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Abstract—The joint source-channel coding problem for soft-
decision demodulated time-correlated fading channels is inves-
tigated without the use of channel coding and interleaving. For
the purpose of system design, the recently introduced non-binary
noise discrete channel with queue based noise (NBNDC-QB) is
adopted. This analytically tractable Markovian model has been
shown to effectively represent correlated fading channels that
are hard to handle analytically. Optimal sequence maximum a
posteriori (MAP) detection of a discrete Markov source sent over
the NBNDC-QB is first studied. When the Markov source is
binary and symmetric, a necessary and sufficient condition under
which the MAP decoder is reduced to a simple instantaneous
symbol-by-symbol decoder is established. Two robust lossy source
coding schemes with low-encoding delay are next proposed for
the NBNDC-QB. The first scheme consists of a scalar quantizer, a
proper index assignment, and a sequence MAP decoder designed
to harness the redundancy left in the quantizer’s indices, the
channel’s soft-decision output and noise correlation. The second
scheme is the classical noise resilient vector quantizer known
as the channel optimized vector quantizer. It is demonstrated
that both systems can successfully exploit the channel’s memory
and soft-decision information. Signal-to-distortion (SDR) gains of
more than 1.7 dB are obtained over hard-decision demodulation
by using only 2 bits for soft-decision. Furthermore, gains as high
as 4.4 dB can be achieved for a strongly correlated channel,
in comparison with systems designed for the ideally interleaved
(memoryless) channel. Finally, it is numerically observed that for
low coding rates the NBNDC-QB model can accurately approx-
imate discrete fading channels in terms of SDR performance.

Index Terms—Joint source-channel coding, correlated fading
channels, Markov channels, channel modeling, soft-decision de-
modulation, MAP decoding, scalar quantization, channel opti-
mized vector quantization.

I. I NTRODUCTION

I T is well known that the separate treatment of source
and channel coding, justified by Shannon’s source-channel

coding separation theorem [3], is not optimal in the presence
of complexity and delay constraints. For example, in a recent
information theoretic study [4] it is shown that the error expo-
nent for joint-source channel coding (JSCC) can be twice as
large as the exponent for separate source and channel coding.
Hence, for an identical overall probability of error, JSCC
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would need half the (encoding and decoding) delay of separate
coding; this translates into a 2-dB power saving for a wide
class of source-channel pairs [4]. Such substantial potential
benefits provide an incentive for adopting and integrating
JSCC in today’s resource strapped wireless communications
systems. Some other advantages of JSCC over separate source-
channel coding were quantitatively characterized in [5]. For
lossy coding, a variety of different JSCC schemes have been
proposed (such as [6] - [14] and many others).1 It is also
known that if a channel is well-behaved (ergodic) and has
memory, then its capacity is strictly greater than the capacity
of its memoryless counterpart (a channel with identical one-
dimensional transition distribution) realized via ideal (infinite-
depth) block interleaving [17], [18]. Consequently, a commu-
nication system can be designed to take advantage of the
channel’s memory and perform better than a system that
discards such memory via interleaving. Furthermore, effective
use of the channel’s soft-decision information can improve
capacity and system performance over hard-decision decoded
schemes (e.g., see [19] - [22]).

In this work, we investigate the JSCC problem for soft-
decision demodulated time-correlated fading channels. Our ob-
jective is the design of effective schemes having low encoding
delay and complexity that aptly exploit the source statistics
as well as both the channel’s soft-decision information and
statistical memory without the use of channel error correcting
codes and channel interleaving. Such schemes have pertinent
applications in wireless communications including mobile
radio and sensor networks, where the mobile or sensor has
stringent processing and encoding delay constraints, while
the fusion center or the base station has sufficient decoding
resources. For this purpose, we use the recently introduced
non-binary noise discrete channel with queue based noise
(NBNDC-QB), which is a binary input2q-ary output channel
(where q ≥ 1 is an integer) with2q-ary stationary ergodic
M th order Markov noise in [23] - [25]. This model features
closed form expressions for its transition probabilities,noise
entropy rate and autocorrelation function, making it amenable
for tractable analytical performance analysis and code de-
sign. It is also shown in [24], [25] that the NBNDC-QB
can accurately represent (in terms of channel capacity and
noise autocorrelation function) the correlated Rayleigh discrete
fading channel (DFC) used with antipodal signaling andq-bit
soft-decision (non-binary) output quantization.

We first study the optimal sequence maximum a posteri-

1In this work, we focus on lossy source codes that are resilient against
channel noise. There are other JSCC approaches; see for example [4], [15],
[16] and the references therein.
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ori MAP detection problem when a discrete Markov source
sent over the NBNDC-QB. We translate the MAP detection
problem into simple Viterbi decoding with an appropriately
modified decoding metric. If the Markov source is binary
and symmetric, we prove a necessary and sufficient condition
under which the sequence MAP detector reduces to an in-
stantaneous symbol-by-symbol mapping (having no decoding
delay). We also illustrate and verify this condition numerically.

To exploit the NBNDC-QB’s memory and soft decision
information, we next design two JSCC schemes with low
encoding delay and complexity: a scheme that uses a basic
scalar quantizer (SQ) and sequence MAP decoding (the SQ-
MAP scheme), and a scheme consisting of a channel optimized
vector quantizer (COVQ). Both schemes are source-centric
JSCC systems in the sense that they do not use explicit
algebraic channel coding, and are thus less complex than the
conventional separate source-channel coding systems. Further-
more, both schemes avoid the use of channel interleaving
which can introduce considerable additional delay when the
underlying physical channel experiences slow fading. Instead,
our schemes are tailored to judiciously exploit the channel’s
statistical time-correlation structure in order to bettercombat
channel impairments. Both systems are designed and evaluated
for the NBNDC-QB and then tested (with a mismatched
encoder/decoder) over the equivalent correlated RayleighDFC
used with soft-decision demodulation to simulate the systems’
performance in a wireless setup.

This work builds upon and significantly extends [11], [26]
where only binary (input, noise and output) channels with
Markovian additive noise were considered. We note that the
channel considered in [11], [26] is a special case of the
NBNDC-QB model used here and can be obtained by setting
the NBNDC-QB parameterq = 1, which translates into
using hard-decision demodulation in the underlying fading
channel. Note that in contrast to this work, in [11], [26]
correlated fading channels were not examined and realistic
channel modeling and validation (under mismatched coding)
were not studied.

The organization of this paper is as follows. We introduce
the two channel models, the NBNDC-QB and the Rayleigh
DFC, in Section II. In Section III, we study the MAP sequence
detection of Markov sources over the NBNDC-QB and obtain
the required relationships to implement the MAP decoder
via the Viterbi algorithm. We further study the specific case
of binary Markov sources sent over the NBNDC-QB with
memory orderM = 1 and prove a necessary and sufficient
condition under which the sequence MAP detector reduces
to an instantaneous symbol-by-symbol mapping. A sufficient
condition is also provided for the case ofM ≥ 1. In Sec-
tion IV, we present and evaluate the two JSCC schemes for the
NBNDC-QB (the SQ-MAP and COVQ schemes). In SQ-MAP,
we apply the MAP decoding system to a scalar quantized
analog-valued Markov source and assess system performance
in terms of signal-to-distortion ratio (SDR). This extends
[11] where only binary output channels with Markov noise
were considered. A COVQ system is then proposed for the
NBNDC-QB. Similar to the SQ-MAP, we show numerically
that the COVQ can successfully exploit the channel’s memory

and soft-decision information and achieve considerably better
SDR performance than systems with hard output quantization
and systems that disregard the channel’s memory via the
use of interleaving. In Section V, we numerically validate
the NBNDC-QB model for both the SQ-MAP and COVQ
systems as an effective approximation of the Rayleigh DFC.
We conclude the paper in Section VI.

