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Abstract— In this paper, we make use of channel symmetry
properties to determine the capacity region of three types
of two-way networks: 1) two-user memoryless two-way chan-
nels (TWCs); 2) two-user TWCs with memory; and 3) three-
user multiaccess/degraded broadcast (MA/DB) TWCs. For each
network, symmetry conditions under which a Shannon-type
random coding inner bound (under independent non-adaptive
inputs) is tight are given. For two-user memoryless TWCs, prior
results are substantially generalized by viewing a TWC as two
interacting state-dependent one-way channels. The capacity of
symmetric TWCs with memory, whose outputs are functions
of the inputs and independent stationary and ergodic noise
processes, is also obtained. Moreover, various channel symmetry
properties under which the Shannon-type inner bound is tight
are identified for three-user MA/DB TWCs. The results not only
enlarge the class of symmetric TWCs whose capacity region can
be exactly determined but also imply that interactive adaptive
coding, not improving capacity, is unnecessary for such channels.

Index Terms— Network information theory, two-way channels,
capacity region, inner and outer bounds, channel symmetry,
multiple access and broadcast channels, channels with memory,
adaptive coding.

I. INTRODUCTION

SHANNON’s two-way channel (TWC) [3], which allows
two users to exchange data streams in a full-duplex

manner, is a basic component of communication systems.
To mitigate the interference incurred from two-way simul-
taneous transmission, TWCs are often used in conjunction
with orthogonal multiplexing [4]. With increasing demands
for fast data transmission, many industrial standards have
enabled the use of non-orthogonal multiplexing to accom-
modate more users [5], [6]. From an information-theoretic
viewpoint, the challenge is how each user can effectively
maximize its individual transmission rate over the shared
channel and concurrently provide sufficient feedback to help
the other users’ transmissions. These competing objectives
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impose on each user the challenging task of optimally adapting
their channel inputs to the previously received signals of the
other users. As finding such an optimal coding procedure is
still elusive, the exact characterization of the capacity region
of general TWCs remains open [7], [8, Section 17.5].

This paper revisits this open problem by finding larger
classes of TWCs whose capacity region can be exactly
obtained. Our approach is to identify channel symmetry prop-
erties under which a Shannon-type random coding inner bound
(under independent non-adaptive inputs) is tight, thus directly
determining the capacity region. As a result, we identify
TWCs for which interactive adaptive coding is useless in
terms of improving the users’ transmission rates. In particular,
we focus on three two-way networks which we depict in Fig. 1.
The two-user (point-to-point) memoryless TWC in Fig. 1(a)
models device-to-device communication [9]. The simplified
TWC with memory in Fig. 1(b), which is a generalization
of additive-noise TWC in [1], can capture the effect of time-
correlated channel noise which commonly arises in wire-
less communications. The three-user memoryless multiaccess/
degraded broadcast (MA/DB) TWC [24] in Fig. 1(c) models
the communication between two mobile users and one base
station, where the shared channel in the users-to-base-station
(uplink) direction acts as a multiple-access channel (MAC)
while the reverse (downlink) direction acts as a degraded
broadcast channel (DBC). For these networks, we derive con-
ditions under which the Shannon-type inner bound is optimal
in terms of achieving channel capacity. Such a result also has
a practical significance since communication without adaptive
coding simplifies system design.

A. Capacity Bounds for TWCs
We briefly review some general results on the capacity

of TWCs. In [3], Shannon derived inner and outer capacity
bounds in the form of a single-letter expression for two-user
memoryless TWCs. The inner bound is obtained via random
coding where the users’ channel inputs are independent (and
non-adaptive), while the inputs are allowed to have arbitrary
correlation in the outer bound. In general, the two bounds
do not coincide. Follow-up work in [10], [11], [13] was
devoted to improving Shannon’s inner bound by using adaptive
coding. Two novel outer bounds [14], [15], which restrict the
dependency among channel inputs, were proposed to refine
Shannon’s result. Moreover, methods to efficiently utilize
TWCs were investigated by studying the role of feedback [16].
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Fig. 1. Block diagrams of the two-way networks considered: (a) point-to-point memoryless TWC with two channel inputs X1 and X2 and two channel
outputs Y1 and Y2; (b) point-to-point TWC with memory, where F1 and F2 are deterministic functions and (Z1, Z2) is a time-correlated channel noise pair
generated from a joint stationary and ergodic process; (c) three-user memoryless MA/DB TWC, where Xi and Yi respectively denote channel input and output
at user j for j = 1, 2, 3.

In [17], directed mutual information [18], which is widely used
in the study of one-way channels with feedback [19]–[23], was
used to characterize the capacity of TWCs, but the obtained
multi-letter expressions are often not computable. Recently,
the Shannon-type random coding scheme was shown to be
optimal in several deterministic multi-user TWC settings [24]
such as MA/BC, Z, and interference TWCs, hence finding
the channel capacity in these cases. The channel capacity for
a variant of these multi-user TWCs, called three-way chan-
nels, was also investigated in different network setups such
as three-way multi-cast finite-field or phase-fading Gaussian
channels [26] and three-way Gaussian channels with multiple
unicast sessions [27]. An additional capacity result for deter-
ministic interference TWCs was derived in [25]. For TWCs
with memory, Shannon provided a multi-letter capacity char-
acterization in [3, Section 16] which in general is incalculable.

B. Related Work
Channel symmetry properties, which are extensively inves-

tigated to simplify the computation of the capacity of
one-way channels, play a key role in determining the capac-
ity region for TWCs. The first channel symmetry property
for TWCs was proposed by Shannon [3, Section 12]. Let
[PY1,Y2|X1,X2(·, ·|·, ·)] denote the channel transition matrix of
a two-user discrete memoryless TWC, where X j and Y j

denote the channel input and output at user j , respec-
tively. Shannon gave two permutation invariance conditions
on [PY1,Y2|X1,X2(·, ·|·, ·)] which guarantee the equality of his
inner and outer bounds (see Propositions 1 and 2 in Section II
for details). A recent work [28] by Chaaban, Varshney,
and Alouini (CVA) presented another tightness condition,
where the channel symmetry property is given in terms of
conditional entropies for the marginal channel distribution
[PY j |X1,X2(·|·, ·)] (see Proposition 3).

The above conditions delineate classes of two-user mem-
oryless TWCs for which Shannon’s capacity inner bound is
tight, hence exactly yielding their capacity region. Exam-
ples include Gaussian TWCs [13], q-ary additive-noise

TWCs [1], and more general channel models such as injective
semi-deterministic TWCs (ISD-TWCs) [28], Cauchy [28] and
exponential family type TWCs [29]. It is worth mentioning
that Hekstra and Willems [15] also presented a condition under
which Shannon’s inner bound is tight. However, their result is
only valid for single-output memoryless TWCs.

For three-user MA/BC memoryless TWCs, Cheng and
Devroye [24] investigated a class of symmetric TWCs. In par-
ticular, they considered deterministic, invertible, and alphabet-
restricted MA/BC TWCs, proving that the Shannon-type inner
bound is tight for that class of channels. However, to the
best of our knowledge, symmetry properties for TWCs beyond
these have not been investigated. It is also important to point
out that two-user TWCs with memory are not well understood
either.

C. A Motivational Example and Proposed Approach

Consider a point-to-point binary-input and binary-output
memoryless TWC with transition probability matrix (see
Section II-B for the formal description of the channel model)

[PY1,Y2|X1,X2(·, ·|·, ·)] =
⎛
⎜⎜⎝

00 01 10 11

00 0.783 0.087 0.117 0.013
01 0.0417 0.3753 0.0583 0.5247
10 0.261 0.609 0.039 0.091
11 0.2919 0.1251 0.4081 0.1749

⎞
⎟⎟⎠,

where the rows and columns are indexed by the channel inputs
and outputs, respectively. The corresponding marginal channel
transition matrices are

[PY2|X1,X2(·|·, 0)] =
(

0.9 0.1
0.3 0.7

)
, [PY2|X1,X2(·|·, 1)] =

(
0.1 0.9
0.7 0.3

)
,

and

[PY1|X1,X2(·|0, ·)] = [PY1|X1,X2(·|1, ·)] =
(

0.87 0.13
0.417 0.583

)
.

A thorough examination reveals that for this TWC Shannon’s
inner bound is actually exact due to the symmetric structures of
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the channel’s marginal transition matrices. However, none of
the previously proposed symmetry conditions in the literature
are satisfied.

We address this problem by viewing a TWC as two state-
dependent one-way channels [3], [30]. Taking the two-user
setting as an example, the state-dependent one-way channel
from users 1 to 2 has input X1, output Y2, state X2, and
transition matrix given by [PY2|X1,X2(·|·, ·)]; similarly, the one-
way channel [PY1|X1,X2(·|·, ·)] in the reverse direction has
input X2, output Y1, and channel state X1. Note that this
viewpoint1 may also be useful for all previously mentioned
two-way networks. Another useful tool is the rich set of
symmetry concepts for single-user one-way channels.2 From
this perspective, the two one-way channels now interact with
each other through the channel states. Clearly, this interaction
could improve bi-directional transmission rates by making use
of adaptive coding.

Our approach is to study symmetry properties for state-
dependent one-way channels that imply that the capacity
cannot be increased with the availability of channel state
information at the transmitter (in addition to the receiver).
Such properties can potentially render interactive adaptive
coding useless in terms of enlarging TWC capacity. In the
two-user memoryless setting, we develop the following two
important channel symmetry notions. The common optimal
input distribution condition identifies a state-dependent one-
way channel that has an identical capacity-achieving input dis-
tribution for all channel states. The invariance of input-output
mutual information condition then identifies a state-dependent
one-way channel that produces the same input-output mutual
information for all channel states under any fixed input dis-
tribution. If a TWC satisfies both conditions, one for each
direction of the two-way transmission, the optimal transmis-
sion scheme of one user is irrelevant to the other user’s
transmission scheme, implying that the interaction between
the users does not increase their transmission rates and hence
channel capacity. In fact, the preceding motivational example
illustrates this. More formally, we can prove that under certain
symmetry properties (identified by the derived conditions),
any rate pair inside Shannon’s outer bound region is always
contained in the inner bound region, implying that the latter
bound is tight.

Furthermore, it should be expected that validating gener-
alized channel symmetry properties can be a very complex
procedure. However, we show that such a verification can be
greatly simplified for some TWCs. For instance, the channel
transition matrices [PY1|X1,X2(·|·, 0)] and [PY1|X1,X2(·|·, 1)] in
the above example are column permutations of each other
and the matrices [PY1|X1,X2(·|0, ·)] and [PY1|X1,X2(·|1, ·)] are
identical. It turns out (as we will see later) that these two

1Another viewpoint for two-user TWCs is based on compound MACs, see
[31, Problem 14.11] and [32].

2Channel symmetry properties for single-user one-way memoryless chan-
nels can be roughly classified into two types. One type focuses on the
structure of the channel transition probability such as Gallager symmetric
channels [33], weakly symmetric and symmetric channels [34], and quasi-
symmetric channels [35]. The other type aims at the invariance of information
quantities including T -symmetric channels [36] and channels with input-
invariance symmetry [37].

Fig. 2. The relationships between the results yielding the equality
of Shannon’s capacity bounds in point-to-point memoryless TWCs. Here,
A→ B indicates that result A subsumes result B , and B � A indicates
that result B does not subsume result A. For example, Prop. 3→ Prop. 1 and
Prop. 1 � Prop. 3 mean that the CVA result in Prop. 3 is more general than
the Shannon result in Prop. 1.

symmetry properties imply that Shannon’s inner bound is tight.
Therefore, we not only seek general conditions but also look
for conditions which are simple to verify.

D. Summary of Contributions

Most of the conditions that we establish in this paper
comprise two parts, one for each direction of the two-way
transmission. Our contributions are summarized as follows.
• Point-to-Point Memoryless TWCs: six sufficient condi-
tions (Theorems 1-4 and Corollaries 1-2) guaranteeing that
Shannon’s inner and outer bounds coincide are derived. Three
of these are shown to be substantial generalizations of the
Shannon and CVA conditions (in Theorems 5-7); our simplest
condition can be verified by only observing the channel
marginal distributions. Moreover, the capacity region of q-ary
additive-noise TWCs with erasures, which subsume several
classical TWCs, is fully characterized by our conditions.
Several examples illustrating the difference between these
conditions are provided. We also refine Shannon’s result to
show that the CVA condition is a strict generalization of the
Shannon condition (Theorem 8), thus answering a question
raised in [28]. Implications among our results (and prior
results) are depicted in Fig. 2.
• Point-to-Point TWCs with Memory: a Shannon-type
inner bound and an outer bound for the capacity of TWCs
with memory under certain invertibility and alphabet size
constraints are derived (Lemmas 1-2 and Corollaries 3-5).
Two sufficient conditions for the tightness of the bounds are
given (Theorems 9 and 10). The first condition is derived for
TWCs with strict invertibility and alphabet size constraints,
characterizing channel capacity in single-letter form. The other
condition is specialized for injective semi-deterministic TWCs
with memory.3 The obtained results are related as shown
in Fig. 3. We also illustrate via a simple example that when
the channel’s memory is strong, the Shannon-type random
coding scheme does not achieve capacity and adaptive coding
is useful.

3ISD-TWC model with memoryless noise were introduced in [28]. Here,
we merely extend this setting by allowing noise processes with memory.
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Fig. 3. The relationships between the results for point-to-point TWCs with memory. Here, A
Thm. C←−→ B indicates that results A and B are combined in

Theorem C to determine the capacity region.

• Three-User Memoryless MA/DB TWCs: we establish a
Shannon-type inner bound and an outer bound for the capacity
region of MA/DB TWCs (Theorems 11 and 12) where both
bounds admit a common rate expression but have different
input distribution requirements. Three sufficient conditions
(based on different techniques) for these bounds to coincide
are established (Theorems 13-15). The first condition involves
the existence of independent inputs that can achieve the outer
bound (similar to the CVA approach). The second condition is
derived from the viewpoint of two interacting state-dependent
one-way channels. The last one focuses on the permutation
invariance structure of the channel transition matrix (mirroring
the Shannon symmetry method). The obtained results extend
the results in [24] and readily provide the capacity region for
a larger class of MA/DB TWCs. While the channel model
here is admittedly simplified, we note that our intention is to
illustrate a potential methodology for determining the capacity
regions of multi-user two-way channels and to motivate future
work in this area.

The rest of the paper is organized as follows. In Section II,
point-to-point memoryless TWCs are investigated. TWCs with
memory are studied in Section III, and memoryless MA/DB
TWCs are examined in Section IV. Concluding remarks are
given in Section V.

II. POINT-TO-POINT MEMORYLESS TWCS

In this section, we study two-user memoryless two-way net-
works. We first formally describe the general model for point-
to-point TWCs (not necessarily memoryless) in Section II-A,
and then review the prior results for the memoryless case
in Section II-B. New symmetry conditions are derived in
Section II-C, and we demonstrate how to apply these condi-
tions to finding the channel capacity in Section II-D. Compar-
isons between prior results and our conditions are presented in
Section II-E, and the relationship between Shannon’s condition
and the CVA condition is examined in Section II-F.

A. General Channel Model
In point-to-point two-way communication as shown

in Fig. 4, two users exchange messages M1 and M2 via n chan-
nel uses. Here, M1 and M2 are assumed to be independent and
uniformly distributed on the finite sets M1 � {1, 2, ..., 2nR1}

Fig. 4. The information flow of point-to-point two-way transmission.

and M2 � {1, 2, ..., 2nR2}, respectively, for some R1, R2 ≥ 0.
Let X j and Y j be the channel input and output alphabets,
respectively for j = 1, 2. For i = 1, 2, . . . , n, let X j,i ∈ X j

and Y j,i ∈ Y j denote the channel input and output of user j
at time i , respectively. The joint probability distribution of all
random variables for the entire transmission period is given by

PM1,M2,Xn
1 ,Xn

2 ,Y n
1 ,Y n

2
= PM1 · PM2 ·

(
n∏

i=1

PX1,i |M1,Y
i−1
1

)

·
(

n∏
i=1

PX2,i |M2,Y i−1
2

)
·
(

n∏
i=1

PY1,i ,Y2,i |Xi
1,Xi

2,Y
i−1
1 ,Y i−1

2

)
,

where Xi
j � (X j,1, X j,2, . . . , X j,i ) and Y i

j �
(Y j,1, Y j,2, . . . , Y j,i ) for j = 1, 2. The n transmissions over
a point-to-point TWC can be then described by the sequence
of conditional probabilities {PY1,i ,Y2,i |Xi

1,Xi
2,Y

i−1
1 ,Y i−1

2
}ni=1.

Definition 1: An (n, R1, R2) code for a TWC consists
of two message sets M1 = {1, 2, . . . , 2nR1} and M2 =
{1, 2, . . . , 2nR2}, two sequences of encoding functions f n

1 �
( f1,1, f1,2, . . . , f1,n) and f n

2 � ( f2,1, f2,2, . . . , f2,n) such that

X1,1 = f1,1(M1), X1,i = f1,i (M1, Y i−1
1 ),

X2,1 = f2,1(M2), X2,i = f2,i (M2, Y i−1
2 ),

for i = 2, 3, . . . , n, and two decoding functions g1 and g2
such that M̂2 = g1(M1, Y n

1 ) and M̂1 = g2(M2, Y n
2 ).

