence of (possibly shifted) integer multiples
of a certain period, it is often of interest to accurately estimate the period.
With known integer regressors, the problem is classical linear regression.
In many applications, however, the regressors are unknown integers, and
only loose bounds on the period are available. Examples include hop pe-
riod and timing estimation, wherein hops may be missed at the output of the
frequency discriminator or the emitter may hop out of band; Pulse Repeti-
tion Interval (PRI) analysis; and passive rotating-beam radio scanning. We
study several pertinent period estimators. Our emphasis is on a Quasi-Max-
imum Likelihood approach developed herein and an earlier method based
on the Fourier Transform of a Dirac delta train representation of the data.
Surprisingly, both are capable of attaining the clairvoyant Cramér–Rao
Bound at moderate signal-to-noise ratios (SNRs), even for short (e.g., 10)
samples. We carefully address parameter identifiability issues and corrob-
orate our findings with extensive simulations.
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I. INTRODUCTION

Consider the following observation model:

�(n) = �+ �(n)T + w(n); n = 1; . . . ; N (1)

where � is an unknown shift, �(n) 2 is a generally unknown se-
quence of ordered integers, T is the unknown period, and w(n) is ad-
ditive white Gaussian (AWG) noise, with variance �2w . The problem is
to estimate � and T from f�(n)g. In practice, there are many situations
wherein the only information that can be assumed about the regressors
is that �(n) 2 , and perhaps also loose upper and lower bounds on
T , or qualitative information of the type “lengthy gaps are rather rare.”

The model in (1) is reminiscent of two well-known problems. In the
special case that �(n) = n; n = 1; . . .N , the problem is classical line
regression; if the integers f�(n)gNn=1 are known, then a standard linear
regression problem appears. If the regressors f�(n)gNn=1 are unknown
integers, then a nonstandard regression problem emerges.

On the other hand, the problem in (1) is closely related to harmonic
retrieval. That is, raising the data in (1) to the exponent yields

x(n) := e
j�(n) = e

jw(n)
e
j(�+�(n)T )

; n = 1; . . . ; N

which is a harmonic retrieval problem with missing samples in non-
Gaussian multiplicative noise. Note, however, that raising the data to
the exponent is not a reversible operation; hence, the problems are gen-
erally not equivalent.

The classical (single-) harmonic retrieval problem has been thor-
oughly investigated in the literature, including optimal (periodogram)
and suboptimal linear-complexity solutions. The latter achieve near-
optimal performance at moderate signal-to-noise ratio (SNR) or mod-
erate samples and above. Interestingly, Tretter [13] has shown that a
computationally attractive solution can be obtained by casting the fre-
quency estimation problem as a line regression problem in the phase
domain. At high SNR, phase noise can be approximated by AWG noise,
and the problems become essentially equivalent [13]. Another related
approach to the problem of frequency estimation involves working with
zero-crossings or higher order zero crossings of the observation [6],
[11].

The harmonic retrieval problem with missing samples has also been
considered [8]. Early approaches were periodogram-based (the peri-
odogram often works reasonably well with mild multiplicative noise),
but parametric techniques have also been developed [9]. In most cases,
a simple Bernoulli miss model is adopted [9], [12]; otherwise it is
assumed that missing samples occur periodically with known outage
period. Harmonic retrieval in multiplicative noise has been dealt with
(see, e.g., [4]), but to the best of our knowledge, harmonic retrieval in
multiplicative noise and a deterministic unknown model for the missing
samples has not been addressed in the literature.

The baseline for the present research is mostly the work of Fogel and
Gavish [3], Sadler and Casey [1], [10], and Clarkson et al. [2], who
also considered period estimation from the model in (1) with missing
observations.

Fogel and Gavish [3] considered Maximum Likelihood (ML) period
estimation from incomplete data for a certain convenient choice of the
noise probability density function (pdf) that explicitly depends on the
sought period. The said pdf is compactly supported, and hence, non-
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