II. NBNDC-QB AND DFC CHANNEL MODELS

In this section we review the two channel models studied in
[23], [25]: the NBNDC-QB and the Rayleigh DFC. We also
observe that the DFC is a special instance of the NBNDC.

A. NBNDC-QB

The NBNDC [23], [25] is a binary-input and2q-ary-output
channel model, whereq ≥ 1. The input data bitsXj ∈ {0, 1}
are affected by noiseZj via the relation

Yj = (2q − 1)Xj + (−1)Xj Zj , j = 1, 2, . . . , (1)

where Yj and Zj take values inY = {0, 1, . . . , 2q − 1},
with {Yj} denoting the channel output process, and where the
noise process{Zj} is assumed to be independent of{Xj}.
According to (1),Zj can also be written in terms of input and
output symbols:

Zj =
Yj − (2q − 1)Xj

(−1)Xj
, j = 1, 2, . . . . (2)

The noise process{Zj} can in general be any stochastic
process. Following [23], [25], we choose{Zj} to be a non-
binary generalization of the queue-based (QB) noise [18].
We refer to the ensuing channel model by NBNDC-QB. The
model, which is based on a ball sampling mechanism involving
an urn and a queue ofM cells, is intuitively described as
follows. At time instancej > M , with probability 1 − ǫ, the
noise symbolZj is independent of past noise symbols and is
picked according toPr{Zj = i} = ρi, i = 0, 1, . . . , 2q − 1.
With probability ǫ, Zj is chosen to be one ofM preceding
noise symbols (the probability thatZj takes a particular value
depends on a bias parameter2 α and increases in proportion to
the number of times that value occurred in theM past noise
symbols). The detailed description of the noise model is given
in [18], [25]. The resulting QB noise{Zj} is a stationary and
ergodic (irreducible)M th-order Markov process described by
only 2q + 2 independent parameters: the memory orderM ,
the marginal probability distribution(ρ0, ρ1, . . . , ρ2q−1), and
correlation parameters0 ≤ ε < 1 andα ≥ 0.

The state process{Sj} of the QB noise, defined bySj ,
(Zj , Zj−1, . . . , Zj−M+1) for j ≥ M , is a homogeneous
first-order Markov process taking values in{0, 1, . . . , 2q −
1}M . It is shown in [23], [25] that forj ≥ M + 1 the
noise state transition probabilitiesQ(sj |sj−1) , Pr{Sj =
sj |Sj−1 = sj−1}, with sj = (zj , zj−1, . . . , zj−M+1) and
sj−1 = (z′j , z

′
j−1, . . . , z

′
j−M+1), are given by

Q(sj |sj−1) =

(

M−1
∑

ℓ=1

δzj ,zj−ℓ
+ αδzj ,zj−M

)

ε

M − 1 + α

2When M = 1, the queue has only one cell; in this case the cell bias
parameter is set toα = 1 [18], [25].
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+ (1 − ε)ρzj
, (3)

if zk−1 = z′k for k = j, . . . , j − M + 2, andQ(sj |sj−1) = 0
otherwise, whereδi,i′ = 1 if i = i′ andδi,i′ = 0 if i 6= i′, and
∑0

l=1 , 0.
Since the noise process is independent of the input, we have

Pr{Y m = ym |Xm = xm} = Pr{Zm = zm}, (4)

where ym = (y1, y2, · · · , ym), xm = (x1, x2, · · · , xm) and
zm = (z1, z2 · · · , zm), noting that xi and yi determine
zi through (2). Them-fold channel transition probability
Pr{Zm = zm} , P

(m)
NBNDC-QB(z

m) is given in [25, Eqns. (20)
and (21)] (withn corresponding tom herein); in particular,
for m = 1, P

(1)
NBNDC-QB(z1) = ρz1

for all z1 ∈ Y. The channel
noise correlation coefficient is given by [25]

Cor =
E[ZkZk+1] − E[Zk]2

Var(Zk)
=

ε
M−1+α

1 − (M − 2 + α) ε
M−1+α

.

B. Rayleigh DFC

The Rayleigh DFC we consider consists of a binary phase-
shift keying (BPSK) modulator, a time-correlated flat Rayleigh
fading channel with additive white Gaussian noise (AWGN),
and aq-bit soft-quantized coherent demodulator. The input and
output alphabets areX = {0, 1} andY = {0, 1, . . . , 2q − 1},
respectively. Denoting the DFC binary input process by{Xk},
the received channel symbols are given byRk =

√
EsAkSk +

Nk, k = 1, 2, . . . , whereEs is the energy of signal sent over
the channel,Sk = 2Xk − 1 is the {−1, 1}-valued BPSK
modulated signal, and{Nk} is a sequence of independent
and identically distributed (i.i.d.) Gaussian random variables
of varianceN0/2. Here{Ak} is the channel’s Rayleigh fading
process (which is independent from{Nk} and the input
process) withAk = |Gk|, where{Gk} is a time-correlated
complex wide-sense stationary Gaussian process with Clarke’s
autocorrelation function given as a Bessel function of the
normalized maximum Doppler frequencyfDT [25], [28]. The
DFC’s signal-to-noise ratio (SNR) is given by SNR= Es/N0.

In the DFC model, a soft-decision demodulator consisting
of a q-bit uniform quantizer takes the outputRk to produce the
discrete channel output:Yk = j, if Rk ∈ (T ′

j−1, T
′
j ], where

theT ′
j are uniformly spaced thresholds with step-size∆, given

by T ′
−1 = −∞, T ′

j = (j +1−2q−1)∆ for j = 0, 1, . . . , 2q −2

andT ′
2q−1 = ∞. Letting δ , ∆/

√
Es andTj , T ′

j/
√

Es, the
m-fold transition probability for the DFC can be calculated
via [23], [25]

P
(m)
DFC(ym |xm) , Pr{Y m = ym |Xm = xm} (5)

= EA1...Am

[

m
∏

k=1

qxk,yk
(Ak)

]

,

where

qi,j(ak) , Pr{Yk = j|Xk = i, Ak = ak}
= QG

(√
2SNR(Tj−1 − (2i − 1)ak

)

−QG

(√
2SNR(Tj − (2i − 1)ak

)

with QG(·) denoting the Gaussian Q-function, andEX [·]
denotes expectation with respect to the random variableX.
For m = 1, there is closed form expression forP

(1)
DFC(y|x) =

P
(1)
DFC(j), given by

P
(1)
DFC(j) = n(−Tj−1) − n(−Tj), (6)

wherej = y−(2q−1)x
(−1)x ∈ Y, and

n(Tj) =1−QG(Tj

√
2SNR)−

[

1−QG

(

Tj

√
2SNR√
1

SNR+1

)]

e
−

T2
j

( 1
SNR+1)

√

1
SNR + 1

.

For m 6 3, P
(m)
DFC(ym|xm) can be calculated in closed form.

For m > 3, (5) can only be determined numerically. Finally,
we point out that the DFC is actually an NBNDC as given by
(1) whose noise process has ann-fold distribution given by
(5) [23], [25].

C. Fitting the NBNDC-QB model to Raleigh DFC model

We fit the NBNDC-QB model to a given Rayleigh DFC
(with fixed SNR andfDT andq) via the following steps [24],
[25]:

• Match the noise one-dimensional probability distributions
by settingρj = P

(1)
DFC(j) for j ∈ Y, whereP

(1)
DFC(j) is

given by (6), in terms ofδ, q, and SNR. The values of
ρj are given in Table I.