When messages M1 and M2 are encoded via an (n, R1, R2)
channel code, the probability of decoding error is defined as
P(n)

e ( f n
1 , f n

2 , g1, g2) = Pr{M̂1 �= M1 or M̂2 �= M2}.
Definition 2: A rate pair (R1, R2) is said to be achiev-

able if there exists a sequence of (n, R1, R2) codes with
limn→∞ P(n)

e = 0.
Definition 3: The capacity region C of a point-to-point

TWC is defined as the closure of the convex hull of all
achievable rate pairs.
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B. Prior Results for Memoryless TWCs

A point-to-point TWC is said to be memoryless if its
transition probabilities satisfy

PY1,i ,Y2,i |Xi
1,Xi

2,Y
i−1
1 ,Y i−1

2
= PY1,Y2|X1,X2

for some PY1,Y2|X1,X2 and all i ≥ 1. For a memoryless TWC
with transition probability PY1,Y2|X1,X2 and input distribution
PX1,X2 , let R(PX1,X2 , PY1,Y2|X1,X2) denote the set of all rate
pairs (R1, R2) constrained by

R1 ≤ I (X1; Y2|X2) and R2 ≤ I (X2; Y1|X1). (1)

In [3], Shannon showed that the capacity region of a discrete
memoryless point-to-point TWC is inner bounded by

CI(PY1,Y2|X1,X2) � co

⎛
⎝ ⋃

PX1 ,PX2

R(PX1 ·PX2 , PY1,Y2|X1,X2)

⎞
⎠,

and outer bounded by

CO(PY1,Y2|X1,X2) � co

⎛
⎝ ⋃

PX1,X2

R(PX1,X2 , PY1,Y2|X1,X2)

⎞
⎠,

where co(·) denotes taking the closure of the convex hull.
In general, CI and CO are not matched to each other, but if
they coincide, then the exact capacity region is obtained. Our
objective is to develop general conditions under which the two
bounds coincide.

In the following, the Shannon [3] and Chaaban et al. [28]
conditions that imply the equality of CI and CO are summa-
rized. In short, the Shannon condition focuses on the per-
mutation invariance structure of the channel transition matrix
[PY1,Y2|X1,X2(·, ·|·, ·)], while the CVA condition involves the
existence of independent inputs which can achieve the outer
bound. Throughout the paper, we use I (l)(Xk; Y j |X j ) and
H (l)(Y j |X1, X2) to denote the conditional mutual information
and the conditional entropy evaluated under input distribution
P(l)

X1,X2
for j, k = 1, 2 with j �= k. For P(l)

X1,X2
= P(l)

X j
·

P(l)
Xk |X j

with j �= k, the conditional entropy H (l)(Y j |X j )

is evaluated using the marginal distribution P(l)
Y j |X j

(y j |x j ) =∑
xk

P(l)
Xk |X j

(xk |x j ) · PY j |X j ,Xk (y j |x j , xk). Also, for a finite set

A, let πA : A→ A denote a permutation (bijection), and for
any two symbols a′ and a′′ in A, let τAa′,a′′ : A → A denote
the transposition which swaps a′ and a′′ in A, but leaves the
other symbols unaffected. Finally, let P(X j ) denote the set
of all probability distributions on X j , and define PU

X j
as the

uniform probability distribution on X j for j = 1, 2.
Proposition 1 (Shannon’s One-Sided Symmetry Condi-

tion [3]): For a memoryless TWC with transition probability
PY1,Y2|X1,X2 , we have that C = CI = CO if for any pair
of distinct input symbols x ′1, x ′′1 ∈ X1, there exists a pair
of permutations (πY1[x ′1, x ′′1 ], πY2 [x ′1, x ′′1 ]) on Y1 and Y2,
respectively, (which depend on x ′1 and x ′′1 ) such that for all

x1, x2, y1, y2,

PY1,Y2|X1,X2(y1, y2|x1, x2) =
PY1,Y2|X1,X2(π

Y1 [x ′1, x ′′1 ](y1), π
Y2 [x ′1, x ′′1 ](y2)|τX1

x ′1,x ′′1
(x1), x2).

(2)

Under this condition, the capacity region is given by

C = co

⎛
⎝⋃

PX2

R
(

PU
X1
·PX2 , PY1,Y2|X1,X2

)⎞⎠ . (3)

In [3], the proof of Proposition 1 is only sketched. To make
the paper self-contained and facilitate the understanding of
a technique used to derive one of our results (Theorem 15),
we provide a full proof in Appendix A. Note that Proposition 1
describes a channel symmetry property with respect to the
channel input of user 1, but an analogous condition can be
obtained by exchanging the roles of users 1 and 2. The
proposition below immediately follows from Proposition 1.

Proposition 2: (Shannon’s Two-Sided Symmetry Condi-
tion [3]): For a memoryless TWC with transition probability
PY1,Y2|X1,X2 , we have that C = CI = CO if the TWC satisfies
the one-sided symmetry condition with respect to both channel
inputs. In this case, the capacity region is rectangular and given
by C = R(PU

X1
·PU

X2
, PY1,Y2|X1,X2).

Proposition 3 (CVA Condition [28]): For a memoryless
TWC with transition probability PY1,Y2|X1,X2 , we have that
C = CI = CO if H (Y j |X1, X2), j = 1, 2, does not depend
on PX1|X2 for any fixed PX2 and PY j |X1,X2 , and for any

P(1)
X1,X2

= P(1)
X2
· P(1)

X1|X2
there exists P̃X1 ∈ P(X1) such that

H (1)(Y j |X j ) ≤ H (2)(Y j |X j ) for j = 1, 2, where P(2)
X1,X2

=
P̃X1 · P(1)

X2
.

Thus, if a TWC satisfies any one of the above condi-
tions, the capacity region can be determined by considering
independent inputs: PX1,X2 = PX1 · PX2 . This result implies
that adaptive coding, where channel inputs are generated
by interactively adapting to the previously received signals,
cannot improve the users’ achievable rates and that Shannon’s
random coding scheme is optimal. The class of memoryless
ISD-TWCs [28] satisfies the CVA condition (but do not
necessarily satisfy the Shannon condition) and hence adaptive
coding is useless for such channels. A TWC with independent
q-ary additive noise [1] is an example of a channel that
satisfies both the Shannon and CVA conditions. Although the
CVA condition does not require any permutation invariance
on the channel marginal distribution PY j |X1,X2 , the invariance
requirement of H (Y j |X1, X2)’s in Proposition 3 does in fact
impose a certain symmetry constraint on PY j |X1,X2 . More
details about these conditions will be provided in the proof
of Theorem 7 and Section II-F.

C. Conditions for the Tightness of Shannon’s Inner and
Outer Bounds

In this section, we present conditions that guarantee the
tightness of Shannon’s inner bound by considering a TWC as
two interacting state-dependent one-way channels. For exam-
ple, the state-dependent one-way channel from user 1 to user 2
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is governed by the marginal distribution PY2|X1,X2 (derived
from the channel probability PY1,Y2|X1,X2 ), where X1 and Y2
are respectively the input and the output of the channel with
state X2.

Let PX and PY |X be probability distributions on X and Y ,
respectively. To simplify the presentation, we use

I(PX , PY |X )

=
∑
x,y

PX (x)PY |X (y|x) log
PY |X (y|x)∑

x ′ PX (x ′)PY |X (y|x ′) ,

as an alternative way of writing the mutual information
I (X; Y ) between input X (governed by PX ) and correspond-
ing output Y of a channel with transition probability PY |X .
A useful fact is that I(·, ·) is concave in the first argument
when the second argument is fixed. Moreover, the conditional
mutual information I (X1; Y2|X2 = x2) can be expressed as
I(PX1|X2=x2, PY2|X1,X2=x2).

Since the TWC is viewed as two state-dependent one-way
channels, each of the following theorems consists of two
conditions, one for each direction of the two-way transmis-
sion. By symmetry, these theorems are valid if the roles of
users 1 and 2 are swapped.

Theorem 1: For a memoryless TWC, if conditions (i) and
(ii) below are satisfied, then CI = CO.
(i) There exists P∗X1

∈ P(X1) such that

arg max
PX1|X2=x2

I (X1; Y2|X2 = x2) = P∗X1

for all x2 ∈ X2;
(ii) I(PX2 , PY1|X1=x1,X2) does not depend on x1 ∈ X1 for

any fixed PX2 ∈ P(X2).

Proof: For any P(1)
X1,X2

= P(1)
X2
· P(1)

X1|X2
, let P(2)

X1,X2
=

P∗X1
· P(1)

X2
, where P∗X1

is given by (i). In light of (i), we have

I (1)(X1; Y2|X2)

=
∑

x2

P(1)
X2

(x2) · I (1)(X1; Y2|X2 = x2) (4)

≤
∑

x2

P(1)
X2

(x2) ·
[

max
PX1|X2=x2

I (X1; Y2|X2 = x2)

]
(5)

=
∑

x2

P(1)
X2

(x2) · I(P∗X1
, PY2|X1,X2=x2) (6)

=
∑

x2

P(1)
X2

(x2) · I (2)(X1; Y2|X2 = x2) (7)

= I (2)(X1; Y2|X2). (8)

Moreover,

I (1)(X2; Y1|X1)

=
∑
x1

P(1)
X1

(x1) · I (1)(X2; Y1|X1 = x1)

=
∑
x1

P(1)
X1

(x1) · I(P(1)
X2|X1=x1

, PY1|X1=x1,X2)

=
∑
x1

P(1)
X1

(x1) · I(P(1)
X2|X1=x1

, PY1|X1=x ′1,X2
) (9)

≤ I
(∑

x1

P(1)
X1

(x1)P(1)
X2|X1

(x2|x1), PY1|X1=x ′1,X2

)
(10)

= I(P(1)
X2

, PY1|X1=x ′1,X2
)

=
∑

x ′1

P∗X1
(x ′1) · I(P(1)

X2
, PY1|X1=x ′1,X2

) (11)

= I (2)(X2; Y1|X1), (12)

where (9) holds by the invariance assumption in (ii) and
x ′1 ∈ X1 is arbitrary, (10) holds since the functional I(·, ·)
is concave in the first argument, and (11) is obtained from
the invariance assumption in (ii). Combining the above yields
R(P(1)

X1,X2
, PY1,Y2|X1,X2) ⊆ R(P∗X1

· P(1)
X2

, PY1,Y2|X1,X2), which
implies that CO ⊆ CI and hence CI = CO.

Instead of relying on the permutation invariance (row, col-
umn, or both) of the channel transition matrix, the symmetry
property in the theorem is characterized by a combination of
two symmetry properties for state-dependent one-way chan-
nels in terms of mutual information: (1) common capacity-
achieving input distribution; (2) invariance of input-output
mutual information. A special case where condition (i) of
Theorem 1 trivially holds is when each one-way channel
PY2|X1,X2=x2 , x2 ∈ X2, is T -symmetric4 [36]; in this case we
have P∗X1

= PU
X1

.
We next apply condition (ii) of Theorem 1 for both direc-

tions of the two-way transmission.
Theorem 2: For a memoryless TWC, if conditions (i) and

(ii) below are satisfied, then CI = CO.
(i) I(PX1 , PY2|X1,X2=x2) does not depend on x2 ∈ X2 for

any fixed PX1 ∈ P(X1);
(ii) I(PX2 , PY1|X1=x1,X2) does not depend on x1 ∈ X1 for

any fixed PX2 ∈ P(X2).
Proof: From conditions (i) and (ii), we know that

maxPX1|X2=x2
I (X1; Y2|X2 = x2) has a common maximizer

P∗X1
for all x2 ∈ X2 and that maxPX2|X1=x1

I (X2; Y1|X1 =
x1) has a common maximizer P∗X2

for all x1 ∈ X1. For

any P(1)
X1,X2

= P(1)
X1
· P(1)

X2|X1
, let P(2)

X1,X2
= P∗X1

· P∗X2
.

Using the same argument as in (4)-(8) and applying con-
dition (ii) to (6), we conclude that I (1)(X1; Y2|X2) ≤
I (2)(X1; Y2|X2) and I (1)(X2; Y1|X1) ≤ I (2)(X2; Y1|X1).
Thus, R(P(1)

X1,X2
, PY1,Y2|X1,X2) ⊆ R(P∗X1

· P∗X2
, PY1,Y2|X1,X2),

which yields CI = CO.
To verify condition (i) in Theorem 1, one should find

optimal input distributions for the one-way channel from users
1 to 2 for each state x2 ∈ X2, say, via the Blahut-Arimoto algo-
rithm [38]. This process can sometimes be simplified by test-
ing whether the uniform input distribution is optimal via the
Karush-Kuhn-Tucker (KKT) conditions for one-way channel
capacity [33]. However, verifying condition (ii) in Theorem 1
may necessitate the evaluation of I(PX2 , PY1|X1,X2(·|x1, ·))
for all PX2 ∈ P(X2) and x1 ∈ X1. In practice, such a
verification is often complex, especially when the size of
the input alphabet is large. Similar difficulties arise when
ascertaining the conditions of Theorem 2. In the following
results, conditions that are easier to check are presented.

Theorem 3: For a memoryless TWC, if conditions (i) and
(ii) below are satisfied, then CI = CO.

4A point-to-point one way channel is called T -symmetric if the optimal
input distribution (that maximizes the channel’s mutual information) is
uniform.
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(i) There exists P∗X1
∈ P(X1) such that

arg max
PX1|X2=x2

I (X1; Y2|X2 = x2) = P∗X1

for all x2 ∈ X2 and I(P∗X1
, PY2|X1,X2=x2) does not depend

on x2 ∈ X2;
(ii) There exists P∗X2

∈ P(X2) such that

arg max
PX2|X1=x1

I (X2; Y1|X1 = x1) = P∗X2

for all x1 ∈ X1 and I(P∗X2
, PY1|X1=x1,X2) does not depend

on x1 ∈ X1.

Proof: For any P(1)
X1,X2

= P(1)
X2
·P(1)

X1|X2
, consider P(2)

X1,X2
=

P∗X1
· P∗X2

, where P∗X1
and P∗X2

are given by (i) and (ii),
respectively. Following the same steps as in (4)-(8) and
using the second part of condition (i), we obtain that
I (1)(X1; Y2|X2) ≤ I (2)(X1; Y2|X2). By a similar argument,
we obtain the inequality I (1)(X2; Y1|X1) ≤ I (2)(X2; Y1|X1).
Hence, R(P(1)

X1,X2
, PY1,Y2|X1,X2) ⊆ R(P∗X1

·P∗X2
, PY1,Y2|X1,X2)

which implies CI = CO.
Unlike condition (ii) of Theorem 1 and the conditions

in Theorem 2, Theorem 3 only requires checking the
existence of a common maximizer and testing whether
I(P∗X1

, PY2|X1,X2=x2) is invariant with respect to x2 ∈ X2 and
I(P∗X2

, PY1|X1=x1,X2) is invariant with respect to x1 ∈ X1, thus
significantly reducing the validation computational complexity
vis-a-vis Theorems 1 and 2.

The next two corollaries provide even simpler conditions.
Let [PY2|X1,X2(·|·, x2)] denote the transition matrix of the chan-
nel from users 1 to 2 when the input of user 2 is fixed to be x2.
The matrix [PY2|X1,X2(·|·, x2)] has size |X1| × |Y2| and its
entry at the x1th row and y2th column is PY2|X1,X2(y2|x1, x2).
Similarly, let [PY2|X1,X2(·|x1, ·)] denote the transition matrix
of the channel from users 2 to 1 when the input of user 1 is
fixed to be x1.

Corollary 1: For a memoryless TWC, if conditions (i) and
(ii) below are satisfied, then CI = CO.

(i) The channel with transition matrix [PY2|X1,X2(·|·, x2)] is
quasi-symmetric5 for all x2 ∈ X2;

(ii) The matrices [PY1|X1,X2(·|x1, ·)], x1 ∈ X1, are column
permutations of each other.

Proof: It suffices to show that conditions (i) and (ii) imply
the conditions of Theorem 1. Under condition (i), we obtain
a common maximizer given by P∗X1

= PU
X1

since the optimal
input distribution for a quasi-symmetric channel is the uniform
distribution [35]; this implies condition (i) of Theorem 1.
Furthermore, we observe that I(PX2 , PY1|X1,X2(·|x1, ·)) is
invariant with respect to column permutations of the transition
matrix PY1|X1,X2(·|x1, ·) for given PX2 . Since the matrices
[PY1|X1,X2(·|x1, ·)], x1 ∈ X1, are column permutations of each
other, we conclude that I(PX2 , PY1|X1=x1,X2) does not depend
on x1 ∈ X1 for any fixed PX2 ∈ P(X2), which is the second
condition of Theorem 1.

5A discrete memoryless channel with transition matrix [PY |X (·|·)] is said
to be weakly-symmetric if the rows are permutations of each other and all the
column sums are identical [34]. A discrete memoryless channel is said to be
quasi-symmetric if its transition matrix [PY |X (·|·)] can be partitioned along
its columns into weakly-symmetric sub-matrices [35].

Corollary 2: For a memoryless TWC, if conditions (i) and
(ii) below are satisfied, then CI = CO.

(i) The matrices [PY2|X1,X2(·|·, x2)], x2 ∈ X2, are column
permutations of each other;

(ii) The matrices [PY1|X1,X2(·|x1, ·)], x1 ∈ X1, are column
permutations of each other.

Proof: It suffices to show that conditions (i) and (ii) imply
the conditions of Theorem 2. This can be done using a similar
argument as in the second part of the proof of Corollary 1,
and hence the details are omitted.

