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A Model for Correlated Rician Fading
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Abstract—We study the problem of approximating the family
of hard-decision frequency-shift keying demodulated correlated
flat Rician fading channels via a recently introduced queue-based
channel (QBC) model for binary communication channels with
memory. For a given “discretized” fading channel, we con-
struct a QBC whose noise process is statistically “close” in the
Kullback–Leibler sense to the error or noise process that is gener-
ated by the fading channel, and the modeling accuracy is evaluated
in terms of noise autocorrelation function (ACF) and channel
capacity. Numerical results indicate that the QBC provides a good
approximation of the fading channels for a wide range of channel
conditions. Furthermore, it estimates the noise ACF more accu-
rately than the finite-state Markov models that have been recently
studied by Pimentel et al., while, at the same time, remaining
mathematically tractable.

Index Terms—Autocorrelation function (ACF), capacity, corre-
lated Rician fading, error statistics, Kullback–Leibler divergence
rate (KLDR), modeling of communication channels with memory.

I. INTRODUCTION

IN RECENT years, there has been an increasing interest
in transmitting voice, data, image, and video signals over

wireless communication channels. However, wireless channels
undergo a variety of time-varying signal impairments caused
by propagation loss, shadowing, multipath fading, and thermal
noise. In particular, it is important to understand the deleterious
effects of fading on wireless transmission. A common feature of
many fading channels is that they cause symbol errors to occur
in clusters or bursts [2].

In the presence of error bursts, interleaving is usually ap-
plied to destroy or mitigate the memory because most coding
systems and protocols are designed under the assumption of
memoryless error processes. With perfect or ideal interleaving,
it is possible to model the fading channels as memoryless
channels. However, the use of interleaving introduces extra
delay and complexity, and perfect interleavers do not exist
in any practical system. In real-time personal communication
systems, data are transmitted in short blocks, and fairly strict
delay constraints must be obeyed (e.g., see [3]). Noninterleaved
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or finite-interleaved packet transmission over fading channels
has recently received significant attention [4], [5].

Therefore, in this paper, we start with the premise that the
inherent memory of fading communication channels cannot
be neglected. An advantageous feature of memory is that the
channel quality in the near future can be forecast based on the
knowledge of previous channel conditions due to the statistical
dependence of errors. To obtain highly reliable data transmis-
sion over channels with memory, we should take advantage
of the channel memory by constructing effective error control
coding strategies. For this reason, it is critical to fully under-
stand the error structure of such channels. This is achieved via
channel modeling, where the main objective is to provide a
model whose properties are complex enough to closely capture
the real channel statistical characteristics and simple enough to
allow mathematically tractable system analysis. In this paper,
we employ a binary additive channel model with memory that
is based on a finite queue that reliably and tractably describes a
family of correlated fading channels.

During the past several decades, a variety of channel models
have been proposed and studied for the modeling of wireless
fading channels (e.g., see [6]–[8] and the models therein).
A finite-state Markov channel (FSMC) is a discrete valued
channel with a finite set of possible states whose transition
is governed by an underlying Markov chain and with a prob-
ability assignment that is independent of time [2], [9], [10].
FSMCs have been widely adopted for the description of the
correlation structures and success/failure processes of wireless
channels with bursty behavior [11] because they are efficient
in quick simulations, system performance evaluations, and
protocol investigations. Two of the earliest FSMC models for
representing the “discretized” version (under hard-decision de-
modulation) of binary-input fading channels with memory are
the Gilbert–Elliott channel (GEC) [12], [13] and the Fritchman
channel [14]. They were, for example, employed to model high-
frequency channels [15], mobile radio channels [16]–[18], low
earth orbit satellite channels [19], and magnetic tape recorders
[20]. The GEC model has been also used to evaluate the perfor-
mance of coding and decoding schemes over bursty channels
[3], [21], [22].

Many FSMC models including the aforementioned works
have been proposed to fit realistic wireless channels. Wang
and Moayeri [23] proposed an FSMC based on the partitioning
of the received SNR into a finite number of states to model
Rayleigh fading channels. The same approach was also inde-
pendently presented in [4] and used in [24] and [25]. The model
proposed in [23] attracted much attention because it has a good
balance between accuracy and complexity. It was applied to
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the evaluation of system-related channel properties (such as the
correlation properties of the fading mobile radio channel) in
[26] and [27] by modeling the channel as a first-order Markov
process whose transition probabilities are a function of the
channel characteristics. In [28], an analytical model was used to
evaluate the effect of mobile velocity on the performance of a
communication system operating in a multipath fading channel.