• Match the noise correlation coefficients (so that the
QB parameterα is given in terms ofM and ε). The
DFC noise correlation coefficient is calculated using
P

(m)
DFC(ym|xm) in (5) for m = 2 [25].

• Estimate the remaining QB parameters (M, ε) by mini-
mizing the Kullback-Leibler divergence rate between the
two (2q-ary) noise processes.

It is important to note that in general the two channel mod-
els cannot be matched to have identical statistical behavior.
However, for the memoryless case (with Cor=0), the NBNDC-
QB is statistically identical to the ideally interleaved DFC.
The values of the fitting NBNDC-QB parameters obtained as
outlined above are given in [24, Table II] for different DFC’s.

III. MAP D ETECTION OFMARKOV SOURCES OVER THE

NBNDC-QB

A. MAP decoder design

Consider a stationary and ergodic discrete source{Xi} with
finite alphabet{0, 1}n. Here{Xi} can represent the output of
a source encoder, such as the output of a rate-n scalar quantizer
(as will be seen in Section IV). Its redundancy (which is due
to the source’s statistical memory and the non-uniformity of
its marginal distribution [11], [26]) encapsulates the source’s
dispensable amount of information that can be eliminated via
optimal variable-length lossless or fixed-rate nearly-lossless
data compression.

Suppose that a sequence ofN source symbolsxN =
(x1,x2, . . . ,xN ) ∈ {0, 1}nN is sent over the NBNDC-QB
in nN channel uses. The channel contaminates this source
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sequence via a sequence of2q-ary noise symbolsznN =
(z1, z2, . . . , znN ) ∈ {0, 1, . . . , 2q − 1}nN and outputs the
sequenceyN = (y1,y2, . . . ,yN ) ∈ {0, 1, . . . , 2q − 1}nN .
Since the transmission over the channel is done bit-by-bit
(and not n-tuple by n-tuple), we represent the noise se-
quence using a bit-by-bit notation so that the noise symbols
(zni+1, zni+2, . . . , zn(i+1)), i = 0, 1, . . . , N−1, correspond to
the inputn-tuple xi+1 and outputn-tuple yi+1. The channel
outputyN is fed to a sequence MAP decoder which estimates
xN by x̂N as:

x̂N = arg max
xN

Pr{XN = xN |YN = yN}. (7)

To simplify the derivation the MAP decoding metric, we first
assume that the source{Xi} is i.i.d. A minor modification
of the decoding metric is needed to accommodate (Markov)
sources with memory.

For i, j, k ∈ {1, 2, . . . , nN − 1}, i + j ≤ nN, i − k ≥ 1,
define

Q(zi+j
i+1|zi

i−k) , Pr{Zi+j
i+1 = zi+j

i+1|Zi
i−k = zi

i−k}.

Since the NBNDC-QB channel noise is Markov of memory
orderM , for nN > M (which typically holds asN is assumed
to be large in practice), it can be shown (see [2], [34]) that
(7) is equivalent to

x̂N = arg max
xN

{log[P
(n)
NBNDC-QB(z

n
1 )P (x1)] + (8)

N−1
∑

i=1

log[Q(z
(i+1)n
in+1 | zin

in−(M−1))P (xi+1)]},

whereP (xi) , Pr{Xi = xi} is the probability distribution
of random vectorXi of sizen and from (3),

Q(zj+n
j+1 | zj

j−(M−1)) =

j+n
∏

i=j+1

[





i−1
∑

ℓ=i−(M−1)

δzi,zℓ
+ αδzi,zi−M



×

ε

M − 1 + α
+ (1 − ε)ρzi

]

, (9)

with zi , 0 if i < 1, zj
i = (zi, zi+1, . . . , zj),

P
(n)
NBNDC-QB(z

n
1 ) = Pr{Zn

1 = zn
1 } given in [25, Eqns. (20)

and (21)], andzi related to its corresponding symbolsxi and
yi via (2). In light of (8) and (9), the MAP detection can be
implemented using a modified version of the Viterbi algorithm
[2], [34].

For the case of sources with memory, we assume that the
source forms a discrete first-order Markov chain with state
transition probability matrixP (xi+1|xi); in this case, the path
metric can be directly obtained from (8) by replacingP (xi+1)
to P (xi+1|xi).

B. Case study: MAP detection of binary Markov sources

It is useful to know when the MAP detector can be
replaced with an instantaneous (symbol-by-symbol) decoding
rule without loss of optimality in terms of minimal sequence
probability of error. The answer to this question is partly
given in [26, Theorem 1], which gives necessary and sufficient

conditions for the MAP decoder to beuselessfor a binary
Markov channel and a binary Markov source. In this case,
a MAP decoder is called useless if it decodes what it sees
(i.e., X̂N = Y N ) and thus does not improve the channel’s
sequence error rate (this is also known assay-what-you-seeor
singlet decoding[26], [31]). Note that skipping the decoder
and accepting the output sequence without further processing
can only be achieved forq = 1 since in that case the output
sequence is also binary.

We examine this problem forq ≥ 2 where the received
sequence is not binary and we provide a non-trivial extension
of [26, Theorem 1]. Specifically, we apply a mappingθ to
convert each2q-ary received symbolYk, into a binary symbol
Ỹk. We find the optimal mappingθ∗ in the sense of minimizing
the symbol error probability. For a symmetric binary Markov
source and an NBNDC-QB withM = 1 andq ≥ 2, our main
result here establishes a necessary and sufficient condition for
this mappingθ∗ to be an optimal sequence detection rule.

Consider a binary source (n = 1) and the NBNDC-QB
channel withM = 1. In this case, the channel noise{Zn} is
a first-order Markov process with (cf. Section II)

Q(zi) , Pr{Zn = zi} = ρzi
, (10)

Q(zi|zj) , Pr{Zn = zi|Zn−1 = zj} =
[

εδzi,zj
+ (1 − ε)ρzi

]

, zi, zj ∈ Y.

Consider a mappingθ : Y → {0, 1}. To replace the MAP
detector with the mappingθ we simply set x̂n = ỹn =
θ(yn), n = 1, 2, . . . , N . The following lemma is proved in
Appendix A.

Lemma 1:For the NBNDC-QB with parameters satisfying
the condition

ρ0 ≥ ρ1 ≥ ρ2 ≥ . . . ≥ ρ2q−1, (11)

among all mappingsθ : Y → {0, 1} the following mapping
θ∗ yields the lowest symbol probability of error:

θ∗(yn) = ỹn =

{

0, if yn < k∗,
1, otherwise,

(12)

wherek∗ ∈ {0, 1, . . . , 2q} is the smallest value satisfying

ρk∗

ρ2q−k∗−1
≤ P (1)

P (0)
, (13)

whereρ−1 , ∞, ρ2q , 0, andP (x) , Pr{X = x}.
As in Section III-A, the sequence{Xi} (which is the same

as{Xi}, sincen = 1) is assumed to be a first order stationary
Markov chain. Define

pxnxn−1
, P (xn|xn−1) , Pr{Xn = xn|Xn−1 = xn−1},

(14)

pxn
, P (xn) , Pr{Xn = xn}.

For the special case of a symmetric binary Markov source i.e.,
P (0) = P (1), it can be seen from (13) thatk∗ = 2q−1, since
in this case

i)
ρk∗

ρ2q−k∗−1
=

ρ2q−1

ρ2q−1−1

≤ 1,

ii)
ρk∗−1

ρ2q−k∗

=
ρ2q−1−1

ρ2q−1

≥ 1.
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Define theauxiliary binary noise symbol̃zn which is related
to its corresponding noise symbolzn via

z̃n =

{

0, if zn < 2q−1,
1, otherwise.