If the transition probability PY1,Y2|X1,X2 satisfies conditions
(i) and (ii) of Theorem 1, the capacity region is given by

C = co

⎛
⎝⋃

PX2

R(P∗X1
·PX2 , PY1,Y2|X1,X2)

⎞
⎠ , (13)

where P∗X1
is given by condition (i). For example, condition

(i) trivially holds when each one-way channel with fixed state
x2 ∈ X2 from users 1 to 2 is T -symmetric. In this case,
we have P∗X1

= PU
X1

and the capacity region becomes

C = co

⎛
⎝⋃

PX2

R(PU
X1
·PX2 , PY1,Y2|X1,X2)

⎞
⎠ . (14)

In fact, this is also the capacity region for memoryless TWCs
which satisfy Corollary 1 because condition (ii) of Corollary 1
implies condition (ii) of Theorem 1 (this follows from the
proof of Corollary 1). Moreover, the proof of Theorem 2
demonstrates that a common maximizer exists for each direc-
tion of the two-way transmission under the conditions of
Theorem 2. Let arg maxPX1|X2=x2

I (X1; Y2|X2 = x2) = P∗X1
for all x2 ∈ X2 and arg maxPX2|X1=x1

I (X2; Y1|X1 = x1) =
P∗X2

for all x1 ∈ X1. A TWC which satisfies the conditions of
Theorem 2 has the capacity region

C = R(P∗X1
·P∗X2

, PY1,Y2|X1,X2). (15)

The region is rectangular which suggests that such a two-way
transmission inherently comprises two independent one-way
transmissions. A memoryless TWC that satisfies the conditions
in either Theorem 3 or Corollary 2 also has a capacity region
given by (15).

To end this section, we remark that it is possible to combine
different conditions to determine the capacity region of a
broader class of memoryless TWCs as shown below.

Theorem 4: For a memoryless TWC, if both of the follow-
ing conditions are satisfied, then C = CI = CO with C given
by (13):

(i) There exists P∗X1
∈ P(X1) such that

arg max
PX1|X2=x2

I (X1; Y2|X2 = x2) = P∗X1

for all x2 ∈ X2;
(ii) H (Y1|X1, X2) does not depend on PX1|X2 given PX2 and

PY1|X1,X2 , and P∗X1
given in (i) satisfies H (1)(Y1|X1) ≤

H (2)(Y1|X1) for any P(1)
X1,X2

= P(1)
X2
· P(1)

X1|X2
, where

P(2)
X1,X2

= P∗X1
· P(1)

X2
.
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Here, condition (i) is directly from Theorem 1; condition (ii)
is obtained by extracting the CVA condition related to the
channel from user 2 to user 1. In order that the two conditions
jointly determine the capacity region, the P̃X1 required by the
CVA condition is forced to be P∗X1

.

Proof of Theorem 4: Given any P(1)
X1,X2

= P(1)
X2
· P(1)

X1|X2
,

let P(2)
X1,X2

= P∗X1
· P(1)

X2
. Invoking the same argument as in

(4)-(8), we obtain that I (1)(X1; Y2|X2) ≤ I (2)(X1; Y2|X2)
using condition (i). Moreover, condition (ii) implies that
I (1)(X2; Y1|X1) = H (1)(Y1|X1) − H (1)(Y1|X1, X2) ≤
H (2)(Y1|X1)− H (2)(Y1|X1, X2) = I (2)(X2; Y1|X1). Combin-
ing the above then completes the proof.

D. Examples

We next illustrate the proposed conditions via examples.
Example 1 (Memoryless Binary Additive-Noise TWCs with

Erasures): Let X1 = X2 = {0, 1} and Y1 = Y2 = Z =
{0, 1, E}, where E denotes channel erasure. A binary additive
noise TWC with erasures is defined by the channel equations

Y1,i = (X1,i ⊕2 X2,i ⊕2 Z1,i )·1{Z1,i �= E} + E·1{Z1,i = E},
Y2,i = (X1,i ⊕2 X2,i ⊕2 Z2,i)·1{Z2,i �= E} + E·1{Z2,i = E},

where ⊕2 denotes modulo-2 addition, {(Z1,i , Z2,i )}∞i=1 is a
memoryless joint noise-erasure process that is independent of
the users’ messages and has components Z1,i , Z2,i ∈ Z such
that Pr(Z j,i = E) = ε j and Pr(Z j,i = 1) = α j , where 0 ≤
ε j + α j ≤ 1 for j = 1, 2, and 1{·} denotes the indicator
function. Here, we adopt the convention E·0 = 0 and E·1 = E
to simplify the representation of the channel equations.6 The
channel equations yield the following transition matrices for
the one-way channels:
[PY2|X1,X2(·|·, 0)] =

(
1− ε2 − α2 α2 ε2

α2 1− ε2 − α2 ε2

)
,

[PY2|X1,X2(·|·, 1)] =
(

α2 1− ε2 − α2 ε2
1− ε2 − α2 α2 ε2

)
,

[PY1|X1,X2(·|0, ·)] =
(

1− ε1 − α1 α1 ε1
α1 1− ε1 − α1 ε1

)
,

[PY1|X1,X2(·|1, ·)] =
(

α1 1− ε1 − α1 ε1
1− ε1 − α1 α1 ε1

)
,

where the rows are indexed by 0 and 1 (from top to bottom)
and the columns are indexed by 0, 1, and E (from left to
right). As all our proposed conditions are only based on the
marginal transition probabilities, the relationship between Z1,i

and Z2,i can be arbitrary. By Corollary 2, we obtain that the
optimal channel input distribution is P∗X1

· P∗X2
= PU

X1
· PU

X2
since the marginal channel transition matrices not only exhibit
column permutation properties but also are quasi-symmetric.
The capacity region is given by

C =
{

(R1, R2) : R1 ≤ (1− ε2)·
(

1− Hb

( α2

1− ε2

))
,

R2 ≤ (1− ε1)·
(

1− Hb

( α1

1− ε1

))}
,

6Strictly speaking, X1,i ⊕2 X2,i ⊕2 Z j,i is undefined when Z j,i = E, but
we set (X1,i ⊕2 X2,i ⊕2 E) · 0 = 0.

where Hb(·) denotes the binary entropy function. One can ver-
ify that this TWC also satisfies the conditions of Theorems 1-3
and Corollary 1.

Remark 1: Various TWCs are special cases of this TWC
model:

1) If α1 = α2 = 0, then the memoryless binary additive
TWC with erasures is recovered:

Y1,i = (X1,i ⊕2 X2,i )·1{Z1,i �= E} + E·1{Z1,i = E},
Y2,i = (X1,i ⊕2 X2,i )·1{Z2,i �= E} + E·1{Z2,i = E}.

The capacity region is given by

C = {(R1, R2) : R1 ≤ 1− ε2, R2 ≤ 1− ε1}.
2) If ε1 = ε2 = 0, then the memoryless binary additive-

noise TWC is obtained:
Y1,i = X1,i ⊕2 X2,i ⊕2 Z1,i ,

Y2,i = X1,i ⊕2 X2,i ⊕2 Z2,i .

The capacity region of this channel is given by

C = {(R1, R2) : R1 ≤ 1− Hb(α2), R2 ≤ 1− Hb(α1)}.
3) If ε1 = ε2 = 0 and α1 = α2 = 0, then we

obtain the memoryless binary additive TWC given by
Y1,i = X1,i ⊕2 X2,i and Y2,i = X1,i ⊕2 X2,i . The
capacity region is given by C = {(R1, R2) : R1 ≤ 1,
R2 ≤ 1} [3], [24].

Remark 2: Example 1 can be generalized to a non-binary
setting: for some integer q > 2, X1 = X2 = {0, 1, . . . , q − 1}
and Y1 = Y2 = Z = {0, 1, . . . , q − 1, E}, the q-ary
channel model obeys the same equations as in Example 1 with
modulo-2 addition replaced with the modulo-q operation ⊕q .
Furthermore, the channel noise-erasure variables have mar-
ginal distributions given by Pr(Z j,i = E) = ε j and Pr(Z j,i =
z) = α j /(q−1) for z = 1, 2, . . . , q−1, where 0 ≤ α j+ε j ≤ 1
for j = 1, 2. By Corollary 2, we directly have that CI = CO,
and

C =
{

(R1, R2) :

R1 ≤ (1− ε2)·
(

log2 q − Hq

(
α2

(q − 1)(1− ε2)

))
,

R2 ≤ (1− ε1)·
(

log2 q − Hq

(
α1

(q − 1)(1− ε1)

))}
,

where Hq(x) � x · log2(q−1)−x · log2 x−(1−x)· log2(1−x).
Example 2 (Data Access TWCs): Let q = 2m for some

integer m ≥ 1 and consider the alphabets X1 = X2 =
X = {0, 1, . . . , q − 1}, Y1 = Y2 = {0, 1, . . . , q − 1, E}, and
Z = {0, 1, 2}. A data access TWC linking two storage devices
is described by

Y1,i = (X1,i �q X2,i ) · 1{Z1,i = 0}
+((q − 1) �q X1,i �q X2,i )·1{Z1,i = 1} + E·1{Z1,i = 2},

Y2,i = (X1,i �q X2,i ) · 1{Z2,i = 0}
+((q − 1) �q X1,i �q X2,i )·1{Z2,i = 1} + E·1{Z2,i = 2},



6298 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 10, OCTOBER 2019

where a �q b denotes bit-wise addition for the length-q stan-
dard binary representation of a, b ∈ X , and {(Z1,i , Z2,i )}∞i=1 is
a memoryless joint noise-erasure process that is independent
of the stored messages and has components Z1,i , Z2,i ∈ Z
such that Pr(Z j,i = 1) = α j and Pr(Z j,i = E) = ε j , where
0 ≤ α j +ε j ≤ 1 for j = 1, 2. This channel model can capture
the effect of user signal superpositions (when Z j,i = 0), bit-
level burst errors which flip all bits of X1,i �q X2,i (when
Z j,i = 1), and data package losses (when Z j,i = 2).

For this channel, an application of Corollary 2 immediately
gives the capacity region:

C =
{

(R1, R2) : R1 ≤ (1− ε2)·
(

m − Hb

(
α2

1− ε2

))
,

R2 ≤ (1− ε1)·
(

m − Hb

(
α1

1− ε1

))}
.

The next example redervies a known result in [28] based
on our approach.

Example 3 (Memoryless Injective Semi-Deterministic
TWCs [28]): Let T j and Z j denote finite sets. A memoryless
ISD-TWC is defined in [28] by the channel equations

Y j,i = h j (X j,i , Tj,i ) and Tj,i = h̃ j (Xk,i , Z j,i ) (16)

for j, k = 1, 2 with j �=k, where h j : X j × T j → Y j is
invertible in T j and h̃ j : Xk × Z j → T j is invertible in Z j ,
i.e., for every x j ∈ X j , h j (x j , t j ) is one-to-one in t j ∈ T j and
for every xk ∈ Xk , h̃ j (xk, z j ) is one-to-one in z j ∈ Z j . Here,
{(Z1,i , Z2,i )}∞i=1 is a memoryless joint noise process that is
independent of users’ messages. For this channel, we have [28]

I (X1; Y2|X2 = x2) ≤ max
PX1

H (h̃2(X1, Z2))− H (Z2).

This upper bound does not depend on X2, and hence a com-
mon maximizer exists, i.e., P∗X1

= arg maxPX1
H (h̃2(X1, Z2)).

Moreover, the value of maxPX1
I (X1; Y2|X2 = x2) is identical

for all x2 ∈ X2. We immediately observe that condition (i)
in Theorem 3 holds. By a similar argument, condition (ii) in
Theorem 3 also holds, implying that Shannon’s inner and outer
bounds coincide. The capacity region is given by

C =
{

(R1, R2) : R1 ≤ max
PX1

H (h̃2(X1, Z2))− H (Z2),

R2 ≤ max
PX2

H (h̃1(X2, Z1))− H (Z1)

}
.

Example 4: Consider the TWC with X1 = X2 = Y1 =
Y2 = {0, 1} and transition probability

[PY1,Y2|X1,X2] =
⎛
⎜⎜⎝

00 01 10 11

00 0.783 0.087 0.117 0.013
01 0.36279 0.05421 0.50721 0.07579
10 0.261 0.609 0.039 0.091
11 0.173889 0.243111 0.243111 0.339889

⎞
⎟⎟⎠.

The one-way channel marginal distributions are

[PY2|X1,X2(·|·, 0)] =
( 0 1

0 0.9 0.1
1 0.3 0.7

)

Fig. 5. The capacity region of the point-to-point memoryless TWC in
Example 4.

and

[PY2|X1,X2(·|·, 1)] =
( 0 1

0 0.87 0.13
1 0.417 0.583

)
with [PY1|X1,X2(·|0, ·)]=[PY1|X1,X2(·|1, ·)]=[PY2|X1,X2(·|·, 1)].

Shannon’s symmetry condition in Proposition 1 does not
hold for this channel since there are no permutations of Y1 and
Y2 which can result in (2). Furthermore, since H (Y2|X1 = 0,
X2 = 0) = Hb(0.1) and H (Y2|X1 = 1, X2 = 0) =
Hb(0.3), H (Y2|X1, X2) depends on PX1|X2 for fixed PX2 .
Thus, the CVA condition in Proposition 3 does not hold either.
However, the conditions of Theorem 1 are satisfied since
a common maximizer exists for the one-way channel from
users 1 to 2 given by P∗X1

(0) = 0.471, and condition (ii)
trivially holds. By considering all input distributions of the
form PX1,X2 = P∗X1

· PX2 , where PX2 ∈ P(X2), one can
compute the capacity region as shown in Fig. 5. We note that,
with some extra effort, one can show that the conditions of
Theorem 4 also hold [2].

Finally, we point out (without proof) that the channels in
the examples in [3, Fig. 2 & Table II] and [28, Section IV-B]
satisfy the conditions of Theorem 1.

E. Comparison with Prior Results
In this section, we show that Theorems 1 and 2 generalize

the Shannon results in Propositions 1 and 2, respectively, and
that Theorem 4 subsumes the CVA result in Proposition 3 as
a special case.

Theorem 5: A TWC that satisfies the Shannon’s one-sided
symmetry condition of Proposition 1 must satisfy the condi-
tions of Theorem 1.

Proof: If a TWC satisfies the Shannon condition in
Proposition 1, the capacity-achieving input distribution is of
the form PX1,X2 = PU

X1
· PX2 for some PX2 ∈ P(X2) [3]. This

implies that condition (i) of Theorem 1 is satisfied because
a common maximizer exists for all x2 ∈ X and is given
by P∗X1

= PU
X1

. To prove that condition (ii) is also satis-
fied, we consider the transition matrices [PY1|X1,X2(·|x ′1, ·)]
and [PY1|X1,X2(·|x ′′1 , ·)] for arbitrary x ′1, x ′′1 ∈ X1 and show
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that these are column permutations of each other and hence
I(PX2 , PY1|X1=x ′1,X2

) = I(PX2 , PY1|X1=x ′′1 ,X2
). The first claim

is true because

PY1|X1,X2(y1|x ′1, x2)

= PY1|X1,X2(π
Y1[x ′1, x ′′1 ](y1)|τX1

x ′1,x ′′1
(x ′1), x2) (17)

= PY1|X1,X2(π
Y1[x ′1, x ′′1 ](y1)|x ′′1 , x2),

where (17) is obtained by marginalizing over Y2 on both sides
of (2). For the second claim, we have

I(PX2 , PY1|X1=x ′1,X2
)

=
∑
x2,y1

PX2(x2) · PY1|X1,X2(y1|x ′1, x2)

· log
PY1|X1,X2(y1|x ′1, x2)∑

x̃2
PX2(x̃2)·PY1|X1,X2(y1|x ′1, x̃2)

=
∑
x2,y1

PX2(x2) · PY1|X1,X2(π
Y1[x ′1, x ′′1 ](y1)|x ′′1 , x2)

· log
PY1|X1,X2(π

Y1[x ′1, x ′′1 ](y1)|x ′′1 , x2)∑
x̃2

PX2(x̃2)·PY1|X1,X2(π
Y1[x ′1, x ′′1 ](y1)|x ′′1 , x̃2)

(18)

=
∑
x2,ỹ1

PX2(x2) · PY1|X1,X2(ỹ1|x ′′1 , x2)

· log
PY1|X1,X2(ỹ1|x ′′1 , x2)∑

x̃2
PX2(x̃2)·PY1|X1,X2(ỹ1|x ′′1 , x̃2)

(19)

= I(PX2 , PY1|X1=x ′′1 ,X2
),

where (18) holds by the first claim.
Remark 3: Since the optimal input distribution of user 1 in

Theorem 1 is not necessarily uniform as illustrated in Exam-
ple 4, Theorem 1 is more general than Proposition 1.

Theorem 6: A TWC that satisfies the Shannon two-sided
symmetry condition of Proposition 2 must satisfy the condi-
tions of Theorem 2.
This theorem is immediate, and hence the proof is omitted.
Together with Example 5 given in the next section, Theorem 2
is shown to be more general than Proposition 2. We next show
that the symmetry properties identified by the conditions of
Theorem 4 are more general than those in the CVA condition.

Theorem 7: A TWC that satisfies the CVA condition in
Proposition 3 must satisfy the conditions in Theorem 4.

