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Abstra
t

This paper addresses the te
hnique of joint sour
e-
hannel 
oding for the eÆ
ient and

reliable transmission of 
ompressed images without the use of 
hannel error-
ontrol 
odes

over noisy 
hannels with memory. The 
hannel used is a binary 
hannel with additive Markov

noise. The proposed DCT-based system 
onsists of a 
hannel-optimized quantization s
heme

that exploits the 
hannel memory by in
orporating the 
hara
teristi
s of the 
orrelated noise

in the quantizer design. Experimental results show that this simple system - whi
h employs

a �xed zonal 
oding bit allo
ation te
hnique - provides signi�
ant obje
tive and subje
tive

improvements over traditional tandem systems designed for the fully interleaved 
hannel,

espe
ially during bad 
hannel 
onditions. Performan
e gains are also observed over re
ent

MAP-dete
tion based joint sour
e-
hannel 
oding s
hemes. The loss of optimality due to

the use of the �xed zonal 
oding bit allo
ation method is also examined. The loss is shown

to be small for various images; this suggests that a redu
tion in 
omplexity and bandwidth

requirements 
an further be a
hieved.

Keywords: Joint sour
e-
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oding, robust quantization, image 
oding, 
hannels with
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I Introdu
tion

Traditionally, sour
e and 
hannel 
oding has been guided by Shannon's separation prin
iple

[23℄, whi
h states that the sour
e and 
hannel 
oding operations 
an be designed indepen-

dently from ea
h other (in tandem) without loss of asymptoti
 optimality. However, in

pra
ti
e, a tandem 
oding system is 
onstrained by the en
oder/de
oder delay and 
om-

plexity. This drawba
k has motivated many resear
hers to investigate a joint sour
e-
hannel

approa
h as an alternative to the tandem system. Re
ently, joint sour
e-
hannel 
oding has

re
eived 
onsiderable interest, parti
ularly with regards to the design of quantization systems

for noisy 
hannels (e.g., [2℄-[12℄, [14℄-[20℄, [22℄, [24℄-[29℄, [31℄, [33℄).

Combined sour
e-
hannel 
oding is one form of joint sour
e-
hannel 
oding. In a 
om-

bined sour
e-
hannel 
oding system, the 
hara
teristi
s of both the sour
e and the 
hannel

are in
orporated into the design of a single 
ode. Thus, this single 
ode plays a dual role; it

performs data 
ompression while being error resilient at the same time. One salient feature

of 
ombined sour
e-
hannel 
oding is that the quantizer trades extra quantization distortion

for smaller 
hannel distortion su
h that the overall distortion is minimized.

The vast majority of the previous work on joint sour
e-
hannel 
oding assumes a mem-

oryless 
hannel model. The assumption of this 
hannel model is too simplisti
 for most

pra
ti
al wireless 
ommuni
ation 
hannels whi
h often exhibit memory. Traditionally, inter-

leaving te
hniques are used to render su
h 
hannels memoryless [19℄. However, the resulting

asso
iated memoryless 
hannel is known to have a lower 
apa
ity (for the 
ase of information

stable 
hannels [1℄). Furthermore, interleaving/de-interleaving introdu
es additional delay

into the system. More re
ently, an e�ort has been dire
ted for the development of joint

sour
e-
hannel 
oding methodologies that exploit the statisti
al stru
ture of 
hannels with

memory instead of \destroying it" via interleaving (e.g., [2℄, [5℄, [20℄, [26℄, [27℄, [33℄).

In this work, we investigate the problem of the eÆ
ient 
ompression and robust 
om-

muni
ation of still images over noisy 
hannels with memory. The 
hannel model 
onsidered

is a binary 
hannel with additive Markov noise, where the noise sour
e is generated via

the re
ently investigated Polya 
ontagion urn s
heme [1℄. We �rst propose and implement a
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hannel optimized s
alar quantization (COSQ) system for the transmission of dis
rete 
osine

transform (DCT) 
oded images. The statisti
s of the Markov noise are in
orporated in the

design of our COSQ system, resulting in a system that exploits the (intra blo
k) memory

of the 
hannel [20℄. The COSQ system is designed assuming a Gaussian sour
e distribu-

tion for the DC 
oeÆ
ients and a Lapla
ian sour
e distribution for the AC 
oeÆ
ients [21℄.

Experimental results demonstrate that this system { whi
h utilizes a �xed (global) bit allo-


ation table for the DCT 
oeÆ
ients { signi�
antly outperform traditional tandem systems

designed for the interleaved (memoryless) 
hannel. Performan
e 
omparisons with a re
ent

maximum-a-posteriori (MAP) dete
tion based method studied in [5℄ are also provided. We

next investigate the optimal bit assignment problem for the DCT 
oeÆ
ients in the COSQ

system and evaluate the performan
e loss resulting from using a �xed allo
ation table. We

also implement an alternative 
hannel optimized ve
tor quantization (COVQ) s
heme that

is applied dire
tly on the image (without DCT 
oding) before transmission over the Markov


hannel.

In previous related works, Burlina and Alajaji developed a sequen
e MAP-dete
tion ap-

proa
h that exploits the residual redundan
y in images transmitted over binary 
hannels

with additive Markov noise in [5℄. A similar MAP-dete
tion te
hnique was studied by Srini-

vas et al. in [27℄ for the progressive transmission of images over the Gilbert-Elliott 
hannel.