FSMCs are often generated via finite-state hidden Markov
models (HMMs).1 General HMMs were studied in [29] to
model flat-fading channels. Due to their HMM structure, such
channels can be difficult to mathematically analyze (e.g., they
do not admit an exact closed-form expression for their capacity,
and/or their block transition distribution is not transparently
expressed in terms of the channel parameters), particularly
when incorporated within an overall source and/or channel
coded system. This may partly explain why, to date, few
coding techniques that effectively exploit the noise memory
have been successfully constructed for HMM-based channel
models and for channels with memory in general. Instead,
most current wireless communication systems are designed
for memoryless channels and employ channel interleaving in
an attempt to disperse the channel memory and make the
channel appear memoryless (even burst-error correcting codes
such as Reed–Solomon codes operating on an HMM-based
channel perform best when interleaving is used, e.g., see [5]).
However, in addition to the increased complexity/delay caused
by interleaving, the failure to exploit the channel’s memory at
the encoder and/or decoder leads to a waste of channel capacity
since it is well known that memory increases capacity2 for a
wide class of channels (the class of information stable channels
[31], [32]). It is, therefore, vital to construct channel models that
can well represent the behavior of real-world channels while
remaining analytically tractable for design purposes.

Alajaji and Fuja [32, Sec. VI] proposed a simple binary
additive noise channel with memory, which is referred to as
the finite memory contagion channel (FMCC), where the noise
process is generated via a finite-memory version of Polya’s
urn scheme for the spread of a contagious disease through a
population [33]. In such a channel, every error (or “infection,”
if we use the contagion interpretation) effectively increases the
probability of future errors [33] and, hence, may lead to a
clustering or burst of errors (i.e., an “epidemic” in the popu-
lation). The resulting channel, which is fully described by only
three parameters, has a stationary ergodic M th-order Markov
noise source and admits single-letter analytical expressions for
its block transition distribution and capacity. This model was
adopted in several source-channel and channel coding studies
(e.g., [34]–[42]), where the channel statistics are incorporated
into the system design to exploit the noise memory.

The queue-based channel (QBC), which was recently intro-
duced in [43]–[45], is a binary additive noise channel with
memory based on a finite queue. The QBC is a more general

1A description of a large class of finite- or infinite-state HMM-based channel
models is provided in [2].

2In other words, the capacity of the “equivalent” memoryless channel that is
achieved by ideal interleaving (with infinite interleaving span) is smaller than
the capacity of the original channel (e.g., see [30]).

model than the FMCC as it subsumes the latter as a special
case. It also features a stationary ergodic M th-order Markov
noise source, and it is fully characterized by four parameters
(ε, α, p, and M ), thus having one more degree of freedom than
the FMCC (by setting α = 1, the QBC reduces to the FMCC
for the same bit error rate (BER), correlation coefficient, and
memory order). It is important to point out that Pimentel et al.
[46] have recently shown in a numerical study that the class of
binary channel models with additive Kth-order Markov noise
(to which the QBC belongs) is a good approximation, in terms
of the autocorrelation function (ACF) and variational distance,
to the family of hard-decision frequency-shift keying (FSK)
demodulated time-correlated flat Rayleigh and Rician fading
channels for a good range of fading environments, particularly
for medium and fast fading rates. Note, however, that the
general Kth-order Markov noise channels that were considered
in [46] have a complexity (number of parameters) that grows
exponentially with K, rendering it impractical for the modeling
of channels with large memory, such as very slow Rayleigh
fading channels (e.g., see Fig. 2 or [46, Fig. 11]). The QBC
model, on the other hand, does not suffer from this limitation,
as it has a fixed number of parameters (four parameters), and
it can accommodate very large values of memory M . Like the
FMCC, it enjoys a transparent formula for its n-fold statistics
and a closed-form formula for its capacity, which are appealing
features as they provide powerful analytical tools for code
design and system analysis. In a recent related work [47],
the problem of modeling the GEC using the QBC has been
investigated, and it was shown (numerically) that the QBC
provides a good approximation of the GEC for various channel
conditions.

In this paper, we investigate the problem of approximating
the same class of Rician fading channels studied in [46] via
the QBC. Specifically, for a given hard-decision demodulated
fading channel, we construct a QBC whose error (i.e., noise)
process is statistically as close as possible to the error process
generated by the fading channel. This is achieved by selecting
the QBC parameters that minimize the Kullback–Leibler diver-
gence rate (KLDR) between both noise processes for identical
BERs and correlation coefficients. Since the QBC model has
a simple Markovian structure and low complexity as it is fully
described by only four parameters (while still allowing for large
memory values), the optimization problem involves only two
parameters and can be efficiently numerically solved. Modeling
results indicate that the QBC is a good fit for fading channels as
it accurately models (in terms of ACF and capacity) their burst-
error behavior for a wide range of channel environments, in-
cluding slow fading. The QBC is, thus, an interesting alternative
to existing models for channels with memory (such as HMMs),
which tend to be either too complex for tractable analysis and
code design that exploits the channel’s memory or too limiting
for realistic modeling.