Proof: Suppose that the condition of Proposition 3 is
satisfied. To prove the theorem, we show that for j = 1, 2,
H (Y j |X1 = x ′1, X2 = x2) = H (Y j |X1 = x ′′1 , X2 = x2) for all
x ′1, x ′′1 ∈ X1 and x2 ∈ X2. Given arbitrary pairs (x ′1, x2) and
(x ′′1 , x2), consider the probability distributions

P(1)
X1,X2

(a, b) =
{

1, if a = x ′1 and b = x2,
0, otherwise,

and

P(2)
X1,X2

(a, b) =
{

1, if a = x ′′1 and b = x2,
0, otherwise.

Noting that P(1)
X2
= P(2)

X2
, we have H (Y j |X1 = x ′1, X2 =

x2) = H (1)(Y j |X1, X2) = H (2)(Y j |X1, X2) = H (Y j |X1 =
x ′′1 , X2 = x2), where the first and last equality are due
to the definitions of P(1)

X1,X2
and P(2)

X1,X2
, respectively, and

the second equality follows from the CVA condition since
P(1)

X2
= P(2)

X2
. Thus H (Y j |X1 = x1, X2 = x2) does not depend

on x1 for fixed x2 as claimed. Also, since H (Y j |X1, X2 =
x2) = ∑

x1
PX1|X2(x1|x2) · H (Y j |X1 = x1, X2 = x2),

H (Y j |X1, X2 = x2) does not depend on PX1|X2=x2 .
Next, we show that condition (i) of Theorem 4 holds by

constructing a common maximizer from the CVA condition.
For fixed x2 ∈ X2, let

P∗X1|X2=x2

= arg max
PX1|X2=x2

I (X1; Y2|X2 = x2)

= arg max
PX1|X2=x2

(
H (Y2|X2 = x2)− H (Y2|X1, X2 = x2)

)
,

and define P(1)
X1,X2

= P(1)
X2
· P∗X1|X2

for some P(1)
X2
∈ P(X2).

Since H (Y j |X1, X2 = x2) does not depend on PX1|X2=x2 ,
P∗X1|X2=x2

is in fact a maximizer of H (Y2|X2 = x2). Note that
the maximizer P∗X1|X2=x2

is not necessarily unique, but any

choice works for our purposes. Now for P(1)
X1,X2

, by the CVA
condition, there exists P̃X1 ∈ P(X1) such that H (1)(Y2|X2) ≤
H (2)(Y2|X2), where P(2)

X1,X2
= P̃X1 · P(1)

X2
. Since P∗X1|X2=x2

is
the maximizer for H (Y2|X2 = x2), we have

H (1)(Y2|X2) =
∑
x2

P(1)
X2

(x2) · H (1)(Y2|X2 = x2)

=
∑
x2

P(1)
X2

(x2) ·
[

max
PX1|X2=x2

H (Y2|X2 = x2)

]

≥
∑
x2

P(1)
X2

(x2) · H (2)(Y2|X2 = x2)

= H (2)(Y2|X2)

Thus, H (1)(Y2|X2) = H (2)(Y2|X2), i.e.,∑
x2

P(1)
X2

(x2)·H (1)(Y2|X2 = x2)=
∑

x2

P(1)
X2

(x2)·H (2)(Y2|X2 = x2).

Since H (2)(Y2|X2 = x2) ≤ H (1)(Y2|X2 = x2) for each
x2 ∈ X2, we obtain H (1)(Y2|X2 = x2) = H (2)(Y2|X2 = x2),
i.e., P̃X1 achieves the same value for H (Y2|X2 = x2) as
P∗X1|X2=x2

for all x2 ∈ X2. Consequently, P̃X1 is a common
maximizer and thus condition (i) of Theorem 4 is satisfied.
Moreover, since the common maximizer P̃X1 is from the CVA
condition, we have that H (1)(Y1|X1) ≤ H (2)(Y1|X1), which
together with the fact that H (Y1|X1, X2) does not depend
on PX1|X2 given PX2 and PY1|X1,X2 (guaranteed by the CVA
condition) implies that condition (ii) of Theorem 4 holds.

Remark 4: As illustrated by Example 4, a TWC that satis-
fies the conditions of Theorem 4 does not necessarily satisfy
the CVA condition in Proposition 3. Therefore, Theorem 4 is
a more general result than Proposition 3. We note that the
main difference between Theorem 4 and Proposition 3 lies in
the fact that we allow H (Y2|X1, X2) to depend on PX1|X2 ,
given PX2 .

F. Connection Between the Shannon and CVA Conditions
In this section, we connect Shannon’s result to the CVA

condition. First, the proof in Appendix A shows that Shannon’s
symmetry conditions are more than sufficient for CI and
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CO to coincide. In fact, assume that the marginal channels
PY j |X1,X2 ’s (derived from PY1,Y2|X1,X2 ) satisfy the follow-
ing extended Shannon’s symmetry condition: for any pair
of distinct input symbols x ′1, x ′′1 ∈ X1, there exists a pair
of permutations (πY1[x ′1, x ′′1 ], πY2 [x ′1, x ′′1 ]) on Y1 and Y2,
respectively, (which depend on x ′1 and x ′′1 ) such that for all
x1, x2, y1, y2,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

PY1|X1,X2(y1|x1, x2)

= PY1|X1,X2(π
Y1[x ′1, x ′′1 ](y1)|τX1

x ′1,x ′′1
(x1), x2),

PY2|X1,X2(y2|x1, x2)

= PY2|X1,X2(π
Y2 [x ′1, x ′′1 ](y2)|τX1

x ′1,x ′′1
(x1), x2),

(20)

then CI = CO = C with C given by (3).
The extended Shannon’s symmetry conditions are more

general than their original versions since (2) implies (20) but
the reverse implication is not true as shown below.

Example 5: Consider the TWC with X1 = X2 = Y1 =
Y2 = {0, 1} and transition probability

[PY1,Y2|X1,X2] =

⎛
⎜⎜⎜⎜⎝

00 01 10 11

00 0.25 0.5 0.25 0

01 0.375 0375 0.125 0.125

10 0.125 0.125 0.375 0.375

11 0.125 0.125 0.375 0.375

⎞
⎟⎟⎟⎟⎠.

The marginal distributions are

[PY1|X1,X2] =

⎛
⎜⎜⎝

0 1

00 0.75 0.25
01 0.75 0.25
10 0.25 0.75
11 0.25 0.75

⎞
⎟⎟⎠

and

[PY2|X1,X2] =

⎛
⎜⎜⎝

0 1

00 0.5 0.5
01 0.5 0.5
10 0.5 0.5
11 0.5 0.5

⎞
⎟⎟⎠.

Clearly, neither of the Shannon conditions in Proposition 1
or 2 holds, but the extended condition in (20) holds.

We now show that the above extended symmetry condition
implies the CVA condition.

Theorem 8: A TWC that satisfies the condition in (20) must
satisfy the CVA condition of Proposition 3.

Proof: If the marginal channels PY1|X1,X2 and PY2|X1,X2

satisfy the extended one-sided symmetry condition, then
H (Y j |X1 = x1, X2 = x2) does not depend on x1 ∈ X1 for
any fixed x2 ∈ X2 since the rows of [PY j |X1,X2(·|·, x2)] are
permutations of each other. Hence, H (Y j |X1, X2) does not
depend on PX1|X2 given PX2 ∈ P(X2) as required by the
CVA condition.

Next, for any given joint distribution P(1)
X1,X2

= P(1)
X2
·P(1)

X1|X2
,

we show that P(2)
X1,X2

= P̃X1 · P(1)
X2

with the choice P̃X1 = PU
X1

meets the remaining requirements of the CVA condition
in Proposition 3. Since the TWC satisfies the extended

Shannon condition, Lemma 6 in Appendix A gives the
two inequalities: I (1)(X1; Y2|X2) ≤ I (2)(X1; Y2|X2)
and I (1)(X2; Y1|X1) ≤ I (2)(X2; Y1|X1). Observing that
I (1)(X1; Y2|X2) = H (1)(Y2|X2) − H (1)(Y2|X1, X2) =
H (1)(Y2|X2) − H (2)(Y2|X1, X2), we immediately obtain
that H (1)(Y2|X2) ≤ H (2)(Y2|X2) since I (1)(X1; Y2|X2) ≤
I (2)(X1; Y2|X2). Moreover, since H (1)(Y1|X1, X2) =
H (2)(Y1|X1, X2) and I (1)(X2; Y1|X1) ≤ I (2)(X2; Y1|X1),
we have that H (1)(Y1|X1) ≤ H (2)(Y1|X1). Thus, the CVA
condition is fulfilled.

Remark 5: In [28], the existence of examples showing that
the Shannon and CVA results are not equivalent was posed
as an open question. The example below shows that the
CVA condition is more general than the extended (one-sided)
Shannon’s symmetry condition (20). Together with Example 5,
we conclude that the CVA result is more general than the
Shannon result.

Example 6: Consider the TWC with X1 = Y1 = Y2 =
{0, 1, 2} and X2 = {0, 1} and marginal distributions given by

[PY1|X1,X2(·|·, 0)] =
⎛
⎝

0 1 2

0 0.3 0.2 0.5
1 0.5 0.3 0.2
2 0.2 0.5 0.3

⎞
⎠

with [PY1|X1,X2(·|·, 1)]=[PY2|X1,X2(·|·, 0)]=[PY2|X1,X2(·|·, 1)]=
[PY1|X1,X2(·|·, 0)]. Clearly, there are no relabeling functions for
Y1 and Y2 which recover [PY1|X1,X2(·|·, 0)] after exchanging
the labels of X1 = 0 and X1 = 1, so that the extended
one-sided symmetry condition does not hold. To check
the CVA condition, we first observe that H (Y j |X1 = x1,
X2 = x2) does not depend on x1 ∈ X1 and x2 ∈ X2; thus
H (Y j |X1, X2) does not depend on PX1,X2 for j = 1, 2.
Furthermore, for any given P(1)

X1,X2
= P(1)

X2
· P(1)

X1|X2
, consider

P(2)
X1,X2

= P̃X1 · P(1)
X2

with P̃X1 = PU
X1

. Then, we have

I (1)(X1; Y2|X2) = ∑
x2

P(1)
X2

(x2) · I (1)(X1; Y2|X2 = x2) ≤∑
x2

P(1)
X2

(x2) · I (2)(X1; Y2|X2 = x2) = I (2)(X1; Y2|X2),
where the inequality follows from the fact that PU

X1
is the

capacity-achieving input distribution for all one-way channels
from users 1 to 2. On the other hand, since the matrices
[PY1|X1,X2(·|x1, ·)], x1 ∈ X1, are column permutations of each
other, I(PX2 , PY1|X1=x1,X2) does not depend on x1 ∈ X1 for
any fixed PX2 ∈ P(X2). One can then follow the proof of
Theorem 1 to obtain that I (1)(X2; Y1|X1) ≤ I (2)(X2; Y1|X1).
Now, since H (Y j |X1, X2) does not depend on the input
distribution, we conclude that H (1)(Y j |X j ) ≤ H (2)(Y j |X j )
for j = 1, 2, and thus the CVA condition is satisfied.

Remark 6: The channel in the above example in fact also
satisfies the conditions of Theorem 1. Nevertheless, the con-
nection between the conditions of Theorem 1 and the CVA
condition is still unclear.

We close this section by noting that the symmetry properties
induced by our proposed conditions are not necessarily specific
to two-user memoryless TWCs as we will see in Section IV.
It is also worth mentioning that the proposed conditions can
be used to investigate whether or not Shannon-type random
coding schemes (under independent and non-adaptive inputs)
provide tight bounds for other classical communication sce-
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narios such as MACs with feedback and one-way compound
channels. In particular, our conditions can be used to identify
compound channels where the availability of channel state
information at the transmitter (in addition to the receiver)
cannot improve capacity.

III. TWO-WAY SYMMETRIC CHANNELS WITH MEMORY

We here consider point-to-point TWCs with memory whose
inputs and outputs are related via functions F1 and F2 as
follows:

Y1,i = F1(X1,i , X2,i , Z1,i ), (21)

Y2,i = F2(X1,i , X2,i , Z2,i ), (22)

where {(Z1,i , Z2,i )}∞i=1 is a stationary and ergodic noise
process which is independent of the users’ messages
M1 and M2. Note that this model is a special case of
the general model introduced in Section II-A; it is also a
generalization of the discrete additive-noise TWC considered
in [1].

We first state (without proof) an inner bound for arbitrary
(time-invariant) functions F1 and F2. The bound can be
proved via Shannon’s standard random coding scheme (under
non-adaptive independent inputs) for information stable one-
way channels with memory, applied in each direction of the
two-way transmission.

Lemma 1 (Inner Bound): For the channel described in (21)
and (22), a rate pair (R1, R2) is achievable if there exist
two sequences of codes ( f n

1 , g1) and ( f n
2 , g2) with message

sets M1 = {1, 2, . . . , 2nR1} and M2 = {1, 2, . . . , 2nR2 },
respectively, such that

R1 ≤ lim
n→∞

1

n
I (Xn

1 ; Y n
2 |Xn

2 ),

R2 ≤ lim
n→∞

1

n
I (Xn

2 ; Y n
1 |Xn

1 ),

where the mutual information terms are evaluated under
a sequence of product input probability distributions
{PXn

1
·PXn

2
}∞n=1 and the inputs Xn

j are independent of
{(Z1,i , Z2,i )}ni=1, j = 1, 2.

We say that Fj (X1, X2, Z j ) is invertible in Z j if
Fj (x1, x2, ·) is one-to-one for any fixed x1 ∈ X1 and x2 ∈ X2.
Under this invertibility condition, we obtain the following
corollary.

Corollary 3: If Fj is invertible in Z j for j = 1, 2, a rate
pair (R1, R2) is achievable if

R1 ≤ lim
n→∞

1

n
H (Y n

2 |Xn
2 )− H̄(Z2), (23)

R2 ≤ lim
n→∞

1

n
H (Y n

1 |Xn
1 )− H̄(Z1), (24)

for product distributions {PXn
1
·PXn

2
}∞n=1, where H̄ (Z j ) denotes

the entropy rate of the noise process {Z j,i }∞i=1 and the inputs
Xn

j are independent of {(Z1,i , Z2,i )}ni=1, j = 1, 2.
Proof: The proof follows from the fact that

I (Xn
1 ; Y n

2 |Xn
2 ) = H (Y n

2 |Xn
2 )− H (Y n

2 |Xn
1 , Xn

2 )

= H (Y n
2 |Xn

2 )− H (Zn
2 |Xn

1 , Xn
2 )

= H (Y n
2 |Xn

2 )− H (Zn
2),

where the second equality holds since F2 is invertible in
Z2 and the last equality holds since the channel inputs are
generated independently of the noise process {(Z2,1, Z2,i )}∞i=1.
Applying a similar argument to I (Xn

1 ; Y n
2 |Xn

2 ) completes the
proof.

If we further impose cardinality constraints on the alphabets,
we can simplify the expressions in (23) and (24) as follows.

Corollary 4: Suppose that |X2| = |Y1| = |Z1| = q1 and
that |X1| = |Y2| = |Z2| = q2 for some integers q1, q2 ≥ 2.
Then, a rate pair (R1, R2) is achievable if

R1 ≤ log q2 − H̄(Z2),

R2 ≤ log q1 − H̄ (Z1).

Proof: The proof hinges on noting that H (Y n
j |Xn

j ) ≤
n · log q j and that the uniform input distribution PXn

1 ,Xn
2
=

(PU
X1
· PU

X2
)n achieves the upper bound. More specifically,

we have to show that if PXn
1 ,Xn

2
is the uniform distribution,

then PY n
j |Xn

j
(yn

j |xn
j ) is uniform on Yn

j for any given Xn
j = xn

j ,
and hence H (Y n

j |Xn
j = xn

j ) = n·log q j . By symmetry, we only
provide the details for H (Y n

2 |Xn
2). Suppose that PXn

1 ,Xn
2

is the
uniform distribution on X n

1 ×X n
2 . Let F−1

2 denote the inverse
of F2 for fixed (x1, x2) so that z2 = F−1

2 (x1, x2, y2). Then,
for any xn

2 we have

PY n
2 |Xn

2
(yn

2 |xn
2 )

=
∑
xn

1

PY n
2 |Xn

1 ,Xn
2
(yn

2 |xn
1 , xn

2 )PXn
1 |Xn

2
(xn

1 |xn
2 )

=
(

1

q2

)n

·
∑
xn

1

PY n
2 |Xn

1 ,Xn
2
(F2(xn

1 , xn
2 , zn

2)|xn
1 , xn

2 )

=
(

1

q2

)n

·
∑
xn

1

PZn
2 |Xn

1 ,Xn
2
(F−1

2 (xn
1 , xn

2 , yn
2 )|xn

1 , xn
2 )

=
(

1

q2

)n

·
∑
zn

2

PZn
2
(zn

2) (25)

=
(

1

q2

)n

,

where (25) holds since (Xn
1 , Xn

2 ) is independent of Zn
2 and

F2 is onto in Z2 due to the cardinality constraint. Clearly,
PY n

2 |Xn
2=xn

2
is the uniform distribution for any xn

2 , implying
that H (Y n

2 |Xn
2 ) = n · log q2.

Next we consider ISD-TWCs as in Example 3 and [28], but
with the assumption that the noise process {(Z1,i , Z2,i )}∞i=1
can have memory. Note that any ISD-TWC with memory is a
special case of the system model in (21) and (22) satisfying
the invertibility condition in Z1 and Z2. Thus, Corollary 3
applies to ISD-TWCs with memory to obtain the following
result.