(15)

The sequence of auxiliary binary noise symbols form an
auxiliary noise process{Z̃n}. Since the noise process{Zn}
is independent of the input process{Xn} and the auxiliary
binary noise variablẽZn is only a function ofZn, the auxiliary
noise process{Z̃n} is also independent of the input process
{Xn}.

The following lemma is proved in Appendix B
Lemma 2: If {Zn} is a first-order Markov chain, then the

auxiliary noise process{Z̃n} forms a first order Markov chain.
Note that the definition of the NBNDC in (1), the definition

of the mappingθ∗ given in (12), and the fact that for symmetric
binary Markov sourcesk∗ = 2q−1, imply that ỹn = xn if and
only if zn < 2q−1 (in which casez̃n = 0). As a result, the
auxiliary binary noise symbol can also be defined in terms of
the inputxn and ỹn as follows:

z̃n ,

{

0, if ỹn = xn,
1, if ỹn = xc

n,
(16)

wherexc
n is the binary complement ofxn and ỹn = θ∗(yn).

The following theorem gives a necessary and sufficient
condition for the mappingθ∗ to be an optimal sequence
detection rule forq ≥ 2. The proof is given in Appendix C.

Theorem 1:Consider a symmetric binary Markov source
with p00 = p11 ∈ [ 12 , 1] and the NBNDC-QB with correlation
parameterε ≥ 0, memory orderM = 1, q ≥ 2, and satisfying
(11). Let xN be a source sequence of lengthN ≥ 3, yN a
channel output sequence, and letỹN = θ∗(yN ) be obtained by
applying the mappingθ∗ component-wise toyN . If x1 = ỹ1

and xN = ỹN , then x̂N = ỹN is an optimal sequence MAP
detection rule if and only if

ρ2q−1−1

ρ2q−1

×
[

1 − p00

p00

]2

≥ 1, (17)

wherep00 is defined via (14).
For binary symmetric first-order Markov sources withp00 =

p11 ∈ [0, 1
2 ), using the same approach, a similar theorem can

be proved under the following condition

ρ2q−1−1

ρ2q−1

×
[

p00

1 − p00

]2

≥ 1.

Note that the conditionsx1 = ỹ1 and xN = ỹN in the
theorem are not stringent, since they can be simply satisfiedby
sending a pre-assigned value forx1 andxN , where the receiver
is also aware of the pre-assigned values. On the practical side,
simulation results for long sequences confirm the result of the
theorem without the need to check these conditions.

It is interesting to note that forq ≥ 2 the optimality
condition (17) is independent of the channel noise correlation
ε, while for q = 1, the condition depends on the noise
correlation. In particular [26, Corollary 3] shows that forq = 1
the condition analogous to (17) is

(ε + (1 − ε)ρ0)
2

(1 − ε)2ρ0ρ1
×
[

1 − p00

p00

]2

≥ 1.

Theorem 1 is illustrated in Table II for a binary symmetric
Markov source withp00 = 0.6 and0.7, whereC is the term
on the left-hand side of (17). In the table, the NBNDC-QB’s
one-dimensional noise distribution is calculated by matching
it to that of the underlying DFC; i.e., by settingρj = P

(1)
DFC(j)

as given in (6) in terms of SNR,q andδ, where the values of
δ are chosen so that the capacity of the DFC is maximized,
see Table I. From Table II we clearly observe that when
C < 1 the MAP decoder is performing better than the mapping
θ∗. For the cases withC ≥ 1 the MAP decoder and the
instantaneous mappingθ∗ have the same performance even
though in the simulations the boundary conditionsx1 = ỹ1 and
xN = ỹN from the theorem have not been checked. Additional
results illustrating the independence of the results of thenoise
correlation can be found in [34].

Remark: For M ≥ 1 and under the same setting as in
Theorem 1, with the boundary assumptions thatx1 = ỹ1,
x2 = ỹ2, . . . , xM = ỹM and xN = ỹN , whereN > M + 1,
one can prove that thesufficiencyof condition (17) for the
optimality of the symbol-by-symbol decoding mapθ∗ can be
generalized to

M−2+α
M−1+α

ε + (1 − ε)ρ2q−1−1

M−2+α
M−1+α

ε + (1 − ε)ρ2q−1

×
[

1 − p00

p00

]2

≥ 1. (18)

IV. ROBUST LOSSYSOURCECODING OVER THE

NBNDC-QB

The NBNDC captures a large class of channel models. For
example, settingq = 1 and letting the noise be i.i.d. reduces
the NBNDC to the familiar memoryless binary symmetric
channel. As noted in Section II, the Rayleigh DFC with
Clarke’s fading model is also an NBNDC with a stationary and
ergodic noise process [23], [25]. Furthermore, the model has
the ability to properly delineate both the statistical memory
structure as well as the soft-decision information of many
real-valued output channels with memory used with antipo-
dal signaling and soft-output quantization (including colored
additive Gaussian channels). In this section, we design two
JSCC schemes, scalar quantization with MAP decoding (SQ-
MAP) and channel-optimized vector quantization (COVQ), for
the NBNDC-QB channel.

A. SQ-MAP system

1) System description:Consider the system depicted in
Fig. 1. The source{Vi}∞i=1 is assumed to be a real-valued
stationary and ergodic process. The scalar quantizer (SQ)
encoder is a mappingγ from the real domainR of source
symbols to the index set{0, 1, . . . , 2n−1}, such thatγ(v) = i
if v ∈ Ri, where{Ri : i = 0, 1, . . . , 2n − 1} is a partition
of R. Hence the SQ rate isR = n. The partitions are
chosen according to Lloyd-Max formulation [35], with the
initial codebook selection obtained via the splitting algorithm
[27]. The index assignment module is a one-to-one mapping
b : {0, 1, . . . , 2n − 1} → {0, 1}n with b(i) = x, which maps
each indexi to a binary vectorx ∈ {0, 1}n. Sinceb is one-
to-one, we can denote the quantization regions byRx instead
of Ri, whereb(i) = x. Different index assignment methods
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such as the natural binary code (NBC), the folded binary code
(FBC) [11], simulated annealing, and some heuristic assign-
ment methods were tested. The FBC was selected because of
its simplicity and good performance.

The n-tuple codewordx is then sent bit-by-bit over the
NBNDC-QB channel. The channel output,y ∈ {0, 1, . . . , 2q−
1}n, is fed to the MAP decoder described in the previous
section, where the source redundancy and channel memory
are harnessed for error correction. Finally, the SQ decoderβ
maps the decoder outputx̂ into output levels of the quantizer
codebook, i.e.,β(x̂) = cx̂, cx̂ ∈ R, x̂ ∈ {0, 1}n.

Using a MAP decoder enables the system to take advantage
of inter-block memory in order to minimize the sequence error
probability (and, as a result, decrease the distortion).3 It can
be seen that in this system, most of the complexity load is
undertaken by the receiver.

2) Numerical results:We next present numerical results
on the performance of the described communication system
for the NBNDC-QB model. The NBNDC-QB noise one-
dimensional distributionρj is expressed in terms of the SNR
of the underlying Rayleigh DFC (discussed in Section II-B)
by settingρj = P

(1)
DFC(j), whereP

(1)
DFC(j) is given in (6) for

j = 0, 1, . . . , 2q − 1 and δ is chosen as in [23] to maximize
the DFC capacity as given in Table I.