In [20℄, a COVQ s
heme for the transmission of (ideal) stationary memoryless generalized

Gaussian and Gauss-Markov sour
es over binary Markov 
hannels was investigated. This pa-

per applies and extends the previous work in [20℄ to the problem of the eÆ
ient quantization

and error resilient transmission of (inherently non-stationary) image sour
es over 
hannels

with memory. The Polya-
ontagion Markov 
hannel model is 
onveniently employed sin
e

it o�ers an interesting and less 
omplex alternative to the Gilbert model [1, 20℄, and so that

adequate 
omparisons with the MAP-dete
tion system in [5℄ 
an be made.

The rest of this paper is organized as follows. In Se
tion II, the Markov 
hannel model

is introdu
ed. A general COVQ s
heme that is optimized for the Markov 
hannel is brie
y

des
ribed in Se
tion III. In Se
tion IV, a simple DCT-based COSQ system is proposed along
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with simulation results for various images. Comparisons are made against two tandem 
oding

systems and other re
ently proposed joint sour
e-
hannel 
oding systems. In Se
tion V, the

performan
e loss due to the use of non-optimal bit allo
ation tables for the DCT 
oeÆ
ients

is assessed. The e�e
t of mismat
h 
onditions in the 
hannel parameters on the system

performan
e is examined in Se
tion VI. In Se
tion VII, an alternative COVQ system that is

dire
tly applied on the image pixels is presented and evaluated. Finally, 
on
luding remarks

are stated in Se
tion VIII.

II Channel Model

One large 
lass of 
hannels with memory is the 
lass of �nite-state 
hannels whi
h in
ludes

the Gilbert-Elliott model [19℄ and is often used to model many realisti
 
hannels su
h as

fading 
hannels and 
hannels with inter-symbol interferen
e (ISI). In this paper, we 
onsider

a more expli
it family of 
hannels with memory, where the 
hannel memory is exhibited

via an additive Markov noise pro
ess. More spe
i�
ally, we 
onsider a binary 
hannel with

additive noise des
ribed by

Y

i

= X

i

� Z

i

(1)

for i = 1; 2; 3; : : :, where � represents modulo 2 addition, and X

i

, Z

i

, and Y

i

are the 
hannel

input, noise and output respe
tively. The input and noise sequen
es are assumed to be

independent of ea
h other. The noise pro
ess fZ

i

g

1

i=1

is generated by the �nite-memory

Polya 
ontagion urn model des
ribed in [1℄. The resulting noise sour
e fZ

i

g

1

i=1

is a stationary

ergodi
 Markov pro
ess of order M , i.e., for i �M + 1,

PrfZ

i

= e

i

jZ

i�1

= e

i�1

; : : : ; Z

1

= e

1

g = PrfZ

i

= e

i

jZ

i�1

= e

i�1

; : : : ; Z

i�M

= e

i�M

g (2)

where e

i

2 f0; 1g. Furthermore, fZ

i

g depends only on the sum of the M previous noise

samples, and the noise transition probability is given by, for i �M + 1,

PrfZ

i

= 1jZ

i�M

= e

i�M

; : : : ; Z

i�1

= e

i�1

g =

�+ (

P

i�1

j=i�M

e

j

)Æ

1 +MÆ

; (3)
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where e

j

2 f0; 1g, for j = i�M; : : : ; i� 1, and � is the 
hannel bit error rate (BER), whi
h

determines the marginal distribution of the noise pro
ess,

PrfZ

i

= 1g = � = 1� PrfZ

i

= 0g: (4)

The non-negative parameter Æ determines the amount of 
orrelation in fZ

i

g and it is a

measure of the burstiness within the noise samples. The higher the noise 
orrelation Æ is, the

more bursty the 
hannel be
omes. The 
orrelation 
oeÆ
ient of the noise pro
ess is given

by

Æ

1+Æ

[1℄. Note that when Æ = 0, the 
hannel model redu
es to the (memoryless) binary

symmetri
 
hannel (BSC) with 
ross-over probability �. We further observe that the above


hannel 
an be entirely des
ribed with only three parameters (�, Æ, and M). This 
hannel

model o�ers a possible alternative to �nite-state 
hannels su
h as the Gilbert-Elliott noise

model.

In this paper, we only 
onsider the �rst-order (M = 1) Markov noise pro
ess 
ase; the

noise transition probability 
an be found as

PrfZ

i

= 1jZ

i�1

= eg =

�+ eÆ

1 + Æ

; (5)

where e 2 f0; 1g, or written in matrix form, the state transition probability be
omes

2

6

4

Q(0j0) Q(1j0)

Q(0j1) Q(1j1)

3

7

5

=

2

6

4

1��+Æ

1+Æ

�

1+Æ

1��

1+Æ

�+Æ

1+Æ

3

7

5

: (6)

The 
apa
ity of this �rst-order Markov 
hannel 
an be 
al
ulated as

C = lim

n!1

max

p(x

n

)

1

n

I(X

n

;Y

n

) (7)

= 1�H(Z

2

jZ

1

) (8)

= 1�

"

(1� �)h

b

�

�

1 + Æ

�

+ �h

b

 

�+ Æ

1 + Æ

!#

; (9)

where X

n

4

= (X

1

; X

2

; : : : ; X

n

), Y

n

4

= (Y

1

; Y

2

; : : : ; Y

n

) and H(Z

2

jZ

1

) is the entropy rate of

the �rst-order Markov noise pro
ess, and h

b

(�) is the binary entropy fun
tion. Note that

the 
apa
ity of this 
hannel model is monotoni
ally in
reasing with Æ (for �xed �) and is
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monotoni
ally de
reasing with � (for �xed Æ). When the noise 
orrelation Æ in
reases, the


hannel be
omes more bursty; in the extreme 
ase when Æ !1, the noise pro
ess be
omes

deterministi
 (H(Z

2

jZ

1

) goes to zero) and the 
hannel be
omes noiseless. When the noise


orrelation Æ = 0, we obtain (as expe
ted) the 
apa
ity expression of the BSC

C = 1� h

b

(�): (10)