The rest of this paper is organized as follows. Preliminar-
ies on the GEC and QBC channel models are presented in
Section II. In Section III, we investigate the modeling of the
Rician fading channels via the QBC. In Section IV, we provide
the numerical fitting results. For the sake of comparison, we
also model the fading channels via the GEC (which has the
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same number of parameters as the QBC) using the parame-
terization method of Pimentel et al. [46]. The accuracy of
both methods is evaluated in terms of ACF and capacity. In
Section V, we conclude with a summary along with several
directions for future work.

II. GEC AND QBC BINARY CHANNEL MODELS

Hereafter, a discrete-time binary additive noise communica-
tion channel refers to a channel with common input, noise,
and output alphabet X = Z = Y = {0, 1}, described by Yn =
Xn ⊕ Zn, for n = 1, 2, 3, . . ., where ⊕ denotes addition
modulo 2, and where Xn, Zn, and Yn, respectively, denote
the channel’s input, noise, and output at time n. Hence, a
transmission error occurs at time n whenever Zn = 1. It is
assumed that the input and noise sequences are independent of
each other. In this paper, a given noise process {Zn}∞n=1 will
be generated according to one of the GEC, the QBC, and the
discretized Rician fading channel.

A. GEC

The GEC model [12], [13], [30] is driven by an underlying
stationary ergodic Markov chain {Sk} with two states: a good
state and a bad state, denoted by G (or state 0) and B (or state
1), respectively. In a fixed state, the channel behaves like a
binary symmetric channel (BSC). The GEC is, thus, a time-
varying BSC, where pG and pB are the crossover probabilities
in the good and bad states, respectively (the Gilbert channel
[12] is obtained when pG = 0, i.e., it behaves like a noiseless
BSC in the good state). After every channel transmission,
the chain makes a state transition according to the following
transition probability matrix:

P
∆=
[

Pr{Sk = 0|Sk−1 = 0} Pr{Sk = 1|Sk−1 = 0}
Pr{Sk = 0|Sk−1 = 1} Pr{Sk = 1|Sk−1 = 1}

]

=
[

1 − b b
g 1 − g

]

where 0 < b < 1, and 0 < g < 1. A useful approach for calcu-
lating the probability of an error or noise sequence for the GEC
is discussed in [6]. The probability of a noise sequence of length
n, zn = (z1, z2, . . . , zn) can be expressed as

PGEC(zn) ∆= PGEC{Zn = zn} = πT

(
n∏

k=1

P (zk)

)
1 (1)

where ·T denotes transposition, P (zk) is a 2 × 2 matrix whose
(i, j)th entry is the probability that the output symbol is zk

when the chain makes a transition from state Sk−1 = i to
Sk = j, i.e.,

P (0) =
[

(1 − b)(1 − pG) b(1 − pB)
g(1 − pG) (1 − g)(1 − pB)

]

P (1) =
[

(1 − b)pG bpB

gpG (1 − g)pB

]
(2)

1 is the 2-D vector with all ones, and the vector π indicates
the stationary distribution vector of the underlying Markov
chain, i.e.,

π =

[
π0

∆= Pr{Sk = 0}
π1

∆= Pr{Sk = 1}

]
=
[ g

b+g
b

b+g

]
. (3)

B. QBC With Memory

The additive noise process of the queue-based binary channel
with memory [43]–[45] is generated according to a sampling
mechanism involving the following two parcels.

• Parcel 1 is a queue of length M that initially contains M
balls: either red or black.

• Parcel 2 is an urn that contains a very large number of
balls, where the proportion of black balls is 1 − p, and the
proportion of red balls is p, where p ∈ (0, 1), p � 1/2.

We assume that the probability of selecting parcel 1 (the
queue) is ε, whereas the probability of selecting parcel 2 (the
urn) is 1 − ε, and ε ∈ [0, 1). Notice that the channel is actually
a BSC with crossover probability p when ε = 0; in this case,
we experiment on the urn only.

The noise process {Zn}∞n=1 is generated according to the
following procedure. By flipping a biased coin [with
Pr(Head) = ε], we select one of the two parcels (select the
queue if Heads and the urn if Tails). If parcel 2 (the urn)
is selected, a pointer randomly points at a ball and identifies
its color. If parcel 1 (the queue) is selected, the procedure is
determined by the length of the queue. If M ≥ 2, a pointer
points at the ball in cell k with probability 1/(M − 1 + α), for
k = 1, 2, . . . , M − 1 and α ≥ 0, and points at the ball in cell
M with probability α/(M − 1 + α) and identifies its color. If
M = 1, a pointer points at the ball in the only cell of the queue
with probability 1; in this case, we set α = 1. If the selected
ball from either parcel is red (black), we introduce a red (black)
ball in cell 1 of the queue, pushing the last ball in cell M out.
The noise process {Zn}∞n=1 is then modeled as follows:

Zn =
{

1, if the nth experiment points at a red ball
0, if the nth experiment points at a black ball.