Corollary 5: For the ISD-TWC with memory, a rate pair
(R1, R2) is achievable if

R1 ≤ lim
n→∞

1

n
max
PXn

1

H (h̃2(Xn
1 , Zn

2 ))− H̄ (Z2),

R2 ≤ lim
n→∞

1

n
max
PXn

2

H (h̃1(Xn
2 , Zn

1 ))− H̄(Z1),
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where H̄(Z j ) denotes the entropy rate of the process {Z j,i}∞i=1
for j = 1, 2.

We note that Corollary 4 also applies to ISD-TWCs with
memory under identical alphabet size constraints so that any
rate pair in {(R1, R2) : R1 ≤ log q2 − H̄(Z2), R2 ≤ log q1 −
H̄(Z1)} is achievable for ISD-TWCs with memory. We next
derive converses to Corollaries 4 and 5.

Lemma 2 (Outer Bound for Noise-Invertible TWCs With
Memory): Suppose that |Y j | = q j for some integer q j ≥ 2.
If Fj is invertible in Z j for j = 1, 2, any achievable rate pair
(R1, R2) must satisfy

R1 ≤ log q2 − lim
n→∞

1

n

n∑
i=1

H (Z2,i |Zi−1
1 , Zi−1

2 ),

R2 ≤ log q1 − lim
n→∞

1

n

n∑
i=1

H (Z1,i|Zi−1
1 , Zi−1

2 ),

where the limits exist because {(Z1,i , Z2,i )}∞i=1 is stationary.
Proof: For an achievable rate pair (R1, R2), we have

n·R1

= H (M1|M2)

= I (M1; Y n
2 |M2)+ H (M1|Y n

2 , M2)

≤ I (M1; Y n
2 |M2)+ n·εn (26)

=
n∑

i=1

[
H (Y2,i |M2, Y i−1

2 )− H (Y2,i |M1, M2, Y i−1
2 )

]
+n·εn

(27)

≤
n∑

i=1

[
log q2 − H (Y2,i |M1, M2, Y i−1

2 )
]
+ n·εn (28)

≤
n∑

i=1

[
log q2−H (Y2,i |M1, M2, Y i−1

1 , Y i−1
2 , X1,i , X2,i )

]
+n·εn

=
n∑

i=1

[
log q2−H (Z2,i |M1, M2, Y i−1

1 , Y i−1
2 , Xi

1, Xi
2)
]
+n·εn

(29)

=
n∑

i=1

[
log q2

−H (Z2,i |M1, M2, Y i−1
1 , Y i−1

2 , Xi
1, Xi

2, Zi−1
1 , Zi−1

2 )
]

+n·εn (30)

=
n∑

i=1

[
log q2 − H (Z2,i |Zi−1

1 , Zi−1
2 )

]
+ n·εn (31)

= n · log q2 −
n∑

i=1

H (Z2,i |Zi−1
1 , Zi−1

2 )+ n·εn, (32)

where (26) is due to Fano’s inequality with εn → 0 as n→∞,
(28) follows from |Y2| = q2, (29) and (30) hold since Fj is
invertible in Z j given (X1,i , X2,i ), and (31) holds since

H (Z2,i |Zi−1
1 , Zi−1

2 )

= H (Z2,i |M1, M2, Zi−1
1 , Zi−1

2 ) (33)

= H (Z2,i |M1, M2, Zi−1
1 , Zi−1

2 , X1,1, X2,1) (34)

= H (Z2,i |M1, M2, Zi−1
1 , Zi−1

2 , X1,1, X2,1, Y1,1, Y2,1) (35)

= H (Z2,i |M1, M2, Zi−1
1 , Zi−1

2 , X2
1, X2

2, Y1,1, Y2,1) (36)

= H (Z2,i |M1, M2, Zi−1
1 , Zi−1

2 , Xi
1, Xi

2, Y i−1
1 , Y i−1

2 ) (37)

where (33) is due to the fact that {(Z1,i , Z2,i )}∞i=1 is inde-
pendent of (M1, M2), (34) and (36) hold since X j,i =
f j,i (M j , Y i−1

j ) for j = 1, 2, (35) follows from the identity
Y j,i = Fj (X1,i , X2,i , Z j,i ), and (37) is obtained by recursively
using the same argument as in (34)-(36). Similarly, we have

n·R2 ≤ n· log q1 −
n∑

i=1

H (Z1,i |Zi−1
1 , Zi−1

2 )+ n·ε̂n . (38)

The proof is completed by dividing both sides of (32) and
(38) by n and letting n→∞.

Lemma 3 (Outer Bound for ISD-TWCs With Memory): For
the ISD-TWC with memory, any achievable rate pair (R1, R2)
must satisfy

R1 ≤ lim
n→∞

1

n

[
max
PXn

1

H (h̃2(Xn
1 , Zn

2 ))−
n∑

i=1

H (Z2,i |Zi−1
1 , Zi−1

2 )

]
,

R2 ≤ lim
n→∞

1

n

[
max
PXn

2

H (h̃1(Xn
2 , Zn

1 ))−
n∑

i=1

H (Z1,i|Zi−1
1 , Zi−1

2 )

]
.

Proof: The proof is similar to the proof of the previous
lemma and hence the details are omitted. The main difference
is that the first term in (27) is now upper bounded as follows

n∑
i=1

H (Y2,i |M2, Y i−1
2 )

=
n∑

i=1

H (h2(X2,i , T2,i )|M2, Y i−1
2 , Xi

2, T i−1
2 )

≤
n∑

i=1

H (T2,i |T i−1
2 )

= H (T n
2 )

≤ max
PXn

1

H (h̃2(Xn
1 , Zn

2 )),

where the first equality holds since Xi
2 is a function of

M2 and Y i−1
2 and Y2 = h2(X2, T2) is invertible in T2

given X2.
Based on the preceding inner and outer bounds, the capacity

region for two classes of TWCs with memory (whose com-
ponent noise processes are independent of each other) can be
exactly determined as follows.

Theorem 9: For a TWC with memory such that {Z1,i}∞i=1
and {Z2,i}∞i=1 are stationary ergodic and mutually independent,
Fj is invertible in Z j for j = 1, 2, and |X2| = |Y1| = |Z1| =
q1 and |X1| = |Y2| = |Z2| = q2 for some integers q1, q2 ≥ 2,
the capacity region is given by

C = {(R1, R2) :
R1 ≤ log q2 − H̄(Z2), R2 ≤ log q1 − H̄(Z1)

}
. (39)

Theorem 10: For a ISD-TWC with memory such that
{Z1,i}∞i=1 and {Z2,i}∞i=1 are stationary ergodic and mutually
independent, the capacity region is given by

C =
{

(R1, R2) :
R1 ≤ lim

n→∞
1

n
max
PXn

1

H (h̃2(Xn
1 , Zn

2 ))− H̄(Z2),

R2 ≤ lim
n→∞

1

n
max
PXn

2

H (h̃1(Xn
2 , Zn

1 ))− H̄(Z1)
}

. (40)
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Remark 7: Theorem 10 generalizes [28, Corollary 1] for
memoryless ISD-TWCs. If one further has |X2| = |T1| =
|Z1| = q1 and |X1| = |T2| = |Z2| = q2 for some integers
q1, q2 ≥ 2, then limn→∞ 1

n maxPXn
1

H (h̃2(Xn
1 , Zn

2 )) = log q1

and that limn→∞ 1
n maxPXn

2
H (h̃1(Xn

2 , Zn
1 )) = log q2.

The next example shows that if the noise processes are
dependent, then Shannon’s random coding scheme is not
optimal.

Example 7 (Adaptation is Useful): Let q1 = q2 = 2 and
suppose that the channel is given by

Y1,i = F1(X1,i , X2,i , Z1,i ) = X1,i ⊕2 X2,i ⊕2 Z1,i ,

Y2,i = F2(X1,i , X2,i , Z2,i ) = X1,i ⊕2 X2,i ⊕2 Z2,i ,

where {Z1,i}ni=1 is assumed to be memoryless with Z1,i

uniformly distributed on Z1 = {0, 1} for i = 1, 2, . . . , n,
and {Z2,i }ni=1 is given by Z2,1 = 0 and Z2,i = Z1,i−1 for
i = 2, 3, . . . , n. Since the functions F1 and F2 are invertible
in Z1 and Z2, the outer bound in Lemma 2 indicates that

R1 ≤ log 2 − lim
n→∞

1

n

n∑
i=1

H (Z2,i |Zi−1
1 , Zi−1

2 )

= 1− 0 = 1,

R2 ≤ log 2 − lim
n→∞

1

n

n∑
i=1

H (Z1,i|Zi−1
1 , Zi−1

2 )

= 1− H (Z1,i) = 0.

We claim that the rate pair (R1, R2) = (1, 0) can be achieved
by an adaptive coding scheme. Let {M1,i }ni=1 denote the
binary messages to be sent from users 1 to 2. For i =
1, 2, . . . , n, set the encoding function of user 1 as X1,i =
f1,i ({M1,i }ni=1, Y i−1

1 ) � M1,i ⊕2 X1,i−1 ⊕2 Y1,i−1 with initial
conditions X1,0 = X2,0 = Y1,0 = 0, and set the encoder output
of user 2 to be zero, i.e., X2,i = 0 for all i . With this coding
scheme, the received signal at user 2 is given by

Y2,i = X1,i ⊕2 X2,i ⊕2 Z2,i

=M1,i ⊕2 X1,i−1 ⊕2 Y1,i−1 ⊕2 Z2,i

=M1,i ⊕2 X1,i−1 ⊕2 X1,i−1 ⊕2 Z1,i−1 ⊕2 Z2,i = M1,i ,

and thus the rate pair (1, 0) is achievable. This achievability
result together with the outer bound imply that the channel
capacity is given by C = {(R1, R2) : R1 ≤ 1, R2 = 0}.
However, the Shannon-type random coding scheme only pro-
vides R1 ≤ 1 − H̄ (Z2) = 0 and R2 ≤ 1 − H̄ (Z2) = 0 by
Corollary 4.

IV. MULTIPLE ACCESS/DEGRADED BROADCAST TWCS

This section considers a three-user two-way communication
scenario combining multiaccess and broadcasting. We first
introduce the channel model and derive inner and outer bounds
for the capacity region. Then, sufficient conditions for the
two bounds to coincide are provided, along with illustrative
examples.

Fig. 6. The information flow of MA/DB TWCs.

A. Channel Model

Two-way communication over a discrete additive-noise
MA/DB TWC comprises three users as depicted in Fig. 6.
Users 1 and 2 want to transmit messages M13 and M23,
respectively, to user 3 through the TWC that acts as a MAC
in the forward direction. User 3 wishes to broadcast messages
M31 and M32 to users 1 and 2, respectively, through the TWC
that acts as a DBC in the reverse direction. The messages
are assumed to be independent of each other and uniformly
distributed over their alphabets. The joint distribution of all
the variables for n channel uses is given by

PM{13,23,31,32},Xn{1,2,3},Y n{1,2,3} = PM13 · PM23 · PM31 · PM32

·
(

n∏
i=1

PX1,i |M13,Y i−1
1

)
·
(

n∏
i=1

PX2,i |M23,Y i−1
2

)

·
(

n∏
i=1

PX3,i |M{31,32},Y i−1
3

)
·
(

n∏
i=1

PY1,i ,Y2,i ,Y3,i |Xi{1,2,3},Y
i−1
{1,2,3}

)
,

where M{13,23,31,32} � {M13, M23, M31, M32}, Xn{1,2,3} �
{Xn

1 , Xn
2 , Xn

3 }, and Y n{1,2,3} � {Y n
1 , Y n

2 , Y n
3 }. Thus, the n trans-

missions can be described by the sequence of input-output
conditional probabilities {PY1,i ,Y2,i ,Y3,i |Xi{1,2,3},Y

i−1
{1,2,3}
}ni=1.

To simplify our analysis, we assume that the chan-
nel is memoryless in the sense that given current
channel inputs, the current channel outputs are inde-
pendent of past signals, i.e., PY1,i ,Y2,i ,Y3,i |Xi{1,2,3},Y

i−1
{1,2,3}

=
PY1,i ,Y2,i ,Y3,i |X1,i ,X2,i ,X3,i for all i . Furthermore, the two direc-
tions of transmission are assumed to interact in a way
such that PY1,i ,Y2,i ,Y3,i |X1,i ,X2,i ,X3,i = PY1,i ,Y2,i |X1,i ,X2,i ,X3,i ·
PY3,i |X1,i ,X2,i ,X3,i . Let all channel input and output alphabets
other than Y3 equal Q � {0, 1, ..., q − 1} for some q ≥ 2.
The MA/DB TWC is defined by the transition probability
PY3|X1,X2,X3 in the MA direction and the transmission equa-
tions in the DB direction are given by

Y1,i = X1,i ⊕q X3,i ⊕q Z1,i , (41)

Y2,i = X2,i ⊕q X3,i ⊕q Z1,i ⊕q Z2,i , (42)

for i = 1, 2, ..., n, where Z1,i , Z2,i ∈ Q denote additive noise
variables, the components of the memoryless and independent
noise processes {Z1,i}ni=1 and {Z2,i}ni=1, respectively. We also
assume that the channel noise processes are independent of
all users’ messages. Thus, the channel transition probability
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of this MA/DB TWC at time i can be written as

PY1,i ,Y2,i ,Y3,i |Xi
1,Xi

2,Xi
3,Y

i−1
1 ,Y i−1

2 ,Y i−1
3

(y1,i , y2,i , y3,i |xi
1, xi

2, xi
3, yi−1

1 , yi−1
2 , yi−1

3 )

= PY1,i ,Y2,i ,Y3,i |X1,i ,X2,i ,X3,i (y1,i , y2,i , y3,i |x1,i , x2,i , x3,i )

= PY3,i |X1,i ,X2,i ,X3,i (y3,i |x1,i , x2,i , x3,i)

·PY1,i |X1,i ,X2,i ,X3,i ,Y3,i (y1,i |x1,i , x2,i , x3,i , y3,i )

·PY2,i |X1,i ,X2,i ,X3,i ,Y1,i ,Y3,i (y2,i |x1,i , x2,i , x3,i , y1,i , y3,i )

= PY3|X1,X2,X3(y3,i |x1,i , x2,i , x3,i )

·PZ1(y1,i 
q x1,i 
q x3,i)

·PZ2(y2,i 
q x2,i 
q y1,i ⊕q x1,i),

where 
q denotes modulo-q subtraction.
We next define channel codes, achievable rates, and channel

capacity for the MA/DB TWC.
Definition 4: An (n, R13, R23, R31, R32) channel code for

the memoryless MA/DB TWC consists of four message sets
M13 = {1, 2, ..., 2nR13}, M23 = {1, 2, ..., 2nR23}, M31 =
{1, 2, ..., 2nR31}, M32 = {1, 2, ..., 2nR32}, three sequences
of encoding functions: f n

1 = ( f1,1, f1,2, ..., f1,n), f n
2 =

( f2,1, f2,2, ..., f2,n), f n
3 = ( f3,1, f3,2, ..., f3,n) such that

X1,1 = f1,1(M13), X1,i = f1,i (M13, Y i−1
1 ), (43)

X2,1 = f2,1(M23), X2,i = f2,i (M23, Y i−1
2 ), (44)

X3,1 = f3,1(M31, M32), X3,i = f3,i (M31, M32, Y i−1
3 ), (45)

for i = 2, 3, . . . , n, and three decoding functions g1, g2, and
g3, such that M̂31 = g1(M13, Y n

1 ), M̂32 = g2(M23, Y n
2 ), and

(M̂13, M̂23) = g3(M31, M32, Y n
3 ).

When messages are encoded via the channel code, the prob-
ability of decoding error is defined as P(n)

e ( f n
1 , f n

2 , f n
3 ,

g1, g2, g3) = Pr{M̂13 �= M13 or M̂23 �= M23 or M̂31 �=
M31 or M̂32 �= M32}.

Definition 5: A rate quadruple (R13, R23, R31, R32) is said
to be achievable for the memoryless MA/DB TWC if
there exists a sequence of (n, R13, R23, R31, R32) codes with
limn→∞ P(n)

e = 0.
Definition 6: The capacity region CMA-DBC of the memo-

ryless MA/DB TWC is the closure of the convex hull of all
achievable rate quadruples (R13, R23, R31, R32).

B. Capacity Inner and Outer Bounds
for the Memoryless MA/DB TWCs

Let RMA-DBC(PX1,X2,X3,V , PY3|X1,X2,X3, PZ1, PZ2) denote
the set of rate quadruples (R13, R23, R31, R32) which satisfy
the constraints

R13 ≤ I (X1; Y3|X2, X3),

R23 ≤ I (X2; Y3|X1, X3),

R13 + R23 ≤ I (X1, X2; Y3|X3),

R31 ≤ I (X3; X3 ⊕q Z1|V ),

R32 ≤ I (V ; X3 ⊕q Z1 ⊕q Z2),

where V is an auxiliary random variable with alphabet V
such that |V| ≤ q + 1 and the mutual information terms
are evaluated according to the joint probability distribution

PX1,X2,X3,V ,Y3,Z1,Z2 = PX1,X2,X3,V ·PY3|X1,X2,X3 ·PZ1 ·PZ2 .
We next establish a Shannon-type inner bound and an outer
bound for the capacity of MA/DB TWCs in Theorems 11
and 12, respectively. Note that the achievable scheme in
Theorem 11 is given by combining Shannon’s standard (non-
adaptive) coding schemes for the MAC [8, Theorem 4.2] and
the DBC [8, Theorem 5.2], and hence the proof is omitted here.
The derivation for the outer bound is given in Appendix B.