For an input blo
k X = (X

1

; X

2

; : : : ; X

n

) and an output blo
k Y = (Y

1

; Y

2

; : : : ; Y

n

), the

blo
k 
hannel transition probability matrix PrfY = yjX = xg is given by [1℄, for n � 2,

PrfY = yjX = xg

4

= Q(yjx) (11)

= PrfZ = eg (12)

= Pr(Z

1

= e

1

)

n

Y

i=2

"

� + e

i�1

Æ

1 + Æ

#

e

i

"

(1� �) + (1� e

i�1

)Æ

1 + Æ

#

1�e

i

(13)

where e

i

= x

i

� y

i

; i = 1; 2; : : : ; n. The above 
hannel blo
k distribution will be used later in

designing 
hannel optimized ve
tor quantizers (COVQs).

III Channel Optimized Quantizer Design

In this se
tion, we brie
y formulate the problem of designing 
hannel optimized ve
tor quan-

tizers (COVQ) for a 
hannel with memory. The ensuing des
ription of the COVQ design

follows [20℄ [10℄. Assume that the sour
e to be en
oded is a real-valued, stationary, and

ergodi
 pro
ess fX

t

; t = 0; 1; : : :g with zero mean and unit varian
e. The sour
e is en
oded

with a k-dimensional, N -output level ve
tor quantizer and the output of the VQ is trans-

mitted over the binary Markov 
hannel with input and output alphabets J = f1; 2; : : : ; Ng.

The number of output levels N is usually taken values of power of 2 so there are n = log

2

N

bits to des
ribe ea
h sample or level. The overall en
oder-de
oder operation 
an be de
om-

posed into three separate mappings, namely the en
oding mapping, 
 : R

k

! J , the 
hannel

index mapping, b : J ! J , and the de
oding mapping, g : J ! R

k

.

The en
oding mapping, 
 is des
ribed in terms of the partition P = fS

1

; S

2

; : : : ; S

N

g

of the k-dimensional Eu
lidean spa
e R

k

a

ording to 
(x) = i; if x 2 S

i

; i 2 J ,
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where x = (x

1

; x

2

; : : : ; x

k

) is a sour
e output ve
tor 
onsisting of k sour
e samples. The


hannel index mapping, b is a one-to-one mapping, whi
h assigns the en
oder output i an

index i

0

= b(i) 2 J and index i

0

is sent over the binary Markov 
hannel. The 
hannel is


hara
terized by the 
hannel transition probability p(jji

0

) denoting the probability that the

index j is re
eived given that i

0

is transmitted and this transition probability is provided

in equation (13). Finally, the de
oding mapping is des
ribed in terms of the 
odebook

C = fy

1

;y

2

; : : : ;y

N

g a

ording to g(j) = y

j

; j 2 J .

We denote the distortion 
aused by representing the sour
e ve
tor x by a 
odeword y as

d(x;y). The average overall distortion per sour
e sample D(P; C) is des
ribed by

D(P; C) =

1

k

N

X

i=1

Z

S

i

p(x)

(

N

X

j=1

p(jji)d(x;y

j

)

)

dx: (14)

where p(x) is the k-fold probability density fun
tion of the sour
e. Here we have dropped

the index mapping b sin
e it is insigni�
ant in the COVQ design [10℄. The en
oding rate is

given by

R =

1

k

log

2

N bits/sample: (15)

Using the square-error distortion 
riterion, it 
an be shown [15℄ [10℄, that given the


odebook C the optimal partition set 
an be expressed as

S

�

i

=

(

x :

N

X

j=1

p(jji)jjx� y

j

jj

2

�

N

X

j=1

p(jjl)jjx� y

j

jj

2

; 8l

)

i 2 J : (16)

Similarly, the optimal 
odebook given the partition set is

y

�

j

=

P

N

i=1

p(jji)

R

S

i

xp(x)dx

P

N

i=1

p(jji)

R

S

i

p(x)dx

j 2 J : (17)

The COVQ design pro
edure is a straightforward extension of the LBG-VQ design algo-

rithm. The algorithm starts with an initial 
odebook, C

(0)

to �nd the optimal partition set

P

(1)

using equation (16). With this newly 
omputed P

(1)

, it uses equation (17) to update

the optimal 
odebook C

(1)

. This pro
ess 
ontinues until the relative de
rease in the average

distortion is less than a spe
i�ed threshold and the algorithm 
onverges to a lo
ally optimal

solution. To obtain a 
hannel optimized s
alar quantizer (COSQ), we 
an simply take k = 1.

7



IV A DCT-COSQ Image Transmission System

A. System Des
ription

In this subse
tion, we propose a DCT-based 
ombined sour
e-
hannel 
oding system to

transmit grey-level images over the binary 
hannel with additive Markov noise des
ribed in

Se
tion II. The blo
k diagram of our proposed system is illustrated in Figure 1.

A grey-level (8 bpp or 256 levels) image is �rst subdivided into 8� 8 blo
ks and trans-

formed via the forward dis
rete 
osine transform (FDCT) similar to the JPEG standard [32℄.