Several source distributions are tested, including memory-
less (i.i.d.) Gaussian and Laplacian sources and correlated
Gauss-Markov sources. All sources have zero mean and unit
variance. The correlated source is modeled via a first-order
Markov process, defined byVi = φVi−1 + Ui where φ ∈
(−1, 1) is the correlation parameter and{Ui} is a Gaussian
i.i.d. process. Note that when{Vi} is i.i.d., the resulting2n-
ary process{xi} is also i.i.d. However, if{Vi} is Markovian,
{xi} is not necessarily Markovian, but we model it as a
Markov process (the distributionP (xi) and state transition
matrix [P (xi |xi−1)] are calculated from a training set of
source symbols used for designing the SQ).

For each simulation, the SQ training and statistics collection
is done over a set of106 source symbols. For testing,N = 105

independently generated source symbols are transmitted and
the signal-to-distortion ratio (SDR) per source symbol is cal-
culated under the mean square error (MSE) distortion measure.
We run each simulation 10 times and take average for ensuring
consistent results. Table III depicts simulation results (in dB)
for different sources over the NBNDC-QB model with several
values of the parameters SNR, SQ codeword lengthn, noise
correlation Cor, and soft-decision resolutionq.

Memoryless sources:Table III indicates that the system
exploiting high noise correlation performs significantly better
than the system that fully interleaves (Cor= 0) the channel.
For example, more than 4.2 dB of SDR gain is obtained for
memoryless Laplacian sources atq = 3, n = 3, SNR = 2.
Also, for n = 1, since the quantized codewords form a
symmetric i.i.d. source (p00 = p11 = 0.5), the results illustrate
Corollary 3 of [26] (whenq = 1) and Theorem 1 of Section III
(when q ≥ 2). Table IV shows the results of an SQ system,

3Note that the MAP decoder does not directly minimize the end-to-end
mean square distortion.

using the instantaneous mapping instead of MAP detection, for
various source distributions. A comparison of Tables III and IV
for n = 1 for Gaussian and Laplacian sources reveals that
the instantaneous symbol-by-symbol decoder is performingas
well as the MAP decoder for these cases. Considerable gains
(up to 2.25 and 3 dB) are also obtained by increasing the
quantizer resolution toq = 2 and q = 3, respectively (for
n = 3, SNR= 5 and Cor= 0.9 for Laplacian sources).

Gauss-Markov sources:From Table III, we remark that up
to 3.4 dB SDR gains (atq = 3, n = 3, SNR = 2) can
be realized for Gauss-Markov sources by exploiting the noise
correlation instead of interleaving the channel. In general a
better performance is observed when the channel is highly
correlated.

At low rates, especially atn = 1, the SDR performance
for the correlated channel is worse than that for the uncor-
related channel. This behavior is expected forn = 1 and
q = 1 from [26, Corollary 3]. According to this corollary
and the numerical results, for the correlated channel, the
source memory has a mismatch with the channel memory.
As a result, increasing the channel noise correlation will also
increase the mismatch between the source and channel, making
the SQ-MAP perform worse on correlated channels than on
uncorrelated channels. However, this mismatch does not occur
for higher rates (n > 2) and the SDR performance of the
system significantly improves with increasing channel noise
correlation. Forn = 1 the results of Theorem 1 can also be
illustrated by comparing the Gauss-Markov source results for
n = 1 (with p00 = p11 = 0.86) in Tables III and IV.

In addition, using a 3-bit soft-decision quantizer in the
receiver, gains up to 3.9 dB are observed (atn = 3, SNR= 2,
Cor = 0.9 for Gauss-Markov sources) over a hard-decision
quantizer (q = 1). Additional results for other values of Cor
and M are given in [34]. It is seen that for lower noise
correlations, (e.g., Cor=0.5 and 0.7), the system still has a
better SDR performance, although the gain is less than for
Cor=0.9.

B. Channel Optimized Vector Quantization (COVQ)

In contrast to the SQ-MAP, the COVQ system incorporates
the intra-block memory of the noise into the quantizer design
algorithm. This makes it is more robust to channel noise than
standard scalar or vector quantizers such as the LBG-VQ [27],
without adding extra algebraic (channel coding) redundancy.

The COVQ system, of rateR = n/k, is depicted in Fig. 2.
We refer the reader to [1], [34] for a detailed description of
the system as well as its design algorithm based on iteratively
applying optimality encoder and decoder conditions [7]–[10].
Instead, we focus on illustrating the system’s performanceover
the NBNDC-QB channel. The same source distributions were
used as for the SQ-MAP system, and the algorithm was trained
using 500,000 source vectors.

Table V depicts COVQ training results for the memoryless
Laplacian source over NBNDC-QB with different channel
noise correlation coefficients and coding rates. The channel
parametersδ and ρj are given in Table I. As for the SQ-
MAP system, the results show that the COVQ system performs
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consistently better over the highly correlated channel than
over the fully interleaved one: gains of more than 4.4 dB are
achievable (e.g., forq = 1, R = 3, k = 3, SNR = 2 in
Table V) by exploiting the channel memory. Note that since
the COVQ only makes use of intra-block memory, for rate
R = 1 and low dimensionsk, the block length is so small that
there is not much channel memory to exploit. As a result, the
performance is constant for different channel correlations. It
is however observed that in some cases interleaving may give
better COVQ performance over channels with lower noise cor-
relations. Since the capacity of the correlated channel is strictly
higher than that of the memoryless channel, this degradation
may be due to poor selection of the initial codebook for the
vector quantizer. In general, the results indicate improvement
of COVQ performance when the channel noise correlation is
increased. Similar observations can be made for memoryless
Gaussian and Gauss-Markov sources and different channel
parameters (such as lower correlation values Cor and higher
memory ordersM ) [34].

Finally, as in the case of the SQ-MAP system, we remark
that the COVQ performs considerably better with soft-decision
quantization (q ≥ 2) as opposed to hard-quantization (q = 1).
Table V reveals SDR gains as high as 1.7 dB (forR = 3,
k = 1, Cor = 0, SNR = 5) by just usingq = 2. For 3-
bit quantization additional (but less pronounced) gains can be
realized.

V. VALIDATING THE NBNDC-QB MODEL IN TERMS OF

SDR

To illustrate the use of the NBNDC-QB model in a practical
setup, we next assess how well it can represent the correlated
Rayleigh DFC in terms of SDR performance when used with
the SQ-MAP and COVQ systems. As noted in Section II-B, the
m-fold probability distribution of correlated Rayleigh random
variables is not known in closed form form > 3, and as a
result the channel transition probabilitiesP (m)

DFC(ym|xm) can
only be calculated numerically. It is shown in [24] that the
NBNDC-QB model (for which the channel transition probabil-
ities are known is closed form) can approximate the Rayleigh
DFC in terms of channel capacity and noise autocorrelation
function.

A. SQ-MAP system

To validate the NBNDC-QB model as a good representation
of the Rayleigh DFC for SQ-MAP systems, we design the
MAP detector using the path metric obtained for an NBNDC-
QB (whose parameters are obtained using the matching pro-
cedure described in Section II-C) and run simulation using
both the NBNDC-QB and the Rayleigh DFC to compare
their performance. Hence the system simulated over the DFC
employs a mismatched decoder.