Theorem 11 (Inner Bound): For a memoryless MA/DB
TWC with MA transition probability PY3|X1,X2,X3 and DB
noise distributions PZ1 and PZ2 , any rate quadruple (R13, R23,
R31, R32) ∈ CMA-DBC

I (PY3|X1,X2,X3 , PZ1, PZ2) is achievable,
where

CMA-DBC
I (PY3|X1,X2,X3, PZ1, PZ2)

� co

( ⋃
PX1 ,PX2 ,PV ,X3

RMA-DBC(PX1 ·PX2 ·PV ,X3, PY3|X1,X2,X3, PZ1 , PZ2)

)
.

Theorem 12 (Outer Bound): For a memoryless MA/DB
TWC with MA transition probability PY3|X1,X2 and DB
noise distributions PZ1 and PZ2 , all achievable rate quadru-
ples (R13, R23, R31, R32) belong to CMA-DBC

O (PY3|X1,X2,X3,
PZ1, PZ2), where

CMA-DBC
O (PY3|X1,X2,X3, PZ1 , PZ2)

� co

( ⋃
PX1,X2,X3 ,V

RMA-DBC(PX1,X2,X3,V , PY3|X1,X2,X3, PZ1, PZ2)

)
.

C. Conditions for the Tightness of the Inner
and Outer Bounds

The inner and outer bounds derived in the previous section
are of the same form but have different restrictions on the
joint distribution PX1,X2,X3,V , and hence they do not match.
Here, we establish conditions under which the two bounds
have matching input distributions, implying that they coincide
and yield the capacity region. The proofs of Theorems 13-15
are given in Appendices C-E, respectively.

Theorem 13: The inner and outer capacity bounds in The-
orems 11 and 12 coincide if for every conditional input
distribution P(1)

X1,X2|X3
, there exists a product input distribution

P(2)
X1,X2|X3

= P̃X1 ·P̃X2 (which depends on P(1)
X1,X2|X3

) such that

I (1)(X1; Y3|X2, X3 = x3) ≤ I (2)(X1; Y3|X2, X3 = x3) (46)

I (1)(X2; Y3|X1, X3 = x3) ≤ I (2)(X2; Y3|X1, X3 = x3) (47)

I (1)(X1, X2; Y3|X3 = x3) ≤ I (2)(X1, X2; Y3|X3 = x3) (48)

hold for all x3 ∈ X3. Under this condition, the capacity region
is given by

CMA-DBC

= co

( ⋃
PX1 ,PX2 ,PV ,X3

RMA-DBC
(

PX1 ·PX2 ·PV ,X3, PY3|X1,X2,X3, PZ1 , PZ2

))
.

A special case of the above theorem is when P̃X1 · · P̃X2

does not depend on PX1,X2|X3 . This case may happen when
PY3|X1,X2,X3 has a strong symmetry property.

Corollary 6: The inner and outer capacity bounds in The-
orems 11 and 12 coincide if there exists an input distributions
P(2)

X1,X2
= P∗X1

·P∗X2
such that for all P(1)

X1,X2|X3
and x3 ∈ X3 the
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inequalities given in (46)-(48) hold. In this case, the capacity
region is given by

CMA-DBC

= co

( ⋃
PV ,X3

RMA-DBC
(

P∗X1
·P∗X2
·PV ,X3, PY3|X1,X2,X3, PZ1 , PZ2

))
.

The next result is derived by treating the channel as a
composition of state-dependent one-way channels.

Theorem 14: The inner and outer capacity bounds in The-
orems 11 and 12 coincide if the following conditions hold:
(i) There exists P∗X1

∈ P(X1) such that

arg max
PX1|X2=x2,X3=x3

I (X1; Y3|X2 = x2, X3 = x3) = P∗X1

for all x2 ∈ X2 and x3 ∈ X3, and

I(P∗X1
, PY3|X1,X2=x2,X3=x3)

does not depend on x2 for every fixed x3;
(ii) For any PX2 ∈ P(X2), I(PX2 , PY3|X1=x1,X2,X3=x3) does

not depend on x1 ∈ X1 and x3 ∈ X3;
(iii) For any fixed PX1,X2 , we have that the mutual information

I(PX1,X2, PY3|X1,X2,X3=x3) does not depend on x3 ∈ X3,
and for each x3 ∈ X3 we have that

I(PX1,X2 , PY3|X1,X2,X3=x3)

≤ I(P∗X1
· PX2 , PY3|X1,X2,X3=x3),

where P∗X1
is given by condition (i) and PX2(x2) =∑

x1
PX1,X2(x1, x2) for x2 ∈ X2.

Under this condition, the capacity region is given by

CMA-DBC

= co

( ⋃
PX2 ,PV ,X3

RMA-DBC
(

P∗X1
·PX2 ·PV ,X3, PY3|X1,X2,X3, PZ1 , PZ2

))
.

Next, we derive our last sufficient condition by generalizing
Shannon’s condition (in Proposition 1) to the three-user set-
ting. This new condition is easier to verify than the previous
ones.

Theorem 15: The inner and outer capacity bounds in The-
orems 11 and 12 coincide if the following conditions hold:
(i) For any relabeling τX1

x ′1,x ′′1
on X1, there exists a permutation

πY3 [x ′1, x ′′1 ] on Y3 such that for all x1, x2, x3, and y3,
we have

PY3|X1,X2,X3(y3|x1, x2, x3)

= PY3|X1,X2,X3

(
πY3[x ′1, x ′′1 ](y3)

∣∣τX1
x ′1,x ′′1

(x1), x2, x3
); (49)

(ii) For any relabeling τ
X2
x ′2,x ′′2

on X2, there exists a permutation

on πY3[x ′2, x ′′2 ] on Y3 such that for all x1, x2, x3, and y3,
we have

PY3|X1,X2,X3(y3|x1, x2, x3)

= PY3|X1,X2,X3

(
πY3 [x ′1, x ′′1 ](y3)

∣∣x1, τ
X2
x ′2,x ′′2

(x2), x3
)
. (50)

Under these conditions, the capacity region is given by

CMA-DBC

= co

( ⋃
PV ,X3

RMA-DBC
(

PU
X1
·PU

X2
·PV ,X3, PY3|X1,X2,X3, PZ1 , PZ2

))
, (51)

where PU
Xi

denotes uniform probability distribution on Xi for
i = 1, 2.

D. Examples
We next illustrate Theorems 13-15 via three examples.
Example 8 (Additive-Noise MA/DB TWC): Consider a dis-

crete memoryless additive-noise MA/DB TWC in which the
inputs and outputs of the DBC are described by (41) and (42)
and the inputs and outputs of MAC are related via

Y3,i = X1,i ⊕q X2,i ⊕q X3,i ⊕q Z3,i , (52)

where {Z3,i}∞i=1 with Z3,i ∈ Q is a discrete memoryless noise
process which is independent of all user messages and the
noise processes {Z1,i}∞i=1 and {Z2,i}∞i=1. For any x3 ∈ X3,
we have the following bounds:

I (X1; Y3|X2, X3 = x3)

= H (Y3|X2, X3 = x3)− H (Y3|X1, X2, X3 = x3)

≤ log2 q − Hb(Z3),

I (X2; Y3|X1, X3 = x3)

= H (Y3|X1, X3 = x3)− H (Y3|X1, X2, X3 = x3)

≤ log2 q − Hb(Z3),

I (X1, X2; Y3|X3 = x3)

= H (Y3|X3 = x3)− H (Y3|X1, X2, X3 = x3)

≤ log2 q − Hb(Z3),

where equalities hold when PX1,X2 = PU
X1
· PU

X2
. Choosing

P̃X1 = PU
X1

and P̃X2 = PU
X2

, it is clear that (46)-(48) in
Theorem 13 hold, and hence the capacity region given by

CMA-DBC

= co

⎛
⎝ ⋃

PV ,X3

RMA-DBC
(

PU
X1
·PU

X2
·PU,X3 , PY3|X1,X2,X3, PZ1 , PZ2

)⎞⎠

= co

( ⋃
PV ,X3

{
(R13, R23, R31, R32) :

R13 + R23 ≤ log2 q − Hb(Z3),

R31 ≤ I (X1; X3 ⊕2 Z1|V ),

R32 ≤ I (X2 ⊕2 Z1 ⊕2 Z2; V )
})

.

Example 9: Suppose that X1 = X2 = X3 = {0, 1},
Y1 = Y2 = {0, 1}, and Y3 = {0, 1, 2}. We consider a
discrete memoryless MA/DB TWC in which the DB direction
is described by (41) and (42) and the channel transition matrix
[PY3|X1,X2,X3(·|·, ·, ·)] for the MA direction is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 2

000 1− ε 0 ε
100 1− ε 0 ε
010 0 1− ε ε
110 0 1− ε ε
001 0 ε 1− ε
101 0 ε 1− ε
011 1− ε ε 0
111 1− ε ε 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where 0 ≤ ε ≤ 1. Since each marginal channel governed
by the transition matrix [PY3|X1,X2,X3(·|·, x2, x3)] is quasi-
symmetric, we immediately have that P∗X1

= PU
X1

. Also,
since [PY3|X1,X2,X3(·|·, x2, x3)], x2 ∈ X2 and x3 ∈ X3, are
column permutations of each other, for any fixed x3 ∈ X3,
I(P∗X1

, PY3|X1,X2=x2,X3=x3) does not depend on x2 ∈ X2.
Thus, condition (i) of Theorem 14 holds. Moreover, condition
(ii) holds since the matrices [PY3|X1,X2,X3(·|x1, ·, x3)], x1 ∈ X1
and x3 ∈ X3, are column permutations of each other.

Verifying condition (iii) involves several steps. We first
observe that I(PX1,X2, PY3|X1,X2,X3=x3) does not depend
on x3 ∈ X3 for any fixed PX1,X2 since the matrices
[PY3|X1,X2,X3(·|·, ·, x3)], x3 ∈ X3, are column permutations of
each other. From (98) and (99) in Appendix D, it suffices
to consider input distributions of this form: PX1,X2,X3,V =
PX1,X2 · PX3,V . Thus, given any P(1)

X1,X2,X3,V
= P(1)

X1,X2
· P(1)

X3,V
,

we define P(2)
X1,X2,X3,V

(x1, x2, x3, v) = P(1)
X1,X2,X3,V

(x1 ⊕2

1, x2, x3, v) for all x1, x2, x3, v. Also, let P(3)
X1,X2,X3,V

=
1
2 (P(1)

X1,X2,X3,V
+ P(2)

X1,X2,X3,V
) so that we have P(3)

X1,X2,X3,V
=

P(3)
X1
· P(1)

X2
· P(1)

X3,V with P(3)
X1
= PU

X1
= P∗X1

. Now, since
(49) holds in this example, one can directly obtain that
I (1)(X1, X2; Y3|X3 = x3) ≤ I (3)(X1, X2; Y3|X3 = x3) from
the proof of Lemma 7. As a result, this TWC satisfies all
conditions of Theorem 14 and has capacity region given by

CMA-DBC

= co

( ⋃
PX2 ,PV ,X3

RMA-DBC
(

PU
X1
·PX2 ·PV ,X3, PY3|X1,X2,X3, PZ1, PZ2

))
.

Example 10 (Binary MA/DB TWC with Erasures): Supp-
ose that X1 = X2 = X3 = {0, 1}, Y1 = Y2 = {0, 1}, and
Y3 = {0, 1, E}, where E denotes erasure symbol. We consider
a discrete memoryless MA/DB TWC in which the DBC
direction is described by (41) and (42) and the MAC
direction is described by

Y3,i = (X1,i ⊕2 X2,i ⊕2 X3,i )·1{Z2,i �= E}+E·1(Z3,i = E),

(53)

where {Z3,i}∞i=1 with Z3,i ∈ {0, E} is a discrete memoryless
noise process which is independent of all users’ messages and
the noise processes {Z1,i}∞i=1 and {Z2,i }∞i=1. Also, we assume
that Pr(Z3,i = E) = ε for all i , thereby obtaining the channel
transition matrix [PY3|X1,X2,X3(·|·, ·, ·)]:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 E
000 1− ε 0 ε
100 0 1− ε ε
010 0 1− ε ε
110 1− ε 0 ε
001 0 1− ε ε
101 1− ε 0 ε
011 1− ε 0 ε
111 0 1− ε ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It can be directly verified that (49) and (50) in Theorem 15
hold. Hence, the inner and outer bounds coincide and the

capacity region is given by

CMA-DBC

= co
( ⋃

PV ,X3

RMA-DBC
(

PU
X1
·PU

X2
·PV ,X3, PY3|X1,X2,X3, PZ1, PZ2

))

= co

( ⋃
PV ,X3

{
(R13, R23, R31, R32) :

R13 + R23 ≤ 1− Hb(ε),

R31 ≤ I (X1; X3 ⊕2 Z1|V ),

R32 ≤ I (X2 ⊕2 Z1 ⊕2 Z2; V )
})

.

Remark 8: Examples 9 and 10 also satisfy Theorem 13
since the product distribution P̃X1 · P̃X2 required by Theo-
rem 13 are explicitly given in these examples. Moreover, it is
straightforward to show that Examples 9 and 10 do not satisfy
the conditions of Theorems 15 and 14, respectively. In other
words, Theorems 14 and 15 are neither equivalent nor special
cases of each other.

V. CONCLUSION

We have identified salient symmetry conditions for three
types of two-way noisy networks: two-user TWCs with
and without memory, and three-user MA/DB TWCs, under
which Shannon-type random coding inner bounds exactly
yield channel capacity. These tightness results, which subsume
previously established symmetry properties as special cases,
delineate large families of TWCs for which user interactive
adaptive coding is not beneficial in terms of improving capac-
ity. Future research directions include identifying necessary
conditions for the tightness of Shannon-type inner bounds
and deriving conditions under which Han’s adaptive coding
inner bound [13] is tight. An additional interesting avenue of
investigation is to examine whether adaptive coding is useful
for the (almost) lossless and lossy transmission of correlated
sources over TWCs whose capacity are achievable by the
Shannon-type random coding scheme.

APPENDIX

A. Proof of Proposition 1 (Shannon’s One-Sided
Symmetry Condition)

The proof of Proposition 1 is based on the following
lemmas.

Lemma 4: If a memoryless TWC satisfies the conditions in
Proposition 1, then for any input distribution P(1)

X1,X2
, any x ′1,

x ′′1 ∈ X1, and P(2)
X1,X2

(·, ·) � P(1)
X1,X2

(τ
X1
x ′1,x ′′1

(·), ·), the following
hold:

I (1)(X1; Y2|X2) = I (2)(X1; Y2|X2), (54)

I (1)(X2; Y1|X1) = I (2)(X2; Y1|X1), (55)

R(P(1)
X1,X2

, PY1,Y2|X1,X2) = R(P(2)
X1,X2

, PY1,Y2|X1,X2). (56)
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Proof: For any input distribution P(1)
X1,X2

and P(2)
X1,X2

(·, ·)�
P(1)

X1,X2
(τ

X1
x ′1,x ′′1

(·), ·), we have

I (2)(X1; Y2|X2)

=
∑
x2

P(2)
X2

(x2) · I (2)(X1; Y2|X2 = x2)

=
∑
x2

P(2)
X2

(x2)
∑
x1,y2

P(2)
X1|X2

(x1|x2) · PY2|X1,X2(y2|x1, x2)

· log
PY2|X1,X2(y2|x1, x2)

P(2)
Y2|X2

(y2|x2)

=
∑

x1,x2,y2

P(2)
X1,X2

(x1, x2) · PY2|X1,X2(y2|x1, x2)

· log
PY2|X1,X2(y2|x1, x2)∑

x̃1
P(2)

X1|X2
(x̃1|x2)·PY2|X1,X2(y2|x̃1, x2)

=
∑

x1,x2,y2

P(1)
X1,X2

(τX1
x ′1,x ′′1

(x1), x2)

·PY2|X1,X2(π
Y2[x ′1, x ′′1 ](y2)|τX1

x ′1,x ′′1
(x1), x2)

·log
PY2|X1,X2(π

Y2 [x ′1, x ′′1 ](y2)|τX1
x ′1,x ′′1

(x1), x2)∑
x̃1

P(1)
X1|X2

(τX1
x ′1,x ′′1

(x̃1)|x2)·PY2|X1,X2(π
Y2 [x ′1, x ′′1 ](y2)|τX1

x ′1,x ′′1
(x̃1), x2)

(57)

=
∑

x1,x2,y2

P(1)
X1,X2

(τ
X1
x ′1,x ′′1

(x1), x2)

·PY2|X1,X2(π
Y2
2 [x ′1, x ′′1 ](y2)|τX1

x ′1,x ′′1
(x1), x2)

·log
PY2|X1,X2(π

Y2[x ′1, x ′′1 ](y2)|τX1
x ′1,x ′′1

(x1), x2)∑
x̃1

P(1)
X1|X2

(x̃1|x2)PY2|X1,X2(π
Y2[x ′1, x ′′1 ](y2)|x̃1, x2)

(58)

=
∑

x1,x2,y2

·P(1)
X1,X2

(τX1
x ′1,x ′′1

(x1), x2)

·PY2|X1,X2(π
Y2
2 [x ′1, x ′′1 ](y2)|τX1

x ′1,x ′′1
(x1), x2)

· log
PY2|X1,X2(π

Y2[x ′1, x ′′1 ](y2)|τX1
x ′1,x ′′1

(x1), x2)

P(1)
Y2|X2

(πY2 [x ′1, x ′′1 ](y2)|x2)

=
∑

x1,x2,ỹ2

P(1)
X1,X2

(τ
X1
x ′1,x ′′1

(x1), x2) · PY2|X1,X2(ỹ2|τX1
x ′1,x ′′1

(x1), x2)

· log
PY2|X1,X2(ỹ2|τX1

x ′1,x ′′1
(x1), x2)

P(1)
Y2|X2

(ỹ2|x2)
(59)

=
∑

x̃1,x2,ỹ2

P(1)
X1,X2

(x̃1, x2)

·PY2|X1,X2(ỹ2|x̃1, x2) · log
PY2|X1,X2(ỹ2|x̃1, x2)

P(1)
Y2|X2

(ỹ2|x2)
(60)

= I (1)(X1; Y2|X2), (61)

where (57) holds by the definition of P(2)
X1,X2

(x1, x2) and the
fact that PY2|X1,X2(y2|x1, x2) = PY2|X1,X2(π

Y2[x ′1, x ′′1 ](y2)|
τ
X1
x ′1,x ′′1

(x1), x2) due to the Shannon condition in (2), (58) and

(60) hold since τX1
x ′1,x ′′1

is a bijection, and (59) holds since

πY2[x ′1, x ′′1 ] is a bijection.
By a similar argument, we can verify that I (1)(X2; Y1|X1) =

I (2)(X2; Y1|X1). The proof is then completed by
noting that the identity R(P(1)

X1,X2
, PY1,Y2|X1,X2) =

R(P(2)
X1,X2

, PY1,Y2|X1,X2) follows from the definition of R
in (1).