After proper normalization, higher frequen
y DCT 
oeÆ
ients are zonally masked out sin
e

they are relatively insensitive to the human visual system. Ideally, one desires to arrange the

inter-blo
k DC (or even AC) 
oeÆ
ients in a zigzag sequen
e similar to the JPEG standard

[32℄. It is well known that the inter-blo
k DC 
oeÆ
ients are highly 
orrelated (
orrelation


oeÆ
ient, � = 0:977 for Lena and � = 0:993 for Baboon [13℄). By arranging them in a zigzag

fashion, it be
omes desirable to exploit the memory within these transform 
oeÆ
ients by

using 
hannel optimized ve
tor quantizers (COVQ). Unfortunately su
h an approa
h is not

feasible for a 
oding system with high quantization rates, sin
e the 
omputational 
omplexity

and memory requirements grow exponentially with k and R. For example, by taking k = 2

and R = 8 for the DC 
oeÆ
ient, the size of the 
odebook is 2

16

. We will therefore resort to

the use of a COSQ system for the 
ompression and transmission of the DCT 
oeÆ
ients.

Both DC and AC 
oeÆ
ients are quantized via a bank of 
hannel optimized s
alar quan-

tizers (COSQ). Fixed bit allo
ation tables are used for ea
h 8 � 8 image 
oeÆ
ient blo
k.

Sin
e the DC 
oeÆ
ient (the 
oeÆ
ient with zero frequen
y) 
ontains most of the energy in

ea
h image blo
k, it is quantized with an 8-bit rate quantizer; as for the AC 
oeÆ
ients, they

are quantized at rates that 
orrespond to their level of a
tivities. After quantization, the

indi
es of the quantization level are 
oded via a natural binary 
ode (NBC) and sent over

the binary Markov 
hannel. At the re
eiver end, they are de
oded (instantaneously) and

the re
onstru
ted image is obtained through the inverse dis
rete 
osine transform (IDCT).

A bank of COSQs are designed o� line using the method des
ribed in Se
tion III. Here, we

8



have assumed a priori knowledge of the 
hannel 
onditions and the statisti
s of the quan-

tizer input. The sour
e distributions are assumed to be Gaussian for DC 
oeÆ
ients and

Lapla
ian for all the AC 
oeÆ
ients [21℄. We next evaluate the performan
e of the proposed

system under various 
hannel 
onditions.

B. System Performan
e and Comparisons

Experimental results for our proposed system indi
ate that large improvement over usual

tandem s
hemes, whi
h employ interleaving/de-interleaving and are designed for the noiseless


hannel, 
an be a
hieved. We performed the experiments on several images. To avoid

exhaustive listings, we only present numeri
al results for Lena (512 � 512). In Tables 1-3,

the average peak sgnal-to-noise ratio (PSNR) values of the re
onstru
ted Lena are displayed

for various values of the 
hannel 
orrelation Æ, BER �, and overall operational rate in bits

per pixel (bpp). The obje
tive measure PSNR (in dB) is de�ned as

PSNR = 10 log

10

255

2

Ef(X

ij

�

^

X

ij

)

2

g

(18)

where X

ij

and

^

X

ij

are, respe
tively, the transmitted and re
onstru
ted ij

th

image pixel.

All simulation results were obtained by averaging over 25 experiments, and it was ob-

served that the PSNR values vary very little from experiment to experiment. Three overall

operational rates were used with �xed bit allo
ation tables listed in Table 4. The total num-

ber of bits B used for ea
h 8 � 8 image blo
k are 76, 58, and 24 bits (respe
tively yielding

rates equal to 1.19, 0.9, and 0.375 bpp). The bit allo
ation table for the 1:19 bpp system

is adopted dire
tly from [30℄; and in the 0:375 bpp system, only the �rst three transform


oeÆ
ients are preserved and given the highest level of prote
tion. By �xed bit allo
ation

table, we mean that we apply the same table globally for any image under any 
hannel 
on-

dition. The advantage of using a �xed bit allo
ation method over using an adaptive optimal

bit allo
ation te
hnique is that the former one does not require overhead information. This

results in a redu
tion of the en
oder/de
oder 
omplexity and the bandwidth requirement of

the overall system. The results obtained via this simple approa
h are not optimal. In the

next se
tion, we will study the loss of optimality of using su
h �xed bit allo
ation tables.
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The performan
e results for the de
oded image Lena are presented in Tables 1-3. In these

tables, COSQ denotes our proposed s
heme. Two referen
e tandem systems are next imple-

mented for 
omparison purposes. The �rst referen
e system, denoted by SQ-IL, employs a

Lloyd-Max quantizer for the DCT 
oeÆ
ients, followed with an NBC 
odeword assignment

over the interleaved Markov 
hannel. In this 
ase, we assume that the Markov 
hannel has

been rendered memoryless (i.e. Æ = 0) via an ideal interleaver. Note that this system has

the same quantization rate as our proposed COSQ system. The se
ond referen
e system, de-

noted by CC-IL, employs a Lloyd-Max quantizer followed by 
hannel 
oding on the 
odebook

indi
es sent over the ideally interleaved (and thus memoryless) Markov 
hannel. In order to

a
hieve a fair 
omparison, we maintain an identi
al overall operating bit rate (bandwidth) as

in our proposed s
heme. Consequently, this system has a lower quantization rate. In essen
e,

the CC-IL system trades less 
hannel error for greater quantization error with respe
t to the

SQ-IL system. The DCT 
oeÆ
ient are quantized a

ording to bit allo
ation table provided

in Table 5. The 
hannel 
ode used here is a rate-1/2 
onvolutional 
ode with 
onstraint

length K = 4, d

free

= 6 and generator polynomials g

0

= [1101℄ and g

1

= [1111℄ [34℄. At the

re
eiver, maximum-likelihood Viterbi de
oding is used. Note the 
hannel 
ode rate is 
hosen

somewhat heuristi
ally as we do not address the problem of optimal rate allo
ation between

the sour
e and 
hannel 
odes in this work (
f the re
ent works in [12, 14, 28℄).