To simulate the Rayleigh DFC, we generate the fading
coefficients using the modified Clarke method [36]. Simulation
results in terms of SDR are shown in Fig. 3 for memoryless
Gaussian sources. More results can be found in [2], [34]. Com-
paring the performance of the system for the two channels,
we observe that for lower rates (codeword lengthsn = 1

and 2 for the memoryless Gaussian source), there is a good
conformity between the results for the two channel models.
This agreement in SDR performance can be heuristically
explained by noting that for low rates (n = 1 and 2), the
SQ output sent to the channel input is nearly i.i.d. uniform.
But the NBNDC-QB and DFC channels were matched by
minimizing the divergence rate between their noise processes.
Hence, when both channels are driven by the same capacity-
achieving input (which is i.i.d. uniform as both channels are
symmetric), they will then have a similar probability of error
performance in addition to nearly identical capacities. The
same agreement in SDR performance is also observed for
memoryless Laplacian and Gauss-Markov sources forn = 1.
We finally note that forn ≥ 3, some disagreement in SDR
performance is observed [34] between the two systems (in
this case the SQ output is not i.i.d. uniform). Note that
the degradation is not unexpected since for higher rates the
source input distribution becomes less uniform, and therefore
the matched NBNDC-QB model becomes less successful in
imitating the error performance of the DFC.

B. COVQ system

We next train a COVQ for an NBNDC-QB whose param-
eters are obtained by the procedure given in Section II-C to
match a given Rayleigh DFC. The resulting channel optimized
quantizer’s performance is then tested over the DFC (here
again there is a mismatch in the COVQ system used over the
DFC as it is designed for the modeling NBNDC-QB). Training
and simulation results in terms of SDR are shown in Fig. 4 for
memoryless Gaussian sources: we observe that there is a good
conformity between the results for the two channel models, in
case the NBNDC-QB is used for training and the DFC for
testing. However, for higher rates, some degradation between
the simulation and training results is observed. The same
observation applies for memoryless Laplacian and correlated
Gauss-Markov sources [1], [34].

VI. CONCLUSION

Robust source coding for a new channel model called
NBNDC-QB was studied. This channel model is analytically
tractable (its transition probabilities, noise entropy rate and
autocorrelation function are known in closed form) and can
serve as a good approximation to a discrete Rayleigh fading
channel. First, the MAP decoding of a discrete source was
considered and implemented using the Viterbi algorithm. For
binary symmetric sources a necessary and sufficient condition
was derived for the MAP decoder to be reducible to an instan-
taneous symbol-by-symbol decoder without loss of optimality.
This condition was also numerically illustrated.

Two lossy JSCC schemes with low delay and complexity
were implemented and tested for the NBNDC-QB model.
In the first system the MAP decoder was matched to a
scalar quantized Markov source (SQ-MAP system). Numerical
results demonstrated that the proposed system can success-
fully utilize memory and soft-decision information over the
NBNDC-QB channel model. The second JSCC scheme, which
consists of a COVQ implemented over the NBNDC-QB, was
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also shown to successfully exploit the channel’s intra–block
memory and soft information in combating channel errors.
Both systems outperform their fully interleaved counterpart
systems where the channel memory is discarded using ideal
(infinite) interleaving.

Finally, the channel model was compared to the correlated
Rayleigh DFC in terms of SDR performance. It was shown
numerically that for both the SQ-MAP and COVQ systems the
NBNDC-QB model can effectively approximate the Rayleigh
discrete fading channels for low coding rates. Future research
directions include the integration of iterative source-channel
coding/decoding methods (e.g. see [37]–[42]) into our JSCC
systems for correlated fading channels (used without inter-
leaving) to further improve performance under very noisy
conditions while only moderately increasing system delay and
complexity.

APPENDIX A

Proof of Lemma 1: We will show that any mappingθ
can be modified via a sequence of simple changes, each of
which can only decrease the error probability, such that after
a finite number of these changes the modified mapping will
be equal toθ∗.

To this end, we consider a mappingθ : Y → {0, 1} as a
classification rule that classifies2q different output symbols
from {0, 1, . . . , 2q − 1} into two classesY0 andY1. Thusθ is
defined by

θ(y) , ỹ =

{

0, if y ∈ Y0,
1, if y ∈ Y1,

(19)

whereY1 ⊂ Y andY0 = Y \ Y1.
According to (12), forθ∗ we haveY∗

0 = {0, 1, . . . , k∗ − 1}
andY∗

1 = {k∗, k∗ +1, . . . , 2q − 1}. Let Pe denote the symbol
error probability under mappingθ, Pe , Pr{θ(Y ) 6= X},
where (X,Y ) has the common joint distribution of the pairs
(Xi, Yi). If θ 6= θ∗, at least one of the two following cases
hold:

i) There exists an elementa ∈ Y1, such thata < k∗.
Removing a from Y1 and adding it toY0 yields a
mapping with error probabilitỹPe, such that

P̃e − Pe = Pr{Y = a|X = 1}Pr{X = 1} (20)

−Pr{Y = a|X = 0}Pr{X = 0}
= Q(2q − 1 − a)P (1) − Q(a)P (0)

= P (1)ρ2q−1−a − P (0)ρa.

According to (11),ρa ≥ ρk∗−1 and ρ2q−k∗ ≥ ρ2q−1−a.
Hence by (13),

P (1)

P (0)
≤ ρk∗−1

ρ2q−k∗

≤ ρa

ρ2q−1−a

and thereforeP̃e − Pe ≤ 0. Thus, removinga from Y1,
and adding it toY0 does not increase the error probability.

ii) There exists an elementb ∈ Y0, such thatb ≥ k∗. Similar
to (21), it can be shown that

P̃e − Pe = −P (1)ρ2q−1−b + P (0)ρb.

According to (11),ρb ≤ ρk∗ and ρ2q−k∗−1 ≤ ρ2q−1−b.
Hence by (13),

P (1)

P (0)
≥ ρk∗

ρ2q−k∗−1
≥ ρb

ρ2q−1−b

and thusP̃e − Pe ≤ 0. Hence, removingb from Y0 and
adding it toY1 does not increase error probability.

It follows that if we start from an arbitrary mappingθ, after
at most2q − 1 applications of the above replacement steps,
we obtain θ∗. Since each step can only reduce the error
probability, among all mappingsθ∗ must minimize the error
probability.

APPENDIX B

Proof of Lemma 2:Let {Zn} be a Markov process with a
finite state spaceY and let the binary process{Z̃n} be defined
by Z̃n = f(Zn) for a function f : Y → {0, 1}. We use a
result given in [32, p. 325] [33] which states that a sufficient
condition for{Z̃n} to be a Markov process is that

Pr{Z̃n+1 = z̃n+1|Zn = zn} = Pr{Z̃n+1 = z̃n+1|Z̃n = f(zn)},
(21)

for all z̃n+1 andzn. Let f be given by (15). Then using (10),
we have

Pr{Z̃n+1 = 0|Zn = zn} (22)

= Pr
{

Zn+1 ∈ {0, 1, . . . , 2q−1 − 1}|Zn = zn

}

=

2g−1−1
∑

i=0

Pr{Zn+1 = i|Zn = zn}

=
2g−1−1
∑

i=0

Q(i|zn)

=

{

ε +
∑2q−1−1

i=0 (1 − ε)ρi, if zn < 2q−1,
∑2q−1−1

i=0 (1 − ε)ρi, if zn ≥ 2q−1.

Also

Pr{Z̃n+1 = 0|Z̃n = 0} (23)

=

2q−1−1
∑

i=0

Pr
{

Z̃n+1 = 0|Zn = i
} Pr{Zn = i}

Pr{Z̃n = 0}
.

Note that according to (22), for allj = 0, . . . , 2q−1 − 1,

Pr{Z̃n+1 = 0|Zn = j} = ε +

2q−1−1
∑

i=0

(1 − ε)ρi.