It can be shown that the resulting channel noise process
{Zn}∞n=1 is a stationary ergodic (irreducible) M th-order
Markov process. Moreover, various statistical and information
theoretic quantities of the QBC, such as the channel block
transition probability, capacity, and ACF, can be determined
(in closed form) in terms of M , p, ε, and α [43]–[45]. The
expressions for these quantities are herein summarized.
Block Transition Probability: For a given input block Xn =

(X1, . . . , Xn) and a given output block Y n = (Y1, . . . , Yn),
where n is the block length, the channel block transition
probability is

P
(M)
QBC{Y n =yn|Xn =xn}=P

(M)
QBC{Zn =zn} ∆= P

(M)
QBC(zn)
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where zi = xi ⊕ yi, for i = 1, 2, . . . , n, and the noise n-fold
distribution is as follows.

• For block length n ≤ M , the distribution is given by (4),
shown at the bottom of the page, where db

a = zb + zb−1 +

· · · + za (db
a = 0 if a > b), and

∏a
j=0(·)

�
= 1 if a < 0.

• For block length n ≥ M + 1

P
(M)
QBC(zn) = L(M)

n∏
i=M+1

[ (
di−1

i−M+1 + αzi−M

)

× ε

M − 1 + α
+ (1 − ε)p

]zi

×
{ [(

M − 1 − di−1
i−M+1

)
+ α(1 − zi−M )

]
× ε

M − 1 + α
+ (1 − ε)(1 − p)

}1−zi

(5)

where L(M) is as shown at the bottom of the page.
Note that the channel’s BER and noise correlation coefficient
are given by the following:

BERQBC = P
(M)
QBC{Zi = 1} = P

(M)
QBC{Z1 = 1} = p (6)

and

CorQBC =
E[Z2Z1] − E[Z2]E[Z1]

Var[Z1]
=

ε
M−1+α

1 − M−2+α
M−1+αε

(7)

respectively, where E[·] denotes expectation, and Var[·] is the
variance.
ACF: The ACF of a binary stationary process {Zn}∞n=1 is

defined by R[m] = E[ZiZi+m] = P
(M)
QBC{Zi = 1, Zi+m = 1}.

It can be shown that the ACF of the QBC satisfies (8), shown at
the bottom of the page.
Capacity: Since the QBC is a channel with stationary er-

godic additive noise, it is information stable, and its (opera-

tional) capacity C
(M)
QBC is given by the following familiar mutual

information rate formula (e.g., [48]):

C
(M)
QBC = lim

n→∞
sup
Xn

1
n

I(Xn;Y n) (9)

where I(·; ·) denotes mutual information [49]. It can be shown
that input n-tuples Xn that are uniformly distributed over
{0, 1}n maximize I(Xn;Y n); this yields the following expres-
sion for C

(M)
QBC:

C
(M)
QBC = 1 −

M−1∑
ω=0

(
M − 1

ω

)
L(M)

ω

× hb

[
ω

ε

M − 1 + α
+ (1 − ε)p

]

−
M∑

ω=1

(
M − 1
ω − 1

)
L(M)

ω

× hb

[
(ω + α − 1)

ε

M − 1 + α
+ (1 − ε)p

]
(10)

where L
(M)
ω is as shown at the bottom of the next page,

hb(x) ∆= −x log2 x − (1 − x) log2(1 − x) is the binary entropy

function, and
∏a

j=0(·)
∆= 1 for a < 0. Finally, it should be noted

that the FMCC channel of [32] is a special case of the QBC:
By setting α = 1, the QBC reduces to the FMCC (for identical
BER, Cor, and memory). Hence, the QBC is a more flexible
channel model than the FMCC due to an additional degree of
freedom.

III. FITTING RICIAN FADING CHANNELS VIA THE QBC

We next consider the problem of fitting discretized Rayleigh
and Rician fading channels via the QBC model. For the sake
of comparison, we also model the fading channels via the

P
(M)
QBC(zn) =

∏n−dn
1 −1

j=0

[
j ε

M−1+α + (1 − ε)(1 − p)
]∏dn

1 −1
j=0

[
j ε

M−1+α + (1 − ε)p
]

∏M−1
j=M−n

[
1 − (α + j) ε

M−1+α

] (4)

L(M) =

∏M−1−dM
1

j=0

[
j ε

M−1+α + (1 − ε)(1 − p)
]∏dM

1 −1
j=0

[
j ε

M−1+α + (1 − ε)p
]

∏M−1
j=0

[
1 − (α + j) ε

M−1+α

]

RQBC[m] =




p, if m = 0;
ε

M−1+α +(1−ε)p

1−M−2+α
M−1+α ε

p, if 1 ≤ m ≤ M − 1;

(1 − ε)p2 + ε
M−1+α

(∑m−1
i=m−M+1 RQBC[i] + αRQBC[m − M ]

)
, if m ≥ M

(8)
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Fig. 1. Overall system and the equivalent DCCA model.

GEC (which has the same number of parameters as the QBC)
according to the parameterization method of Pimentel et al.
[46]. The accuracy of both methods is evaluated in terms of
ACF and capacity.