As shown from the PSNR tables, the data in the � = 0 
olumn represent the PSNR values

for the 
ompressed image Lena, in whi
h the distortions are ex
lusively due to the quantiza-

tion errors. The data in the Æ = 0 row represent the PSNR values for the BSC. It is apparent

that the COSQ system outperforms both referen
e systems in all 
ases, espe
ially in very

noisy 
hannel environments with high noise 
orrelation. More spe
i�
ally, the improvement

over the SQ-IL tandem system is as high as 12 dB for � = 0:1 and Æ = 10:0 and rate equal to

1.19 bpp. It 
an be observed that both SQ-IL and CC-IL s
hemes are extremely sensitive to

the 
hannel BER (�); their performan
e degrade very qui
kly as the 
hannel gets noisier. In


ontrast, when � in
reases, the performan
e of the COSQ system degrades slowly and this

is parti
ularly true for high 
hannel 
orrelation parameters.

10



We next 
ompare our simulation results with other re
ently proposed joint sour
e-
hannel


oding systems for the same Markov 
hannel. Tables 1 and 2 in
lude the numeri
al results

for MAP-UNC, MAP-UEP I and MAP-UEP II des
ribed in [5℄. Brie
y, MAP-UNC, whi
h

does not employ 
hannel 
oding, utilizes a MAP dete
tor that exploits the residual sour
e

redundan
y as well as the 
hannel memory. MAP-UEP I (or II) employs additional 
hannel


oding for the DC 
oeÆ
ients via an unequal error prote
tion s
heme. Comparing the en-

tries in the tables, it is 
lear that our 
ombined sour
e-
hannel 
oding s
heme 
onsistently

outperforms the above joint sour
e-
hannel s
hemes espe
ially for 
hannels with high error

rates and high noise 
orrelations. One reason why these MAP-dete
tion joint sour
e-
hannel


oding systems underperform with respe
t to the COSQ system is that be
ause they uni-

formly apply the JPEG standard quantization matri
es on all 64 DCT 
oeÆ
ients, whi
h


an be inherently poor for noisy 
hannels. Their performan
e 
an be improved by repla
ing

the JPEG matri
es by appropriately 
hosen Loyd-Max quantizers

�

.

In the 
ontext of image 
oding, no �nal judgment 
an be made without a subje
tive

performan
e measure. In Figure 2, we show the image Lena sent using our proposed COSQ

system and the SQ-IL and CC-IL tandem systems under severe 
hannel 
onditions (� = 0:1).

It 
an be 
learly seen that the COSQ system provides the best performan
e. Additional

results for the images Goldhill 
ompressed at a medium bit rate (0.9 bpp), and for Peppers


ompressed at a low bit rate (0.375 bpp) are displayed in Figures 3 and 4, respe
tively. We


on
lude that the COSQ system outperforms the referen
e tandem 
oding s
hemes both

obje
tively and subje
tively.

We also observe that for a �xed �, the performan
e of the COSQ s
heme designed for the


hannel with memory outperforms the COSQ s
heme designed for the memoryless 
hannel.

This is illustrated in Figure 5 for the image Lena 
ompressed at a rate of 1.19 bpp. For

example, at � = 0:1, there is (on average) an extra 3.45 dB gain for a system with Æ = 5:0

�

However, as observed in [20℄ for the 
ase of ideal stationary sour
es, it is expe
ted that our COSQ system

will still outperform the MAP system (for moderate to high values of kR) sin
e it is designed to minimize

the mean squared error while the MAP s
heme minimizes the sequen
e error probability.

11



over the interleaved system (Æ = 0). Finally, it 
an be remarked from the �gure that the

gain due to the 
hannel memory be
omes more signi�
ant as the 
hannel be
omes noisier

(i.e., as the BER in
reases).

V Bit Allo
ation Mismat
h

Bit allo
ation addresses the proper distribution of the available bits to the transform 
oeÆ-


ients. It determines whi
h 
oeÆ
ients should be kept for 
oding and transmission and how


oarsely the retained 
oeÆ
ients should be quantized. Bit allo
ation is usually performed

with either adaptive threshold 
oding or zonal 
oding. Threshold 
oding is an adaptive

method whi
h is spe
i�ed in the JPEG image standard. This 
oding s
heme is based on

the fa
t that di�erent image blo
ks have di�erent spe
tral and statisti
al behaviors so that

adaptive bit allo
ation methods should be used for ea
h image sub-blo
k. Often in threshold


oding a quantization matrix is applied to the sub-blo
k 
oeÆ
ient matrix and only the


oeÆ
ients with magnitudes above a 
ertain threshold are retained. Thus the bit allo
ation

table will di�er from sub-blo
k to sub-blo
k. In zonal 
oding, the lo
ations for the 
oeÆ
ients

whi
h 
arry the most information are retained via a zonal mask whi
h is applied globally

for ea
h image sub-blo
k. However, the zonal bit allo
ation table is 
al
ulated adaptively

for ea
h input image. In the presen
e of 
hannel noise, 
hannel optimized zonal 
oding

translates into adaptively 
omputing the optimal bit allo
ation tables by 
onsidering the


hannel parameters. In 
ontrast, a simple �xed bit allo
ation s
heme applies the same bit

allo
ation table for any image and under any 
hannel 
ondition. It results in redu
ing the

en
oder/de
oder 
omplexity and does not require transmitting any overhead information.