Hence, (23) is equal to

(

ε +

2q−1−1
∑

i=0

(1 − ε)ρi

)∑2q−1−1
i=0 Pr{Zn = i}

Pr{Z̃n = 0}

=

(

ε +
2q−1−1
∑

i=0

(1 − ε)ρi

)

Pr{Z̃n = 0}
Pr{Z̃n = 0}

= ε +

2q−1−1
∑

i=0

(1 − ε)ρi.
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Using the same reasoning, it can be shown that

Pr{Z̃n+1 = 0|Z̃n = 1} =

2q−1−1
∑

i=0

(1 − ε)ρi. (24)

Thus according to (23) and (24),

Pr{Z̃n+1 = 0|Z̃n = z̃n} (25)

=

{

ε +
∑2q−1−1

i=0 (1 − ε)ρi, if z̃n = 0,
∑2q−1−1

i=0 (1 − ε)ρi, if z̃n = 1.

It can be seen from (22) and (25) that condition (21) is satisfied
for the NBNDC-QB with memory orderM = 1 and the
functionf defined via (15). Consequently,{Z̃n} is a first order
Markov chain.

APPENDIX C

Proof of Theorem 1:For θ∗ to be the optimal detection
rule it is necessary and sufficient that for allxN ∈ {0, 1}N

andyN ∈ {0, 1, . . . , 2q − 1}N , the following hold

γ ,
Pr{XN = ỹN |Y N = yN}
Pr{XN = xN |Y N = yN} ≥ 1.

γ can be written as

γ =
Pr{Y N = yN |XN = ỹN}Pr{XN = ỹN}
Pr{Y N = yN |XN = xN}Pr{XN = xN} .

Note that by (2) and (4), we havePr{Y N = yN |XN =

xN} = Pr{ZN = zN}, where zi = yi−(2q−1)xi

(−1)xi
∈

{0, 1, · · · , 2q − 1}, i = 1, 2, . . . , N . Also note that by the
definition of θ∗ (with k∗ = 2q−1), if we let ai , yi−(2q−1)ỹi

(−1)ỹi
,

with ỹi = θ∗(yi), then ai ∈ {0, 1, . . . , 2q−1 − 1} for all
i = 1, . . . , N .

Thus we have, withaN = (a1, . . . , aN ), zn = (z1, . . . , zn),
and ỹn = (ỹ1, . . . , ỹn) as above,

γ =
Pr{ZN = aN}Pr{XN = ỹN}
Pr{ZN = zN}Pr{XN = xN}

=
Pr{Z1 = a1}P (ỹ1)

Pr{Z1 = z1}P (x1)

N
∏

k=2

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)

=

N
∏

k=2

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)
,

where the last equality follows fromPr{Z1 = a1}P (ỹ1) =
Pr{Z1 = z1}P (x1) sinceX1 = Ỹ1 according to the hypothe-
sis.

We partition the index setK = {2, 3, . . . , N} as follows:
K = A1 ∪ A2 ∪ A3 ∪ A4, where

A1 , {k ∈ K : xk = ỹk, xk−1 = ỹk−1},
A2 , {k ∈ K : xk 6= ỹk, xk−1 6= ỹk−1},
A3 , {k ∈ K : xk 6= ỹk, xk−1 = ỹk−1},
A4 , {k ∈ K : xk = ỹk, xk−1 6= ỹk−1}.

Hence,

γ =

4
∏

i=1

∏

k∈Ai

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)
.

In set A1, since xk = ỹk and xk−1 = ỹk−1 we see that
zk = ak andzk−1 = ak−1. Thus,

∏

k∈A1

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)
=
∏

k∈A1

Q(ak|ak−1)P (xk|xk−1)

Q(ak|ak−1)P (xk|xk−1)

= 1.

In A2, xk 6= ỹk andxk−1 6= ỹk−1 imply that xk = 1 − ỹk

andxk−1 = 1−ỹk−1. Also, if xk 6= ỹk andxk−1 6= ỹk−1, then
by the definition ofθ∗ (with k∗ = 2q − 1), zk, zk−1 ≥ 2q−1.
Now since the Markov source is symmetric (p00 = p11),
we obtain thatP (ỹk|ỹk−1) = P (xk|xk−1). Noting that
ak, ak−1 < 2q−1 and according to (10) and (11),

∏

k∈A2

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)
=
∏

k∈A2

Q(ak|ak−1)

Q(zk|zk−1)
≥ 1.

We next note that sinceX1 = Ỹ1 andXN = ỸN , we clearly
must have|A3| = |A4|, where |B| denotes the number of
elements in a setB. Furthermore, inA3 we havexk 6= ỹk

implying xk = 1− ỹk. Therefore, according to the definitions
of zk andak and using (2), it can be seen thatzk = (2q−1)−
ak and zk−1 = ak−1. Similarly, in setA4 we havezk = ak

andzk−1 = (2q−1)−ak−1. Also, due to the source symmetry
and noting thatp00 ∈ [12 , 1], we have

min
k∈A3

P (ỹk|ỹk−1)

P (xk|xk−1)
= min

j∈A4

P (ỹj |ỹj−1)

P (xj |xj−1)
=

p10

p00
=

1 − p00

p00
.

Thus according to (10) and (11), we have

∏

k∈A3

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)
×
∏

k∈A4

Q(ak|ak−1)P (ỹk|ỹk−1)

Q(zk|zk−1)P (xk|xk−1)

≥
∏

k∈A3

Q(ak|ak−1)(1 − p00)

Q(2q − 1 − ak|ak−1)p00

×
∏

k∈A4

Q(ak|ak−1)(1 − p00)

Q(ak|2q − 1 − ak−1)p00

≥
∏

k∈A3

(1 − ε)ρ2q−1−1(1 − p00)

(1 − ε)ρ2q−1p00
×
∏

k∈A4

(1 − p00)

p00
(26)

=

|A3|
∏

i=1

ρ2q−1−1

ρ2q−1

×
[

1 − p00

p00

]2

,

where the second inequality follows by taking minimum over
the first product and noting that Q(ak|ak−1)

Q(ak|2q−1−ak−1)
≥ 1 for all

k. Clearly, if (17) holds, then

|A3|
∏

i=1

ρ2q−1−1

ρ2q−1

×
[

1 − p00

p00

]2

≥ 1.

Thusγ ≥ 1 and the mappingθ∗ is an optimal MAP decoding
rule.

To prove the converse, assume that (17) does not hold; i.e.,

ρ2q−1−1

ρ2q−1

×
[

1 − p00

p00

]2

< 1.

Now for
xN = (0, 0, · · · , 0)
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and
yN = (0, 0, · · · , 0, 2q−1, 0, · · · , 0),

where the only non-zero component ofyN is in an arbitrary
position i ∈ {2, . . . , N − 1}, we have

γ = 1×1×. . .×1×
(

ρ2q−1−1

ρ2q−1

×
[

1 − p00

p00

]2)

×1×. . .×1 < 1.

Hence, if (17) does not hold, there exists somexN and yN

such that the mappingθ∗ does not decode optimally.
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decoder (SQ-MAP).
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QB and the DFC; memoryless Gaussian source,q = 2, fDT = 0.005.

TABLE I
THE ρ AND δ VALUES FOR THENBNDC-QB FOR SOFT-DECISION

RESOLUTIONSq = 1, 2, 3.