Lemma 5: If a memoryless TWC satisfies the condition in
Proposition 1, then for any input distribution P(1)

X1,X2
, any x ′1,

x ′′1 ∈ X1, and P(2)
X1,X2

(·, ·) � P(1)
X1,X2

(τX1
x ′1,x ′′1

(·), ·), we have

R(P(1)
X1,X2

, PY1,Y2|X1,X2) ⊆ R(P(3)
X1,X2

, PY1,Y2|X1,X2) (62)

where P(3)
X1,X2

(x1, x2)� 1
2 (P(1)

X1,X2
(x1, x2)+P(2)

X1,X2
(x1, x2)).

Proof: The proof relies on the concavity of I (X1; Y2|X2)

and I (X2; Y1|X1) in PX1,X2 [3]. For any given P(1)
X1,X2

and

P(2)
X1,X2

(·, ·) = P(1)
X1,X2

(τX1
x ′1,x ′′1

(·), ·), let P(3)
X1,X2

= 1
2 (P(1)

X1,X2
+

P(2)
X1,X2

). The concavity property then implies that

I (3)(X1; Y2|X2)

≥ 1

2

(
I (1)(X1; Y2|X2)+ I (2)(X1; Y2|X2)

)
(63)

= I (1)(X1; Y2|X2), (64)

and that

I (3)(X2; Y1|X1)

≥ 1

2

(
I (1)(X2; Y1|X1)+ I (2)(X2; Y1|X1)

)
(65)

= I (1)(X2; Y1|X1), (66)

where (64) and (66) follow from Lemma 4. The proof is
completed by invoking the definition of R in (1).

Lemma 6: If a memoryless TWC satisfies the condition in
Proposition 1, then for any given input distribution PX1,X2 =
PX1|X2 PX2 , we have

R(PX1,X2 , PY1,Y2|X1,X2) ⊆ R
(

PU
X1
·PX2 , PY1,Y2|X1,X2

)
, (67)

where PU
X1

denotes the uniform probability distribution on X1.
Proof: Without loss of generality, we assume that

X1 � {1, 2, ..., κ}. Define Pm = {PX1,X2 ∈ P(X1 ×
X2) : PX1,X2(1, x2) = PX1,X2(2, x2) = · · · =
PX1,X2(m, x2) for all x2 ∈ X2}, where 1 ≤ m ≤ κ . Lemma 5
shows that for any P(1)

X1,X2
∈ P1, one can construct P(3)

X1,X2
∈

P2 in such a way that (62) holds. We now extend this result
by induction on m showing that for any P(1)

X1,X2
∈ Pm with

2 ≤ m < κ , there exists a P(m+2)
X1,X2

∈ Pm+1 such that

R(P(1)
X1,X2

, PY1,Y2|X1,X2) ⊆ R(P(m+2)
X1,X2

, PY1,Y2|X1,X2).
Suppose that the above claim is true up to m for some 1 ≤

m < κ , where the base case m = 1 was proved in Lemma 5.
We next prove the claim for m + 1. For any P(1)

X1,X2
∈ Pm ,

define

P(m+2)
X1,X2

(x1, x2) � 1

m + 1

m+1∑
i=1

P(i)
X1,X2

(x1, x2),

where P(i)
X1,X2

(·, ·) � P(1)
X1,X2

(τX1
i−1,m+1(·), ·) for 2 ≤ i ≤ m+1.

Due to the Shannon’s one-sided symmetry condition and
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Lemma 4, we have that I (i)(X1; Y2|X2) = I (1)(X1; Y2|X2)
and that I (i)(X2; Y1|X1) = I (1)(X2; Y1|X1) for 2 ≤ i ≤ m+1.
Concavity then implies that

I (m+2)(X1; Y2|X2) ≥ 1

m + 1

m+1∑
i=1

I (i)(X1; Y2|X2)

= I (1)(X1; Y2|X2).

Similarly, we obtain that I (m+2)(X2; Y1|X1)≥I (1)(X2; Y1|X1).
Moreover, since P(1)

X1,X2
∈ Pm , we have that P(m+2)

X1,X2
(x1, x2) =

(m · P(1)
X1,X2

(1, x2)+ P(1)
X1,X2

(m+ 1, x2))/(m+ 1) for 1 ≤ x1 ≤
m + 1 and all x2 ∈ X2, i.e., P(m+2)

X1,X2
∈ Pm+1, thereby proving

the claim.
Since any PX1,X2 = PX1|X2 ·PX2 ∈ Pκ can be expressed

as PU
X1
·PX2 , in view of the definition of R the proof is

completed.
We are now ready to prove Proposition 1.

Proof of Proposition 1: Note that

CO(PY1,Y2|X1,X2) = co

⎛
⎝ ⋃

PX1,X2

R(PX1,X2 , PY1,Y2|X1,X2)

⎞
⎠

⊆ co

⎛
⎝⋃

PX2

R
(

PU
X1
·PX2 , PY1,Y2|X1,X2

)⎞⎠ (68)

⊆ CI(PY1,Y2|X1,X2), (69)

where (68) follows from Lemma 6. Together with
CI(PY1,Y2|X1,X2) ⊆ CO(PY1,Y2|X1,X2), this gives:

C = CI(PY1,Y2|X1,X2)

= CO(PY1,Y2|X1,X2)

= co

⎛
⎝⋃

PX2

R
(

PU
X1
·PX2 , PY1,Y2|X1,X2

)⎞⎠ . (70)

We remark that, based on the proof of Proposition 1,
it is straightforward to prove Shannon’s two-sided symmetry
condition in Proposition 2.

B. Proof of Theorem 12
Proof: Suppose that (R13, R23, R31, R32) is an achievable

quadruple. We derive the necessary conditions for those rates
by the standard converse method. For R13, we have

n·R13

= H (M13|M23, M31, M32)

= I (M13; Y n
3 |M23, M31, M32)− H (M13|Y n

3 , M23, M31, M32)

≤ I (M13; Y n
3 |M23, M31, M32)+ n·εn (71)

≤ I (M13; Y n
2 , Y n

3 |M23, M31, M32)+ n·εn

=
n∑

i=1

I (M13; Y2,i , Y3,i |Y i−1
2 , Y i−1

3 , M23, M31, M32)+ n·εn

=
n∑

i=1

(
H (Y2,i , Y3,i |X2,i , X3,i , Y i−1

2 , Y i−1
3 , M23, M31, M32)

−H (Y2,i, Y3,i |X2,i , X3,i , Y i−1
2 , Y i−1

3 , M23,

M31, M32, M13)
)
+ n·εn (72)

≤
n∑

i=1

(
H (Y2,i, Y3,i |X2,i , X3,i )

−H (Y2,i , Y3,i |X1,i , X2,i , X3,i )
)
+ n·εn (73)

=
n∑

i=1

I (X1,i ; Y2,i , Y3,i |X2,i , X3,i )+ n·εn

=
n∑

i=1

I (X1,i ; X2,i ⊕q X3,i ⊕q Z1,i ⊕q Z2,i , Y3,i |X2,i , X3,i )+ n·εn

=
n∑

i=1

I (X1,i ; Y3,i |X2,i , X3,i )

+I (X1,i ; Z1,i ⊕q Z2,i |Y3,i , X2,i , X3,i )+ n·εn

=
n∑

i=1

I (X1,i ; Y3,i |X2,i , X3,i )+ n·εn, (74)

where (71) follows from Fano’s inequality with εn → 0
as n → ∞, (72) holds since X2,i = f2,i (M23, Y i−1

2 ) and
X3,i = f3,i (M31, M32, Y i−1

3 ), (73) follows since the channel is
memoryless, and (74) follows since (Z1,i , Z2,i ) is independent
of (Y3,i , X1,i , X2,i , X3,i ). By symmetry, we also have

n·R23 ≤
n∑

i=1

I (X2,i ; Y3,i |X1,i , X3,i )+ n·εn . (75)

For the sum rate R13 + R23, we have

n(R13 + R23)

= H (M13, M23|M31, M32)

≤ I (M13, M23; Y n
3 |M31, M32)+ n·εn

=
n∑

i=1

(
H (Y3,i |X3,i , Y i−1

3 , M31, M32)

−H (Y3,i |Y i−1
3 , M31, M32, M13, M23)

)
+ n·εn

≤
n∑

i=1

(
H (Y3,i |X3,i)

−H (Y3,i |Y i−1
3 , M31, M32, M13, M23)

)
+ n·εn

≤
n∑

i=1

(
H (Y3,i |X3,i)− H (Y3,i |X1,i , X2,i , X3,i )

)
+ n·εn

=
n∑

i=1

I (X1,i , X2,i ; Y3,i |X3,i)+ n·εn,

where εn → 0 as n→∞ by Fano’s inequality. Therefore, for
the rates in the MA direction, we have

R13 ≤ 1

n

n∑
i=1

I (X1,i ; Y3,i |X2,i , X3,i )+ εn

≤ I (X1; Y3|X2, X3)+ εn

R23 ≤ 1

n

n∑
i=1

I (X2,i ; Y3,i |X1,i , X3,i )+ εn

≤ I (X2; Y3|X1, X3)+ εn

R13 + R23 ≤ 1

n

n∑
i=1

I (X1,i , X2,i ; Y3,i |X3,i )+ εn

≤ I (X1, X2; Y3|X3)+ εn



WENG et al.: CAPACITY OF TWCs WITH SYMMETRY PROPERTIES 6309

where the inequalities hold since I (X1; Y3|X2, X3),
I (X2; Y3|X1, X3), and I (X1, X2; Y3|X3) are concave7 in
the joint input distribution PX1,X2,X3 , where PX1,X2,X3 =
1
n

∑n
i=1 PX1,i ,X2,i ,X3,i .

For the achievable rate R32 in the DB direction, we have

n·R32

= H (M32|M23)

≤ I (M32; Y n
2 |M23)+ n·εn

=
n∑

i=1

I (M32; Y2,i |Y i−1
2 , M23, Xi

2)+ n·εn

=
n∑

i=1

I (M32; X3,i ⊕q Z1,i ⊕q Z2,i |Xi−1
3 ⊕q Z i−1

1 ⊕q Z i−1
2 ,

M23, Xi
2)+ n·εn

=
n∑

i=1

I (M32; X3,i ⊕q Z1,i ⊕q Z2,i |Xi−1
3 ⊕q Z i−1

1 ⊕q Z i−1
2 ,

M23)+ n·εn (76)

≤
n∑

i=1

I (M32, Xi−1
3 ⊕q Z i−1

1 ⊕q Z i−1
2 , M23;

X3,i ⊕q Z1,i ⊕q Z2,i )+ n·εn (77)

≤
n∑

i=1

I (M32, M23, M13, Xi−1
3 ⊕q Z i−1

1 ⊕q Z i−1
2 ,

Xi−1
3 ⊕q Z i−1

1 ; X3,i ⊕q Z1,i ⊕q Z2,i )+ n·εn

=
n∑

i=1

I (M{32,23,13}, Ỹ i−1
1 , Ỹ i−1

2 ; Ỹ2,i)+ n·εn (78)

where (76) holds since Xi
2 is a function of (Xi−1

3 ⊕q Z i−1
1 ⊕q

Z i−1
2 , M23), (77) follows from the chain rule and the non-

negativity of mutual information, and (78) is expressed in
terms of Ỹ1,i � X3,i⊕q Z1,i , and Ỹ2,i � X3,i⊕q Z1,i⊕q Z2,i =
Ỹ1,i ⊕q Z2,i .

For R31, we have

n·R31

= H (M31|M{32,23,13})
≤ I (M31; Y n

1 , Y n
2 |M{32,23,13})+ n·εn

=
n∑

i=1

I (M31; Y1,i , Y2,i |Y i−1
1 , Y i−1

2 , M{32,23,13})+ n·εn

≤
n∑

i=1

I (M31, X3,i ; Y1,i , Y2,i |Y i−1
1 , Y i−1

2 , M{32,23,13})+ n·εn

=
n∑

i=1

I (M31, X3,i ; Y1,i , Y2,i |Y i−1
1 , Y i−1

2 , M{32,23,13}, Xi
1, Xi

2)+ n·εn

(79)

=
n∑

i=1

I (M31, X3,i ; Ỹ1,i , Ỹ2,i |Y i−1
1 , Y i−1

2 , M{32,23,13}, Xi
1, Xi

2)+ n·εn

=
n∑

i=1

I (M31, X3,i ; Ỹ1,i , Ỹ2,i |Ỹ i−1
1 , Ỹ i−1

2 , M{32,13,23})+ n·εn

(80)

7This follows from the fact that I (A;C |B) is concave in PA,B for fixed
PC|A,B [3].

=
n∑

i=1

I (X3,i ; Ỹ1,i , Ỹ2,i |Ỹ i−1
1 , Ỹ i−1

2 , M{32,13,23})

+
n∑

i=1

I (M31; Ỹ1,i , Ỹ2,i |Ỹ i−1
1 , Ỹ i−1

2 , M{32,13,23}, X3,i )+ n·εn

=
n∑

i=1

I (X3,i ; Ỹ1,i , Ỹ2,i |Ỹ i−1
1 , Ỹ i−1

2 , M{32,13,23})+ n·εn (81)

=
n∑

i=1

I (X3,i ; Ỹ1,i |Ỹ i−1
1 , Ỹ i−1

2 , M{32,13,23})+ n·εn (82)

where (79) holds since X1,i = f1,i (M13, Y i−1
1 ) and X2,i =

f2,i (M23, Y i−1
2 ), (80) holds since (Y i−1

1 , Y i−1
2 , Xi

1, Xi
2) can

be generated knowing (M13, M23, Ỹ i−1
1 , Ỹ i−1

2 ), (81) holds
because M31 �−− (Ỹ i−1

1 , Ỹ i−1
2 , M{32,13,23}, X3,i ) �−−

(Ỹ1,i , Ỹ2,i ) form a Markov chain, and (82) holds since
Ỹ2,i �−− (Ỹ1,i , Ỹ i−1

1 , Ỹ i−1
2 , M{32,13,23}) �−− X3,i form a

Markov chain. Note that these Markov chain properties hold
since {Z1,i}ni=1 and {Z2,i}ni=1 are independent memoryless
processes and are independent of all user messages.

Setting Vi = (Ỹ i−1
1 , Ỹ i−1

2 , M{32,13,23}), we have that Vi �−−
X3,i �−− (Ỹ1,i , Ỹ2,i ) form a Markov chain. From (78)
and (82), we obtain that n·R32 ≤ ∑n

i=1 I (Vi ; Ỹ2,i ) + n·εn

and n·R31 ≤ ∑n
i=1 I (X3,i ; Ỹ1,i |Vi ) + n·εn . Let K be a time-

sharing random variable that is uniform over {1, 2, ..., n} and
independent of all messages, inputs, and outputs. Setting
V = (K , VK ), X3 = X3,K , Z1 = Z1,K , Z2 = Z2,K

Ỹ1 = X3 ⊕q Z1 = Ỹ1,K , Ỹ2 = X3 ⊕q Z1 ⊕q Z2 = Ỹ2,K ,
we have

n·R32 ≤
n∑

i=1

I (Vi ; Ỹ2,i )+ n·εn

= n · I (VK ; Ỹ2,K |K )+ n·εn

≤ n · I (V ; Ỹ2)+ n·εn

= n · I (V ; X3 ⊕q Z1 ⊕q Z2)+ n·εn,

and

n·R31 ≤
n∑

i=1

I (X3,i ; Ỹ1,i |Vi )+ n·εn

= n · I (X3; Ỹ1|V )+ n·εn

= n · I (X3; X3 ⊕q Z1|V )+ n·εn

for some PZ1,Z2,X3,V = PX3,V · PZ1 · PZ2 . Combining the
obtained bounds for rates R13 and R23, the proof is completed
by letting n →∞. The bound on the alphabet size of V can
be established by the convex cover method [8].