Obviously, a system whi
h employs a �xed bit allo
ation s
heme will not be optimal. We

herein evaluate the loss of optimality due to the in
orporation of the �xed bit allo
ation

method in our proposed system. This is a
hieved by 
omparing it to a similar system whi
h

employs an optimal bit allo
ation s
heme that minimizes the overall distortion. Here, we

have assumed that the exa
t optimal bit allo
ation tables are available at the de
oder. The

12



task of 
al
ulating the optimal bit allo
ation table in the 
ontext of the Markov 
hannel 
an

be 
arried out by following the integer programming method provided in [31℄. A detailed

des
ription of the algorithm is presented in [7℄. The typi
al optimal bit allo
ation matri
es

are presented in Table 6 for Lena at 1.19 bpp under various 
hannel 
onditions. Several

interesting observations 
an be made by 
lose examination of the bit allo
ation matri
es. In

all 
ases, most of the bits are 
on
entrated, as expe
ted, on the low frequen
y 
oeÆ
ients.

For �xed Æ, when the 
hannel gets noisier, the �rst few low frequen
y 
oeÆ
ients re
eive the

highest prote
tion with the maximum number of allowable bits (8 bits). For �xed �, when

the 
hannel gets more bursty (high Æ), the bit distribution slightly spreads out to the higher

frequen
y DCT 
oeÆ
ients.

Simulation results are presented in Tables 7-9, where COSQ-OPT denotes the s
hemes us-

ing the optimal bit allo
ation table and COSQ-FIX denotes the �xed bit allo
ation s
hemes.

The results 
learly show that the loss of optimality by using the �xed bit allo
ation table is

very minor. In most 
ases, the loss is only about 1.0 dB in PSNR; this gap narrows as the


hannel 
onditions deteriorate. A similar behavior is observed for various other images [7℄.

VI Mismat
h in Channel Parameters

In the design of 
hannel optimized quantizer, it is assumed that the knowledge of the sour
e

distribution and the 
hannel 
onditions are known a priori for the quantizer design. In this

work, we assumed that the DC and AC transform 
oeÆ
ients follow the Gaussian and Lapla-


ian distributions respe
tively. The sour
e mismat
h is minor in most 
ases [21℄. Channel

mismat
h results have been reported in [9℄ for the BSC and in [20℄ for the 
ompression of

ideal sour
es over binary Markov 
hannel. The performan
e for the image Lena under vari-

ous 
hannel mismat
h 
onditions are listed in Tables 10 and 11. Here, we have followed the

notation used in [20℄, where �

a

and �

d

denote the a
tual and designed BER; Æ

a

and Æ

d

denote

the a
tual and designed noise 
orrelation parameters. As shown from the PSNR data, for

�xed Æ, our proposed COSQ system are relatively insensitive to the 
hannel BER mismat
h

13



provided that �

d

� �

a

. For �xed �, we observe that the system performan
e are not very

sensitive to the mismat
h of the noise 
orrelation. We 
on
lude that in general, it is better

to overestimate the true parameters rather than to underestimate them.

VII A COVQ Image Transmission System

As a 
ompletion to our simulation studies, we present some experimental results by using

a COVQ system that is dire
tly applied on the pixels of the image Lena (without DCT


oding) before transmission over the Markov 
hannel. The dimension was 
hosen to be

4 � 2 pixels (or k = 8) and a rate of 1.0 bpp was maintained. A set of training images

(Goldhill, Airplane, Ti�any, Peppers, and Sailboat) was used to obtain the empiri
al k-fold

sour
e distribution. Again the quantizers were assumed to be mat
hed to both the sour
e

distribution and the 
hannel 
onditions. All results were obtained over 25 experiments and

the PSNR performan
e for Lena are shown in Table 12. In this table, VQ-IL denotes a

tandem system with VQ (designed for noiseless 
hannel) and transmission of the 
odebook

indi
es over the interleaved Markov 
hannel. Similar observations 
an be made as in the


ase of the DCT-based COSQ system. The COVQ system outperforms the VQ-IL s
heme in

all 
ases, espe
ially at bad 
hannel 
onditions. By 
omparing the COVQ PSNR values with

those from the COSQ system with rate 0.9 bpp in Table 2, we remark that the performan
e

of the COVQ system is quite similar. However, it should be emphasized that the COVQ

system depends on the training image sequen
es and has a high en
oding 
omplexity, while

the DCT-based COSQ system, whi
h uses a �xed sour
e distribution for the DC and AC


oeÆ
ients, is image independent.

VIII Con
lusions

In this paper, we propose a DCT-based 
ombined sour
e-
hannel 
oding system for the

reliable 
ommuni
ation of grey-level images over binary bursty 
hannels. The system 
onsists

14



of a 
hannel optimized quantization s
heme that exploits the 
hannel memory. Experimental

results demonstrate 
onsiderable obje
tive and subje
tive performan
e improvements over

traditional tandem 
oding s
hemes and some other re
ently proposed joint sour
e-
hannel


oding systems. We also illustrate the bene�ts of using the knowledge about the 
hannel

memory by in
orporating it into the quantizer design, as opposed to employing interleaving

and designing a system for the memoryless 
hannel. The loss of optimality due to the

use of �xed zonal 
oding is also studied; it is observed that su
h loss is relatively small.