SNR (dB) q δ ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7

1 - 0.99230.0077 - - - - - -
15 2 0.12 0.97220.02010.00640.0013 - - - -

3 0.06 0.95450.01770.01230.00780.00430.00210.00090.0004

1 - 0.97670.0233 - - - - - -
10 2 0.20 0.92390.05280.01870.0046 - - - -

3 0.11 0.86480.05140.03690.02360.01320.00630.00260.0012

1 - 0.93580.0642 - - - - - -
5 2 0.40 0.78220.15360.05380.0104 - - - -

3 0.18 0.70310.09960.07840.05470.03350.01780.00820.0047

1 - 0.89150.1085 - - - - - -
2 2 0.50 0.69530.19620.08500.0235 - - - -

3 0.25 0.56350.13180.11230.08390.05450.03050.01460.0089

TABLE II
SYMBOL ERROR RATE (IN%) FOR MAP DECODING AND INSTANTANEOUS
MAPPING θ FOR SYMMETRIC BINARY MARKOV SOURCES WITHp00 = 0.6

AND 0.7. THE CHANNEL MODEL IS THE NBNDC-QB, WITH M = 1,
Cor = 0.0, AND q = 2, 3. THE VALUES C ARE CALCULATED FROM (17).
THE δ VALUES FOR SNRS (15,10,5,2)ARE (0.12,0.20,0.40,0.50)FOR

q = 2 AND (0.06,0.11,0.18,0.25)FOR q = 3, RESPECTIVELY.

SNR (dB)
p00 q 15 10 5 2

MAP θ∗ MAP θ∗ MAP θ∗ MAP θ∗

2 C = 1.39 > 1 C = 1.25 > 1 C = 1.27 > 1 C = 1.03 > 1

0.6 0.76 0.76 2.30 2.30 6.43 6.43 10.85 10.85
3 C = 0.80 < 1 C = 0.80 < 1 C = 0.73 < 1 C = 0.68 < 1

0.73 0.76 2.22 2.30 6.21 6.43 10.51 10.85
2 C = 0.57 < 1 C = 0.52 < 1 C = 0.52 < 1 C = 0.42 < 1

0.7 0.64 0.76 1.91 2.30 5.55 6.43 9.50 10.85
3 C = 0.33 < 1 C = 0.33 < 1 C = 0.30 < 1 C = 0.28 < 1

0.62 0.76 1.90 2.30 5.37 6.43 9.27 10.85

TABLE III
SQ-MAP TRAINING SDR RESULTS(IN DB) FOR MEMORYLESS

NBNDC-QB AND HIGHLY CORRELATED NBNDC-QB WITH PARAMETERS
M = α = 1, G: MEMORYLESSGAUSSIAN SOURCE, L: MEMORYLESS
LAPLACIAN SOURCE , GM: GAUSS-MARKOV SOURCE WITHφ = 0.9.

Fully interleaved (Cor=0) Cor=0.9
Sou- q n SNR (dB) SNR (dB)
rce 15 10 5 2 15 10 5 2

1 4.17 3.75 2.78 1.94 4.19 3.77 2.85 1.97
1 2 8.15 6.49 3.85 2.14 8.37 6.89 4.47 2.84

3 11.05 7.80 4.02 1.93 11.58 8.43 4.76 2.76
1 4.17 3.75 2.78 1.94 4.19 3.77 2.85 1.97

G 2 2 8.15 6.49 3.85 2.14 8.69 7.68 5.61 4.03
3 11.10 7.94 4.33 2.53 12.61 10.15 6.64 4.51
1 4.17 3.75 2.78 1.94 4.19 3.77 2.85 1.97

3 2 8.17 6.54 4.02 2.41 8.76 7.77 5.91 4.48
3 11.15 7.98 4.38 2.57 12.86 10.52 7.16 5.12

1 2.87 2.62 2.00 1.44 2.88 2.63 2.05 1.45
1 2 6.65 5.27 2.91 1.30 6.89 5.88 4.28 3.21

3 9.59 6.49 2.72 0.58 10.14 7.64 4.88 3.34
1 2.87 2.62 2.00 1.44 2.88 2.63 2.05 1.45

L 2 2 6.69 5.42 3.32 2.01 7.26 6.72 5.53 4.47
3 9.90 7.09 3.81 2.06 11.59 9.86 7.14 5.35
1 2.87 2.62 2.00 1.44 2.88 2.63 2.05 1.45

3 2 6.72 5.45 3.27 2.01 7.32 6.91 5.88 4.97
3 9.96 7.12 3.75 1.99 11.85 10.47 7.94 6.23

1 4.21 3.78 3.74 3.22 4.23 3.81 2.89 2.01
1 2 8.95 8.29 6.97 6.34 8.94 8.24 6.88 5.71

3 13.38 11.84 9.46 7.52 13.89 12.69 10.43 8.69
1 4.38 4.23 3.89 3.61 4.35 4.14 3.44 2.65

GM 2 2 9.16 8.81 8.00 6.98 9.24 8.97 8.26 7.36
3 13.98 12.87 10.72 8.91 14.47 14.02 12.88 11.51
1 4.39 4.30 4.01 3.65 4.37 4.20 3.62 2.97

3 2 9.18 8.87 8.09 7.24 9.29 9.18 8.64 8.00
3 14.07 13.06 10.96 9.16 14.57 14.34 13.47 12.58
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TABLE IV
SQ WITH INSTANTANEOUS MAPPING- TRAINING SDR RESULTS(IN DB)

FOR n = 1 AND THE MEMORYLESSNBNDC-QB AND THE HIGHLY
CORRELATEDNBNDC-QB WITH PARAMETERSM = 1, α = 1, G:

MEMORYLESSGAUSSIAN SOURCE, L: MEMORYLESSLAPLACIAN SOURCE,
GM: GAUSS-MARKOV SOURCE WITHφ = 0.9.

Fully interleaved (Cor=0) Cor=0.9
Source q SNR (dB) SNR (dB)

15 10 5 2 15 10 5 2

G 1, 2, 3 4.17 3.75 2.78 1.94 4.19 3.77 2.85 1.97
L 1, 2, 3 2.87 2.62 2.00 1.44 2.88 2.63 2.05 1.45

GM 1, 2, 3 4.21 3.78 2.82 1.97 4.23 3.81 2.89 2.01

TABLE V
COVQ TRAINING SDR RESULTS(IN DB) FOR THEMEMORYLESS
NBNDC-QB AND THE HIGHLY CORRELATED NBNDC-QB WITH

PARAMETERSα = 1.0, M = 1, ε = 0.9; MEMORYLESSLAPLACIAN
SOURCE.

Fully interleaved (Cor=0) Cor=0.9
q R k SNR (dB) SNR (dB)

15 10 5 2 15 10 5 2

1 2.87 2.63 2.07 1.58 2.87 2.63 2.07 1.58
1 2 3.46 3.12 2.42 1.84 3.48 3.16 2.45 1.85

3 4.06 3.46 2.44 1.90 4.26 3.93 3.38 2.91
1 6.64 5.39 3.48 2.32 6.71 5.64 4.12 4.34

1 2 2 7.67 6.18 4.18 3.12 7.76 7.08 6.44 5.62
3 8.11 6.61 4.55 3.38 8.40 8.16 7.07 6.38
1 9.70 7.08 4.21 3.54 9.84 9.15 8.01 6.78

3 2 10.92 8.52 5.96 4.36 11.27 10.91 9.33 8.17
3 11.40 9.25 6.41 4.65 12.26 11.97 10.23 9.10
1 2.90 2.70 2.21 1.77 2.90 2.70 2.21 1.77

1 2 3.50 3.22 2.59 2.06 3.52 3.25 2.63 2.08
3 4.14 3.63 2.66 2.03 4.31 4.04 3.46 3.10
1 6.85 5.79 3.96 2.77 6.95 6.05 4.48 4.74

2 2 2 7.91 6.59 4.88 3.73 8.06 7.01 6.69 5.98
3 8.37 7.13 5.24 3.94 8.66 7.62 7.25 6.51
1 10.32 7.84 5.97 4.41 10.63 8.46 8.45 7.31

3 2 11.45 9.51 7.04 5.30 11.71 10.52 9.02 8.51
3 12.08 10.13 7.52 5.62 12.53 11.58 10.36 9.65