A. Fading Channel Model

We consider a discrete (binary input, binary output) com-
munication system, referred to as the discrete channel with
Clarke’s autocorrelation (DCCA) model, that employs binary
FSK modulation, a time-correlated Rician flat-fading channel,
and a hard quantized noncoherent demodulation [46]. As in
[6], [46], and [50], we consider noncoherent FSK modulation;
however, any other modulation/demodulation scheme for which
the expression of the probability of length n error sequences is
available [as in (11) below] can be also studied by our model.
The complex envelope of the received signal at the input to the
demodulator is corrupted by a multiplicative Rician fading and
by an additive white Gaussian noise, i.e.,

R̃(t) =
√

2EsG̃(t)S̃(t) + Ñ(t)

where Es is the symbol energy. S̃(t) is the complex envelope of
the symbol, which can be expressed as S̃(t) =

∑∞
k=1 pak

(t −
kT ), where the binary information bearing symbols ak are
embedded in the signals pi(t), i = 0, 1, which are equally
probable orthogonal signals with unit energy. T is the sym-
bol interval, and Ñ(t) is the complex envelope of the white
Gaussian noise with ACF given by (1/2)E[Ñ(t + τ)Ñ ∗(t)] =
N0δ(τ), where N0 is the variance of Ñ(t) [7]. The complex
envelope of the fading process G̃(t) = G̃I(t) + jG̃Q(t) is a
complex wide sense stationary Gaussian process with mean η,

j =
√
−1, and the quadrature components G̃I(t) and G̃Q(t)

are mutually independent Gaussian processes with the same
covariance function Cov(τ), which, adopting Clarke’s fading
model [51], [52], can be expressed as

Cov(τ) =
1
2
E
[(

G̃(t + τ) − η
)(

G̃∗(t) − η
)]

=σ2
gJ0(2πfDτ)

where

J0(x) =
∞∑

k=0

(−1)k

(
xk

2kk!

)2

is the zero-order Bessel function of the first kind, fD is the
maximum Doppler frequency that is experienced by the moving
vehicle, and σ2

g is the variance of G̃(t). At each signaling
interval of length T , the demodulator forms two decision vari-
ables {0, 1} and decides which signal was more likely to have
been transmitted. A general block diagram for visualizing the
behavior of such systems is given in Fig. 1.

The combination of digital modulator, fading channel, and
digital demodulator yields the equivalent DCCA model. The
study and the analysis of the statistical behavior of the DCCA
model are important since the design and the construction of
effective error control schemes for this simplified (binary input,
binary output) model help us better exploit the system memory
and achieve reliable communication over the underlying corre-
lated fading channel.

The DCCA is represented as an additive noise channel with
binary error process {Zn}∞n=1, where Zn is as shown at the
bottom of the page. The probability of an error sequence of

L(M)
ω =

∏M−1−ω
j=0

[
j ε

M−1+α + (1 − ε)(1 − p)
]∏ω−1

j=0

[
j ε

M−1+α + (1 − ε)p
]

∏M−1
j=0

[
1 − (α + j) ε

M−1+α

]

Zn =
{

0, if the nth transmitted symbol is correctly received
1, if the nth transmitted symbol is incorrectly received
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length n, zn = (z1, z2, . . . , zn), can be directly obtained from
[46, eq. (3), with, Omega, 1], i.e.,

PDCCA(zn) ∆= Pr{Zn =zn}

=
1∑

l1=z1

· · ·
1∑

ln=zn

(
n∏

k=1

(−1)lk+zk

lk+1

)

×
exp
{
−Es

N0
KR1TF

(
(KR+1)I+ Es

N0
C̄F
)−1

1
}

det
(
I+ Es

N0
(1+KR)−1C̄F

)
(11)

where F is a diagonal matrix, which is defined as

F = diag
(

l1
l1 + 1

, . . . ,
ln

ln + 1

)
.

I is the identity matrix, KR = η/2σ2
g is the Rician factor, and

C̄ is the normalized covariance matrix with entries

C̄ij =
(
1/σ2

g

)
Cov(|i−j|)=J0(2πfDT |i−j|) , 1≤ i, j≤n.

The QBC is next used to model the equivalent binary error
sequence of the DCCA, which represents the successes and
failures that result from the transmission of symbols over the
above fading channel.