C. Proof of Theorem 13
Proof: Consider a MA-DB TWC governed by

PY3|X1,X2,X3 , PZ1 , and PZ2 . Recall that

RMA-DBC(PX1,X2,X3,V , PY3|X1,X2,X3, PZ1 , PZ2)

=
{

(R13, R23, R31, R32) :
R13 ≤ I (X1; Y3|X2, X3), (83)

R23 ≤ I (X2; Y3|X1, X3), (84)

R13 + R23 ≤ I (X1, X2; Y3|X3), (85)
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R31 ≤ I (X3; X3 ⊕q Z1|V ), (86)

R32 ≤ I (V ; X3 ⊕q Z1 ⊕q Z2)
}
. (87)

Since (83)-(85) do not depend on V and (86) and (87) do not
depend on (X1, X2), we have

RMA-DBC(PX1,X2,X3,V , PY3|X1,X2,X3, PZ1 , PZ2)

= RMA-DBC(PX1,X2|X3 ·PV ,X3, PY3|X1,X2,X3, PZ1 , PZ2). (88)

To complete the proof, it suffices to show that for every
PX1,X2|X3 and the corresponding P̃X1 P̃X2 (which depends on
PX1,X2|X3 ) given by our assumption, satisfies

RMA-DBC(PX1,X2|X3 PV ,X3, PY3|X1,X2,X3, PZ1 , PZ2)

⊆ RMA-DBC(P̃X1 ·P̃X2 ·PV ,X3, PY3|X1,X2,X3, PZ1, PZ2), (89)

since then we clearly have CMA-DBC
O (PY3|X1,X2,X3, PZ1 , PZ2) ⊆

CMA-DBC
I (PY3|X1,X2,X3, PZ1 , PZ2). To show (89), consider two

input distributions P(1)
X1,X2,X3,V

� P(1)
X1,X2|X3

· P(1)
V ,X3

and

P(2)
X1,X2,X3,V

� P̃X1 · P̃X2 · P(1)
V ,X3

, where P̃X1 · P̃X2 is given by
the assumption. Then,

I (1)(X3; X3 ⊕q Z1|V ) = I (2)(X3; X3 ⊕q Z1|V ) (90)

I (1)(V ; X3 ⊕q Z1 ⊕q Z2) = I (2)(V ; X3 ⊕q Z1 ⊕q Z2) (91)

since P(1)
X1,X2,X3,V

and P(2)
X1,X2,X3,V

have the same marginal

P(1)
V ,X3

. Furthermore,

I (1)(X1; Y3|X2, X3)

=
∑

x3

P(1)
X3

(x3) · I (1)(X1; Y3|X2, X3 = x3)

≤
∑
x3

P(1)
X3

(x3) · I (2)(X1; Y3|X2, X3 = x3)

= I (2)(X1; Y3|X2, X3),

where the inequality follows from (46) and the last equality
holds since P(1)

X1,X2,X3,V
and P(2)

X1,X2,X3,V
have the same mar-

ginal P(1)
X3

. Similarly, we obtain that I (1)(X2; Y3|X1, X3) ≤
I (2)(X2; Y3|X1, X3) and I (1)(X1, X2; Y3|X3) ≤ I (2)(X1, X2;
Y3|X3). Consequently, (89) holds.

D. Proof of Theorem 14

Proof: Similar to the proof in Theorem 13, for any
PX1,X2|X3 PV ,X3 = PX2|X3 PX1|X2,X3 PV ,X3 , it suffices to show
that

RMA-DBC(PX1,X2|X3 ·PV ,X3, PY3|X1,X2,X3, PZ1 , PZ2)

⊆ RMA-DBC(P∗X1
·PX2|X3 ·PV ,X3, PY3|X1,X2,X3, PZ1, PZ2),

(92)

where P∗X1
is given by conditions (i).

For any P(1)
X1,X2,X3,V

= P(1)
X1,X2|X3

· P(1)
V ,X3

, let P(2)
X1,X2,X3,V

=
P∗X1
· P(1)

X2
· P(1)

V ,X3
, where P∗X1

is given by condition (i) and

P(1)
X2

denotes the marginal distribution of X2 derived from

P(1)
X1,X2,X3,V

. For the rate constraints in the DB direction,
the same identities as in (90)-(91) can be obtained because

P(1)
X1,X2,X3,V

and P(2)
X1,X2,X3,V

share a common marginal distri-

bution given by P(1)
V ,X3

. For R13 in the MA direction, we have

I (1)(X1; Y3|X2, X3)

=
∑
x2,x3

P(1)
X2,X3

(x2, x3) · I (1)(X1; Y3|X2 = x2, X3 = x3)

=
∑
x2,x3

P(1)
X2,X3

(x2, x3)

·I
(

P(1)
X1|X2=x2,X3=x3

, PY3|X1,X2=x2,X3=x3

)
≤
∑
x2,x3

P(1)
X2,X3

(x2, x3) ·
[

max
PX1|X2=x2,X3=x3

I
(

PX1|X2=x2,X3=x3, PY3|X1,X2=x2,X3=x3

)]

= ∑
x2,x3

P(1)
X2,X3

(x2, x3) · I
(

P∗X1
, PY3|X1,X2=x2,X3=x3

)
(93)

=
∑

x3

P(1)
X3

(x3)

∑
x2

P(1)
X2|X3

(x2|x3) · I
(

P∗X1
, PY3|X1,X2=x2,X3=x3

)

=
∑

x3

P(1)
X3

(x3)

(∑
x2

P(1)
X2|X3

(x2|x3)

)
· I
(

P∗X1
, PY3|X1,X2=x ′2,X3=x3

)
(94)

=
∑

x ′2

P(1)
X2

(x ′2)
∑
x3

P(1)
X3

(x3) · I
(

P∗X1
, PY3|X1,X2=x ′2,X3=x3

)

= I (2)(X1; Y3|X2, X3),

where (93) and (94) directly follow from condition (i).
For R23, we have

I (1)(X2; Y3|X1, X3)

=
∑
x1,x3

P(1)
X1,X3

(x1, x3) · I (1)(X2; Y3|X1 = x1, X3 = x3)

=
∑
x1,x3

P(1)
X1,X3

(x1, x3)

·I
(

P(1)
X2|X1=x1,X3=x3

, PY3|X1=x1,X2,X3=x3

)
=
∑
x1,x3

P(1)
X1,X3

(x1, x3)

·I
(

P(1)
X2|X1=x1,X3=x3

, PY3|X1=x ′1,X2,X3=x ′3

)
(95)

≤ I
(∑

x1,x3

P(1)
X1,X3

(x1, x3) · P(1)
X2|X1,X3

(x2|x1, x3),

PY3|X1=x ′1,X2,X3=x ′3

)
(96)

= I
(

P(1)
X2

, PY3|X1=x ′1,X2,X3=x ′3

)
=
∑
x ′1,x ′3

P∗X1
(x ′1)·P(1)

X3
(x ′3)·I

(
P(1)

X2
, PY3|X1=x ′1,X2,X3=x ′3

)
(97)

= I (2)(X2; Y3|X2, X3),
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where (95) and (97) follow from condition (ii) and (96) is due
to convexity of I(·, ·) in its first argument.

Moreover, for the sum rate R13 + R23, we have

I (1)(X1, X2; Y3|X3)

=
∑

x3

P(1)
X3

(x3) · I (1)(X1, X2; Y3|X3 = x3)

=
∑

x3

P(1)
X3

(x3) · I
(

P(1)
X1,X2|X3=x3

, PY3|X1,X2,X3=x3

)

=
∑

x3

P(1)
X3

(x3) · I
(

P(1)
X1,X2|X3=x3

, PY3|X1,X2,X3=x ′3

)
(98)

≤ I
(∑

x3

P(1)
X3

(x3) · P(1)
X1,X2|X3

(x1, x2|x3),

PY3|X1,X2,X3=x ′3

)
(99)

= I
(

P(1)
X1,X2

, PY3|X1,X2,X3=x ′3

)
≤ I

(
P∗X1
· P(1)

X2
, PY3|X1,X2,X3=x ′3

)
(100)

=
∑

x ′3

P(1)
X3

(x ′3) · I
(

P∗X1
· P(1)

X2
, PY3|X1,X2,X3=x ′3

)

= I (2)(X1, X2; Y3|X3),

where (98) and (100) follow from condition (iii) and (99) is
due to convexity of I(·, ·) in its first argument. Therefore,
(92) holds under conditions (i)-(iii).

E. Proof of Theorem 15

It suffices to show that

RMA-DBC(PX1,X2|X3 ·PV ,X3, PY3|X1,X2,X3, PZ1 , PZ2)

⊆ RMA-DBC(PU
X1
·PU

X2
·PV ,X3, PY3|X1,X2,X3, PZ1 , PZ2) (101)

for any PX1,X2|X3 PV ,X3 . We first give a proof sketch.
Analogous to Shannon’s proof for point-to-point TWCs (see
Appendix A), we want to show that for any input distribution
P(1)

X1,X2,X3,V
= P(1)

X1,X2|X3
P(1)

V ,X3
, if we set P(2)

X1,X2,X3,V
=

P(2)
X1,X2|X3

P(1)
V ,X3

and P(3)
X1,X2,X3,V

= P(3)
X1,X2|X3

P(1)
V ,X3

, where

P(2)
X1,X2|X3

(·, ·|·) � P(1)
X1,X2|X3

(τX1
x ′1,x ′′1

(·), ·|·), (102)

P(3)
X1,X2|X3

(·, ·|·) � 1

2

(
P(1)

X1,X2|X3
(·, ·|·)+ P(2)

X1,X2|X3
(·, ·|·)

)
,

(103)

and x ′1, x ′′1 ∈ X1, then we have

RMA-DBC(P(1)
X1,X2|X3

· P(1)
V ,X3

, PY3|X1,X2,X3, PZ1 , PZ2)

= RMA-DBC(P(2)
X1,X2|X3

·P(1)
V ,X3

, PY3|X1,X2,X3, PZ1 , PZ2) (104)

⊆ RMA-DBC(P(3)
X1,X2|X3

·P(1)
V ,X3

, PY3|X1,X2,X3, PZ1 , PZ2), (105)

where the last inclusion is shown using (49) and extending
Lemma 5 to the MA/DBC setup. Then, we use an induction
argument as in the proof of Lemma 6 to obtain

RMA-DBC(PX1,X2|X3 · PV ,X3, PY3|X1,X2,X3, PZ1, PZ2)

⊆ RMA-DBC(PU
X1
·PX2|X3 PV ,X3, PY3|X1,X2,X3, PZ1 , PZ2).

Next, we consider input distributions of the form
P(1)

X1,X2,X3,V
= PU

X1
· P(1)

X2|X3
· P(1)

X3,V and set P(2)
X1,X2,X3,V

=
P(2)

X1,X2|X3
·P(1)

V ,X3
and P(3)

X1,X2,X3,V
=P(3)

X1,X2|X3
·P(1)

V ,X3
, where

P(2)
X1,X2|X3

(·, ·|·) � P(1)
X1,X2|X3

(·, τX2
x ′2,x ′′2

(·)|·),
P(3)

X1,X2|X3
(·, ·|·) � 1

2

(
P(1)

X1,X2|X3
(·, ·|·)+ P(2)

X1,X2|X3
(·, ·|·)

)
,

and x ′2, x ′′2 ∈ X2. It can be shown via (50) that (104)-(105) also
hold, and thus applying an induction argument again yields

RMA-DBC(PU
X1
·PX2|X3 ·PV ,X3, PY3|X1,X2,X3, PZ1, PZ2)

⊆ RMA-DBC(PU
X1
·PU

X2
·PV ,X3, PY3|X1,X2,X3, PZ1 , PZ2). (106)

Combining (106) and (106) then proves our claim. Due to
symmetry, we only prove (106).

Lemma 7: For any P(1)
X1,X2,X3,V

= P(1)
X1,X2|X3

· P(1)
V ,X3

, let

P(2)
X1,X2,X3,V

= P(2)
X1,X2|X3

·P(1)
V ,X3

and P(3)
X1,X2,X3,V

= P(3)
X1,X2|X3

·
P(1)

V ,X3
, where P(2)

X1,X2|X3
and P(3)

X1,X2|X3
are given by (102) and

(103), respectively. Then, (104)-(105) hold.
Proof: We have

I (2)(X1; Y3|X2, X3 = x3)

=
∑

x1,x2,y3

P(2)
X1,X2|X3

(x1, x2|x3)·PY3|X1,X2,X3(y3|x1, x2, x3)

· log
PY3|X1,X2,X3(y3|x1, x2, x3)∑

x̃1
P(2)

X1|X2,X3
(x̃1|x2, x3) · PY3|X1,X2,X3(y3|x̃1, x2, x3)

=
∑

x1,x2,y3

P(1)
X1,X2|X3

(τX1
x ′1,x ′′1

(x1), x2|x3)

·PY3|X1,X2,X3(π
Y3[x ′1, x ′′1 ](y3)|τX1

x ′1,x ′′1
(x1), x2, x3)

·
[

log PY3|X1,X2,X3(π
Y3 [x ′1, x ′′1 ](y3)|τX1

x ′1,x ′′1
(x1), x2, x3)

− log

(∑
x̃1

P(1)
X1|X2,X3

(τX1
x ′1,x ′′1

(x̃1)|x2, x3)

·PY3|X1,X2,X3(π
Y3[x ′1, x ′′1 ](y3)|τX1

x ′1,x ′′1
(x̃1), x2, x3)

)]
(107)

=
∑

x1,x2,y3

P(1)
X1,X2|X3

(x1, x2|x3)·PY3|X1,X2,X3(y3|x1, x2, x3)

· log
PY3|X1,X2,X3(y3|x1, x2, x3)∑

x̃1
P(1)

X1|X2,X3
(x̃1|x2, x3)·PY3|X1,X2,X3(y3|x̃1, x2, x3)

(108)

= I (1)(X1; Y2|X2, X3 = x3),

where (107) follows from (49) and (102), (108) holds
since πY3[x ′1, x ′′1 ] and τ

X1
x ′1,x ′′1

are bijections. By a simi-

lar argument, we have that I (2)(X2; Y3|X1, X3 = x3) =
I (1)(X2; Y3|X1, X3 = x3) and that I (2)(X1, X2; Y3|X3 =
x3) = I (1)(X1, X2; Y3|X3 = x3). Next, using the concavity
of I (X1; Y3|X2, X3 = x3), I (X2; Y3|X1, X3 = x3), and
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I (X1, X2; Y3|X3 = x3) in PX1,X2|X3(·, ·|x3)
8 yields that

I (3)(X1; Y3|X2, X3 = x3)

≥ 1

2

(
I (1)(X1; Y3|X2, X3 = x3)+I (2)(X1; Y3|X2, X3 = x3)

)
= I (1)(X1; Y3|X2, X3 = x3),

I (3)(X2; Y3|X1, X3 = x3)

≥ 1

2

(
I (1)(X2; Y3|X1, X3 = x3)+I (2)(X2; Y3|X1, X3 = x3)

)
= I (1)(X2; Y3|X1, X3 = x3),

I (3)(X1, X2; Y3|X3 = x3)

≥ 1

2

(
I (1)(X1, X2; Y3|X3 = x3)+I (2)(X1, X2; Y3|X3 = x3)

)
= I (1)(X1, X2; Y3|X3 = x3),

and hence

I (3)(X1; Y3|X2, X3) ≥ I (1)(X1; Y3|X2, X3),

I (3)(X2; Y3|X1, X3) ≥ I (1)(X2; Y3|X1, X3),

I (3)(X1, X2; Y3|X3) ≥ I (1)(X1, X2; Y3|X3),

since P(1)
X3
= P(3)

X3
. Together with the definition of RMA-DBC

given in Section IV-B, the inclusions in (104)-(105) are
proved.

Now, without loss of generality, suppose that X1 =
{1, 2, ..., κ}. For 1 ≤ m ≤ κ , define �m as the set
of all conditional probability distributions PX1,X2|X3 satis-
fying PX1,X2|X3(1, x2|x3) = PX1,X2|X3(2, x2|x3) = · · · =
PX1,X2|X3(m, x2|x3) for any fixed x2 ∈ X2 and x3 ∈ X3. As in
the proof of Lemma 6, it can be shown by induction on m
that

RMA-DBC(PX1,X2|X3 · PV ,X3, PY3|X1,X2,X3, PZ1 , PZ2)

⊆ RMA-DBC(P̃X1,X2|X3 · PV ,X3, PY3|X1,X2,X3, PZ1 , PZ2)

where PX1,X2|X3 ∈ �m and P̃X1,X2|X3 ∈ �m+1 for 1 ≤ m < κ .
Note that the base case m = 1 was proved in Lemma 7. Since
PX1,X2|X3 ∈ �κ can be expressed as PX1,X2|X3 = PU

X1
·PX2|X3 ,

(106) holds. To show (106), we consider input probability
distributions of the form PX1,X2,X3,V = PU

X1
· PX2|X3 · PX3,V .

By changing the roles of X1 and X2 in the above derivation,
the rest of the proof is straightforward.
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