This suggests the possibilities for redu
ing the system 
omplexity/bandwidth. Finally, an

alternative COVQ system dire
tly applied on the image pixels (without DCT 
oding) was

implemented. Future work may in
lude the investigation of robust image quantizers that

exploit the 
hannel soft de
ision information [3℄.
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Figure 1: A DCT-COSQ image transmission system.
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Compressed Lena at 1.19 bpp De
oded Lena with SQ-IL,

PSNR = 15:84 dB

De
oded Lena with CC-IL,

PSNR = 17:05 dB

De
oded Lena with COSQ,

Æ = 10:0, PSNR = 27:88 dB

Figure 2: Lena: Overall rate is 1.19 bpp; Markov 
hannel with � = 0:1.
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Compressed Goldhill at 0.90 bpp De
oded Goldhill with SQ-IL,

PSNR = 16:32 dB

De
oded Goldhill with CC-IL,

PSNR = 17:87 dB

De
oded Goldhill with COSQ,

Æ = 10:0, PSNR = 27:85 dB

Figure 3: Goldhill: Overall rate is 0.90 bpp; Markov 
hannel with � = 0:1.
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Compressed Peppers at 0.375 bpp De
oded Peppers with SQ-IL,

PSNR = 15:82 dB

De
oded Peppers with CC-IL,

PSNR = 17:82 dB

De
oded Pepper with COSQ,

Æ = 10:0, PSNR = 25:22 dB

Figure 4: Peppers: Overall rate is 0.375 bpp; Markov 
hannel with � = 0:1.
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Figure 5: Lena: Gain due to memory over Markov 
hannel; overall rate is 1.19 bpp.
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Æ System �=0 �=0.005 �=0.01 �=0.05 �=0.1

0 COSQ 32.33 30.42 29.50 25.18 22.42

0 MAP-UNC [5℄ 31.75 26.29 23.93 17.76 15.25

0 MAP-UEP I [5℄ 31.75 29.70 28.37 23.17 18.28

5 COSQ 32.33 31.06 30.32 27.43 25.87

5 MAP-UNC [5℄ 31.75 25.59 23.28 18.38 16.38

5 MAP-UEP I [5℄ 31.75 30.77 29.93 24.49 18.83

10 COSQ 32.33 31.41 30.83 28.98 27.74

10 MAP-UNC [5℄ 31.75 26.20 24.07 19.04 17.17

10 MAP-UEP I [5℄ 31.75 31.02 30.32 24.77 18.95

0 SQ-IL 32.33 27.30 24.99 18.59 15.69

0 CC-IL 28.88 28.87 28.86 25.61 17.18

Table 1: Average PSNR (dB) of de
oded Lena over the Markov 
hannel (M = 1) with BER �

and 
orrelation parameter Æ using a �xed bit allo
ation table at 1.19 bpp. MAP-UEP I has

a rate of 1.31 bpp [5℄.

Æ System �=0 �=0.005 �=0.01 �=0.05 �=0.1

0 COSQ 30.49 29.26 28.63 24.92 22.29

0 MAP-UEP II [5℄ 28.52 28.26 27.90 24.36 18.83

5 COSQ 30.49 29.58 29.01 26.93 25.58

5 MAP-UEP II [5℄ 28.52 28.39 28.20 24.66 18.80

10 COSQ 30.49 29.85 29.49 28.23 27.20

10 MAP-UEP II [5℄ 28.52 28.39 28.23 24.67 18.84

0 SQ-IL 30.49 26.57 24.56 18.50 15.68

0 CC-IL 28.28 28.27 28.26 25.33 17.19

Table 2: Average PSNR (dB) of de
oded Lena over the Markov 
hannel (M = 1) with BER �

and 
orrelation parameter Æ using a �xed bit allo
ation table at 0.90 bpp. MAP-UEP II hasa

rate of 0.97 bpp [5℄.

Æ System �=0 �=0.005 �=0.01 �=0.05 �=0.1

0 COSQ 26.16 25.80 25.60 23.74 21.71

5 COSQ 26.16 25.91 25.07 24.72 23.98

10 COSQ 26.16 26.00 25.89 25.36 24.92

0 SQ-IL 26.16 24.37 23.06 18.19 15.58

0 CC-IL 25.53 25.52 25.51 23.88 17.48

Table 3: Average PSNR (dB) of de
oded Lena over the Markov 
hannel (M = 1) with BER �

and 
orrelation parameter Æ using a �xed bit allo
ation table at 0.375 bpp.

23



B = 76 B = 58 B = 24

8 7 6 4 3 0 0 0

7 6 5 4 0 0 0 0

6 5 4 0 0 0 0 0

4 4 0 0 0 0 0 0

3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

8 7 6 4 0 0 0 0

7 6 5 0 0 0 0 0

6 5 0 0 0 0 0 0

4 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

8 8 0 0 0 0 0 0

8 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Table 4: Global �xed bit allo
ation tables for the DCT-COSQ system.