B. Estimation of Channel Parameters

1) QBC Parameter Estimation: For a given DCCA, we
construct a QBC whose noise or error process is statistically
“close” in the Kullback–Leibler sense to the noise process that
is generated by the DCCA. The Kullback–Leibler distance or
divergence is an approximation quality measure that is widely
used to determine the statistical closeness between two sources
(e.g., see [6], [11], and [49]). Specifically, given a DCCA
with fixed average SNR Es/N0, normalized Doppler frequency
fDT , and Rician factor KR resulting in BERDCCA and corre-
lation coefficient CorDCCA, we estimate the QBC parameters
M , p, ε, and α that minimize the KLDR, i.e.,

lim
n→∞

1
n

Dn

(
PDCCA

∥∥∥P (M)
QBC

)
subject to the constraints

BERQBC = BERDCCA and CorQBC = CorDCCA

where Dn(PDCCA‖P (M)
QBC) is the Kullback–Leibler divergence

between the n-fold DCCA and QBC noise distributions,
PDCCA and P(M)

QBC, respectively, i.e.,

Dn

(
PDCCA

∥∥∥P (M)
QBC

)
q=

∑
znε{0,1}n

PDCCA(zn)log2

PDCCA(zn)

P
(M)
QBC(zn)

where P
(M)
QBC is given in closed form by (4) and (5), and PDCCA

is given by (11). Note that we focus on minimizing the KLDR,
which is an asymptotic quantity [as opposed to minimizing

the normalized divergence (1/n)Dn(PDCCA‖P (M)
QBC) for finite

n], since it is vital to have identical statistical behavior on
both channels for large block lengths (as large block lengths
are required to achieve reliable communication by the channel
coding theorem [49]).

It can be shown (e.g., see [53]) that the KLDR between
the DCCA noise process (which is stationary) and the QBC
noise process (which is Markovian) does exist and can be
expressed as

lim
n→∞

1
n

Dn

(
PDCCA

∥∥∥P (M)
QBC

)
= −HDCCA(Z) − EPDCCA

×
[
log2 P

(M)
QBC

(
ZM+1|ZM

)]
(12)

where H(Z)
�
= limn→∞(1/n)H(Zn) denotes the entropy

rate [49]

EPDCCA

[
log2 P(M)

QBC(ZM+1|ZM )
]

∆=
∑

zM+1

PDCCA(zM+1)
[
log2 P

(M)
QBC(zM+1|zM )

]

and P
(M)
QBC(zM+1|zM ) is the QBC conditional error probability

of symbol M + 1 given the previous M symbols. Then, the
above minimization reduces to maximizing the second term
in (12) (which is independent of n) over the QBC parameters.
Note that in our approximation, we match BER and Cor of both
channels to guarantee identical noise marginal distributions and
identical probabilities of two consecutive errors (ones). Hence,
given these constraints, the above optimization problem reduces
to an optimization over only two QBC parameters—M and
ε. This is numerically achieved by sequentially incrementing
M ≥ 1 and varying 0.0001 ≤ ε ≤ 0.9999 for each given M .
2) GEC Parameter Estimation: We next briefly describe the

method of modeling the DCCA via the GEC introduced by
Pimentel et al. [46]. For a given DCCA, the parameterization
of the GEC is based on the following lemma.
Lemma 1: The probability of any observed sequence zn

generated by the GEC satisfies the following recurrence
equation [46]:

PGEC(znςκ)=c(ς, κ)PGEC(znς)+ d(ς, κ)PGEC(zn) (13)

where PGEC(znςκ)
�
= Pr{Z1 = z1, . . . , Zn = zn, Zn+1 = ς,

Zn+2 = κ}, ς and κ are binary symbols, and

c(0, 0) = (1 − pG)(1 − b) + (1 − pB)(1 − g)

c(1, 1) = pG(1 − b) + pB(1 − g) (14)

d(0, 0) = −(1 − g − b)(1 − pG)(1 − pB)

d(1, 1) = −(1 − g − b)pG)pB

c(1, 0) = 1 − c(1, 1), c(0, 1) = 1 − c(0, 0)

d(0, 1) = −d(0, 0), and d(1, 0) = −d(1, 1). (15)

Lemma 1 shows that the parameters c(ς, κ) and d(ς, κ) can
be calculated via a linear system of equations. For example,
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setting zn = φ, where φ is an empty sequence, PGEC(φ) = 1,
and zn = ς in (13), c(ς, κ) and d(ς, κ) can be determined by the
probabilities of error sequences of length at most 3, i.e.,

c(ς, κ) =
PGEC(ςςκ) − PGEC(ςκ)PGEC(ς)

PGEC(ςς) − P 2
GEC(ς)

(16)

and

d(ς, κ) =
PGEC(ςκ)PGEC(ςς) − PGEC(ςςκ)PGEC(ς)

PGEC(ςς) − P 2
GEC(ς)

. (17)

The GEC parameters follow by solving the nonlinear equations
in (14) and (15) as follows.
Proposition 1: If PGEC(01) �= PGEC(0)PGEC(1), the pa-

rameters of the GEC are uniquely determined by the four proba-
bilities PGEC(0), PGEC(00), PGEC(000), and PGEC(111). The
four parameters b, g, pG, and pB are given by the following. pG

and pB are the roots of the following quadratic equation [46]:

[−1 + c(1, 1) + c(0, 0)] x2

+ [1 − c(1, 1) − c(0, 0) + d(1, 1) − d(0, 0)] x − d(1, 1) = 0

and

b =
c(0, 0)pB − c(1, 1)(1 − pB) + (pG − pB)

pG − pB

g =
c(0, 0)pG − c(1, 1)(1 − pG) + (pB − pG)

pB − pG
.

Hence, if PDCCA(0), PDCCA(00), PDCCA(000), and
PDCCA(111) are known, where PDCCA(zn) is the probability
of error sequences generated by the DCCA [see (11)], the
parameters of the GEC can be obtained by (16), (17), and
Proposition 1 by setting PGEC(zn) = PDCCA(zn), n = 1, 2,
and 3.

IV. MODELING RESULTS AND DISCUSSIONS

We evaluate how well the QBC model fits or approximates
the DCCA according to two criteria: ACF and channel capac-
ity. The QBC ACF and capacity expressions are provided in
Section II-B. The ACF of the DCCA can be directly obtained
from (11), i.e.,

RDCCA[m] =
(1 + KR)2(

2 + 2KR + Es

N0

)2

−
(

Es

N0
ρ(m)

)2

× exp

{
−

2KR
Es

N0

2 + 2KR + ES

N0
(ρ(m) + 1)

}

where ρ(m) = J0(2πmfDT ).
As in (9), the capacity of the DCCA is given by

CDCCA = lim
n→∞

sup
Xn

1
n

I(Xn;Y n) = 1 −HDCCA(Z).

The entropy rate HDCCA(Z) of the (stationary ergodic) DCCA
error process is not known in closed form. However, we can ap-
proximate it by calculating the normalized block noise entropy

Fig. 2. DCCA fitting via the QBC: ACF versus m for fDT = 0.001, SNR =
15 dB, and KR = −∞ dB (Rayleigh).

(1/n)H(Zn) for large values of n and, thus, obtain a lower
bound on CDCCA, which is given by

CDCCA ≥ CDCCA,n
∆= 1 − 1

n
HDCCA(Zn).

In our calculations, we used values of n as large as 21.
For the sake of comparison, we also present modeling results

via the GEC using the method of Pimentel et al. [46] (which
we briefly described in Section III-B2). Note that in [46], the
authors also employ arbitrary Kth-order Markov noise models
to approximate the fading channels. However, unlike our QBC
model, which has only four parameters (as the GEC) and
allows large values for its memory order M (since its noise
is a specially structured M th-order Markov process that is
generated by our queue scheme), the Kth-order Markov models
of [46] are unstructured and, hence, suffer from the limitation
of having a number of parameters that exponentially grow3

with K. Therefore, with the exception of a brief comparison
with the Markov model of [46] (see Fig. 2), we herein mainly
compare our QBC-based modeling method with the GEC-based
modeling method of [46] since both channels have identical
number of parameters and, hence, identical degrees of freedom
and complexity.

The capacity of the GEC is obtained via the algorithm in [30].
The ACF of the GEC can be also directly obtained from (1), i.e.,

RGEC[m] = πT P (1)

(
m−1∏
k=1

P

)
P (1)1 (18)

where π,P (1), and P are defined in Section II-A.
A wide range of DCCA channel parameters is investigated

with SNR =15 and 25 dB, fDT = 0.001, 0.005, 0.01, and 0.1
for Rayleigh fading (KR = −∞ dB), and SNR = 15 dB and

3As a result, only models with memory order up to six are studied in [46].
Such models are shown to well approximate channels with fast and medium
fading rates (fDT > 0.2); however, they are inadequate for slow fading rates.
As we later show in this section, the QBC model can accommodate large values
of the memory order; thus, it can provide a good approximation of channels
with slow fading (fDT < 0.02) in addition to medium and fast fading.
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TABLE I
QBC AND GEC MODELING PARAMETERS FOR

KR = −∞ dB (RAYLEIGH) AND SNR = 15 dB

TABLE II
QBC AND GEC MODELING PARAMETERS FOR

KR = −∞ dB (RAYLEIGH) AND SNR = 25 dB

TABLE III
QBC AND GEC MODELING PARAMETERS FOR

KR = 5 dB (RICIAN) AND SNR = 15 dB

fDT = 0.001, 0.005, 0.01, and 0.05 for Rician fading (KR =
5 dB). The SNR, fDT , and KR values (except for fDT =
0.005) were chosen to match the conditions of the correlated
Rician and Rayleigh fading channels studied in [46, Figs. 6, 7,
9, and 11]. The QBC and GEC parameters, which were obtained
as explained in Sections III-B1 and 2, respectively, are provided
in Tables I–III.

A subset of the modeling results in terms of the ACF for the
DCCA, its QBC approximation, and its GEC approximation is
shown in Figs. 2–5 (the complete results are available in [45]).
We observe a strong ACF agreement between the QBC and
the DCCA in these figures.4 This behavior is indeed observed
for all computations, particularly for fDT = 0.1, where the

4Note that the ACF of the QBC RQBC[m] is equal to a constant for
m ≤ M − 1, as indicated by (8).