B = 76 B = 58 B = 24

7 6 5 1 0 0 0 0

6 5 1 0 0 0 0 0

5 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

7 6 3 0 0 0 0 0

6 4 0 0 0 0 0 0

3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

4 4 0 0 0 0 0 0

4 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Table 5: Global �xed bit allo
ation tables for the CC-IL tandem system.
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Æ = 0:0 Æ = 5:0 Æ = 10:0

� = 0:0

7 6 4 4 3 2 1 0

5 4 4 3 2 2 0 0

3 3 3 3 2 1 0 0

2 2 2 2 2 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

7 6 4 4 3 2 1 0

5 4 4 3 2 2 0 0

3 3 3 3 2 1 0 0

2 2 2 2 2 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

7 6 4 4 3 2 1 0

5 4 4 3 2 2 0 0

3 3 3 3 2 1 0 0

2 2 2 2 2 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

� = 0:005

8 8 5 3 3 2 0 0

6 5 3 3 2 1 0 0

3 3 3 2 2 1 0 0

2 2 2 2 1 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

8 8 4 3 3 2 1 0

5 4 4 3 2 1 0 0

3 3 3 3 2 1 0 0

2 2 2 2 1 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

8 8 4 3 3 2 1 0

5 4 4 3 2 1 0 0

3 3 3 3 2 1 0 0

2 2 2 2 1 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

� = 0:01

8 8 5 3 2 2 0 0

7 5 3 3 2 1 0 0

3 3 3 2 2 1 0 0

2 2 2 2 1 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

8 8 4 3 3 2 0 0

6 4 4 3 2 1 0 0

3 3 3 3 2 1 0 0

2 2 2 2 1 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

8 8 5 3 3 2 0 0

5 5 3 3 2 1 0 0

3 3 3 3 2 1 0 0

2 2 2 2 1 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

� = 0:1

8 8 8 4 2 1 0 0

8 8 6 4 1 0 0 0

4 4 4 1 1 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

8 8 7 4 2 1 0 0

8 7 5 3 2 0 0 0

4 4 3 2 1 0 0 0

2 2 2 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

8 8 8 3 3 2 0 0

8 6 5 3 2 0 0 0

3 3 3 3 2 0 0 0

2 2 2 2 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Table 6: Optimal bit allo
ation matri
es for Lena at B=76 bits, or 1.19 bpp.
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Æ System �=0 �=0.005 �=0.01 �=0.05 �=0.1

0 COSQ-OPT 33.07 30.71 29.74 25.43 22.55

0 COSQ-FIXED 32.33 30.42 29.50 25.18 22.42

5 COSQ-OPT 33.07 31.48 30.61 27.55 26.00

5 COSQ-FIXED 32.33 31.06 30.32 27.43 25.87

10 COSQ-OPT 33.07 31.88 31.32 29.17 28.11

10 COSQ-FIXED 32.33 31.44 30.83 28.98 27.74

Table 7: Performan
e 
omparison between COSQ systems using �xed and optimal bit al-

lo
ation tables; PSNR (dB) of de
oded Lena over the Markov 
hannel with BER � and


orrelation parameter Æ at 1.19 bpp.

Æ System �=0 �=0.005 �=0.01 �=0.05 �=0.1

0 COSQ-OPT 31.76 29.87 29.05 25.07 22.40

0 COSQ-FIXED 30.49 29.26 28.63 24.92 22.29

5 COSQ-OPT 31.76 30.40 29.62 27.12 25.75

5 COSQ-FIXED 30.49 29.58 29.01 26.93 25.58

10 COSQ-OPT 31.76 30.83 30.25 28.65 27.43

10 COSQ-FIXED 30.49 29.85 29.49 28.23 27.20

Table 8: Performan
e 
omparison between COSQ systems using �xed and optimal bit al-

lo
ation tables; PSNR (dB) of de
oded Lena over the Markov 
hannel with BER � and


orrelation parameter Æ at 0.9 bpp.

Æ System �=0 �=0.005 �=0.01 �=0.05 �=0.1

0 COSQ-OPT 27.91 26.85 26.41 23.81 21.74

0 COSQ-FIXED 26.16 25.80 25.60 24.74 21.71

5 COSQ-OPT 27.91 27.00 26.76 25.24 24.29

5 COSQ-FIXED 26.16 25.91 25.70 24.72 23.98

10 COSQ-OPT 27.91 27.44 27.14 26.22 25.39

10 COSQ-FIXED 26.16 26.00 25.89 25.36 24.92

Table 9: Performan
e 
omparison between COSQ systems using �xed and optimal bit al-

lo
ation tables; PSNR (dB) of de
oded Lena over the Markov 
hannel with BER � and


orrelation parameter Æ at 0.375 bpp.
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�

d

=0.0 �

d

=0.01 �

d

= 0:1

�

a

=0.0 32.33 31.88 31.02

�

a

=0.01 24.97 30.83 30.52

�

a

=0.1 15.63 26.28 27.74

Table 10: Performan
e (in dB) of de
oded Lena under mismat
h in � ( Æ

a

= Æ

d

= 10:0).

Æ

d

=0.0 Æ

d

=5.0 Æ

d

= 10:0

Æ

a

=0.0 29.50 26.29 24.85

Æ

a

=5.0 26.33 30.32 30.01

Æ

a

=10.0 26.66 30.82 30.83

Table 11: Performan
e (in dB) of de
oded Lena under mismat
h in Æ ( �

a

= �

d

= 0:01).

Æ System �=0 �=0.005 �=0.01 �=0.05 �=0.1

0 COVQ 30.07 29.27 28.37 24.43 21.83

0 VQ-IL 30.07 22.24 19.67 13.56 11.23

5 COVQ 30.07 30.01 29.30 26.49 25.07

5 VQ-IL 30.07 22.24 19.67 13.56 11.23

10 COVQ 30.07 30.04 29.73 27.84 26.54

10 VQ-IL 30.07 22.24 19.67 13.56 11.23

Table 12: Average PSNR (dB) of de
oded Lena over the Markov 
hannel (M = 1) using

COVQ with dimension = 4� 2, R = 1 bit per sample.
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