Fig. 3. DCCA fitting via the QBC: ACF versus m for fDT = 0.01, SNR =
15 dB, and KR = −∞ dB (Rayleigh).

Fig. 4. DCCA fitting via the QBC: ACF versus m for fDT = 0.001, SNR =
15 dB, and KR = 5 dB (Rician).

Fig. 5. DCCA fitting via the QBC: ACF versus m for fDT = 0.05, SNR =
15 dB, and KR = 5 dB (Rician).
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Fig. 6. DCCA fitting via the QBC. Capacity (in bits per channel use) versus normalized Doppler frequency fDT for Rayleigh fading.

Fig. 7. DCCA fitting via the QBC. Capacity (in bits per channel use) versus normalized Doppler frequency fDT for Rician fading.

ACF curves of the DCCA and its QBC approximation are
identical [45]. For slow and medium fading (e.g., see Fig. 2
and [45]), the ACF curve for the GEC takes a longer span of
m before eventually converging, which indicates that the GEC
(as fitted in [46]) might not be adequate for modeling very
slow Rayleigh fading (fDT = 0.001) and very slow to medium
Rician fading (fDT = 0.001, 0.005, and 0.01). We observe that
the QBC has a better performance than the Markov models
in [46] (see Fig. 2) but with significantly smaller complexity
since it is fully described by four parameters and allows closed-

form expressions for various fading characteristics. Compared
with [46, Fig. 7(a)], the QBC has similar performance as the
Markov models of [46] with order 4 or 5 but with smaller
complexity.

Note that since the QBC noise is a homogeneous Markov
process, the KLDR between the DCCA and QBC error
processes exists and admits a simple expression given by (12).
Hence, it is practical to minimize this KLDR by maximizing
the expected value in (12) over the QBC parameters, which is
independent of n (see Section III-B1). However, this approach
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is not easily applicable to the GEC since the KLDR between
the DCCA and GEC noise processes does not admit a simple
expression in general (as the GEC noise is hidden Markovian).
The method of parameterization of the GEC of Section III-B2
is simple; however, it only takes into account error sequences
no longer than three, which implies that this method is not
appropriate for approximating slow fading.

Our results show that the largest Markovian memory M for
the QBC model that best fits the DCCA is 20, whereas the
largest Markovian memory K for the (unstructured) Markov
noise channel models considered in [46] is 6 (higher order
unstructured models could not be obtained in [46] due to their
prohibitive exponential complexity). This explains why the
QBC is more suitable for fitting slow fading with large memory
than the Markov noise model considered in [46].

Modeling results in terms of capacity are shown in Figs. 6
and 7, where the lower bound for the capacity of the DCCA
and the capacities of the QBC approximation and the GEC
approximation are shown for different SNR and fDT values.
We clearly observe from the figures that the capacity curves
of the QBC and the lower bound curves for the capacity of the
DCCA match quite well, and the capacities for fDT = 0.1 (fast
Rayleigh fading) are almost identical. The last observation can
be explained by the fact that the DCCA has low memory at
fDT = 0.1 (fast fading); hence, the lower bound for its capacity
is tight [since (1/n)H(Zn) = H(Z1) if Zn is memoryless].
Overall, we observe a strong match in capacity between the
DCCA and its QBC approximation. In terms of capacity, the
GEC has nearly as good a performance as the QBC in fitting
the DCCA.

V. SUMMARY

In this paper, we approximate hard-decision demodulated
correlated Rician fading channels (represented by the DCCA
model) via the QBC model. Numerical results show a strong
agreement between the ACF and capacity curves of the QBC
and the DCCA. This leads us to conclude that the QBC provides
a very good approximation of the DCCA under a variety of
channel conditions. The QBC provides a much better perfor-
mance in terms of ACF for fitting the DCCA than the GEC
and the Markov models of [46] for the range of slow and very
slow fading. An important feature of this QBC model is that
it is valuable for characterizing a wide class of communication
channels with memory while remaining mathematically simple
and flexible.

One possible direction for future work is the modeling and
analysis of wired/wireless Internet traffic and channel coding as
an extension and application of this paper. Sanneck and Carle
[54] used an M th-order Markov chain process to describe the
dependencies between packet losses. However, their models
have a complexity (number of parameters) that exponentially
grows with M , rendering it impractical for the modeling of
packet loss processes with large memory. The QBC model, on
the other hand, does not suffer from this limitation, as it is
fully described by only four parameters and allows single-letter
analysis. The QBC, hence, can be employed to characterize
the packet-loss patterns introduced by the Internet, particularly

to capture loss burstiness and distances between loss bursts.
Another topic of future interest is the design, construction, and
analysis of channel codes for the QBC. One important objective
in this problem is the judicious design of the powerful channel
codes to fully exploit the channel memory. Some results in this
direction involving low-density parity check codes are reported
in [55].
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