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Abstract

This paper addresses the technique of joint source-channel coding for the efficient and
reliable transmission of compressed images without the use of channel error-control codes
over noisy channels with memory. The channel used is a binary channel with additive Markov
noise. The proposed DCT-based system consists of a channel-optimized quantization scheme
that exploits the channel memory by incorporating the characteristics of the correlated noise
in the quantizer design. Experimental results show that this simple system - which employs
a fixed zonal coding bit allocation technique - provides significant objective and subjective
improvements over traditional tandem systems designed for the fully interleaved channel,
especially during bad channel conditions. Performance gains are also observed over recent
MAP-detection based joint source-channel coding schemes. The loss of optimality due to
the use of the fixed zonal coding bit allocation method is also examined. The loss is shown
to be small for various images; this suggests that a reduction in complexity and bandwidth

requirements can further be achieved.

Keywords: Joint source-channel coding, robust quantization, image coding, channels with

memory.

* This work is supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada. Parts of this

paper were presented at the Canadian Workshop on Information Theory, Toronto, Canada, June 1997.



I Introduction

Traditionally, source and channel coding has been guided by Shannon’s separation principle
[23], which states that the source and channel coding operations can be designed indepen-
dently from each other (in tandem) without loss of asymptotic optimality. However, in
practice, a tandem coding system is constrained by the encoder/decoder delay and com-
plexity. This drawback has motivated many researchers to investigate a joint source-channel
approach as an alternative to the tandem system. Recently, joint source-channel coding has
received considerable interest, particularly with regards to the design of quantization systems
for noisy channels (e.g., [2]-[12], [14]-]20], [22], [24]-][29], [31], [33])-

Combined source-channel coding is one form of joint source-channel coding. In a com-
bined source-channel coding system, the characteristics of both the source and the channel
are incorporated into the design of a single code. Thus, this single code plays a dual role; it
performs data compression while being error resilient at the same time. One salient feature
of combined source-channel coding is that the quantizer trades extra quantization distortion
for smaller channel distortion such that the overall distortion is minimized.

The vast majority of the previous work on joint source-channel coding assumes a mem-
oryless channel model. The assumption of this channel model is too simplistic for most
practical wireless communication channels which often exhibit memory. Traditionally, inter-
leaving techniques are used to render such channels memoryless [19]. However, the resulting
associated memoryless channel is known to have a lower capacity (for the case of information
stable channels [1]). Furthermore, interleaving/de-interleaving introduces additional delay
into the system. More recently, an effort has been directed for the development of joint
source-channel coding methodologies that exploit the statistical structure of channels with
memory instead of “destroying it” via interleaving (e.g., [2], [5], [20], [26], [27], [33]).

In this work, we investigate the problem of the efficient compression and robust com-
munication of still images over noisy channels with memory. The channel model considered
is a binary channel with additive Markov noise, where the noise source is generated via

the recently investigated Polya contagion urn scheme [1]. We first propose and implement a



channel optimized scalar quantization (COSQ) system for the transmission of discrete cosine
transform (DCT) coded images. The statistics of the Markov noise are incorporated in the
design of our COSQ system, resulting in a system that exploits the (intra block) memory
of the channel [20]. The COSQ system is designed assuming a Gaussian source distribu-
tion for the DC coefficients and a Laplacian source distribution for the AC coefficients [21].
Experimental results demonstrate that this system — which utilizes a fixed (global) bit allo-
cation table for the DCT coefficients — significantly outperform traditional tandem systems
designed for the interleaved (memoryless) channel. Performance comparisons with a recent
maximum-a-posteriori (MAP) detection based method studied in [5] are also provided. We
next investigate the optimal bit assignment problem for the DCT coefficients in the COSQ
system and evaluate the performance loss resulting from using a fixed allocation table. We
also implement an alternative channel optimized vector quantization (COVQ) scheme that
is applied directly on the image (without DCT coding) before transmission over the Markov
channel.

In previous related works, Burlina and Alajaji developed a sequence MAP-detection ap-
proach that exploits the residual redundancy in images transmitted over binary channels
with additive Markov noise in [5]. A similar MAP-detection technique was studied by Srini-
vas et al. in [27] for the progressive transmission of images over the Gilbert-Elliott channel.
In [20], a COVQ scheme for the transmission of (ideal) stationary memoryless generalized
Gaussian and Gauss-Markov sources over binary Markov channels was investigated. This pa-
per applies and extends the previous work in [20] to the problem of the efficient quantization
and error resilient transmission of (inherently non-stationary) image sources over channels
with memory. The Polya-contagion Markov channel model is conveniently employed since
it offers an interesting and less complex alternative to the Gilbert model [1, 20], and so that
adequate comparisons with the MAP-detection system in [5] can be made.

The rest of this paper is organized as follows. In Section II, the Markov channel model
is introduced. A general COV(Q scheme that is optimized for the Markov channel is briefly

described in Section III. In Section IV, a simple DCT-based COSQ system is proposed along



with simulation results for various images. Comparisons are made against two tandem coding
systems and other recently proposed joint source-channel coding systems. In Section V, the
performance loss due to the use of non-optimal bit allocation tables for the DCT coefficients
is assessed. The effect of mismatch conditions in the channel parameters on the system
performance is examined in Section VI. In Section VII, an alternative COVQ system that is
directly applied on the image pixels is presented and evaluated. Finally, concluding remarks

are stated in Section VIII.

II Channel Model

One large class of channels with memory is the class of finite-state channels which includes
the Gilbert-Elliott model [19] and is often used to model many realistic channels such as
fading channels and channels with inter-symbol interference (ISI). In this paper, we consider
a more explicit family of channels with memory, where the channel memory is exhibited
via an additive Markov noise process. More specifically, we consider a binary channel with
additive noise described by

Y, =X, ® Z (1)

forv=1,2,3,..., where @ represents modulo 2 addition, and X;, Z;, and Y; are the channel
input, noise and output respectively. The input and noise sequences are assumed to be
independent of each other. The noise process {Z;}°, is generated by the finite-memory
Polya contagion urn model described in [1]. The resulting noise source {Z;}3°, is a stationary

ergodic Markov process of order M, i.e., for i > M + 1,
PT{Zz' = ei|Zi71 =€i1,-..,41= 61} = PT{Zz' = €i|Zz>1 =€ 1, -, i M= ezzM} (2)

where e; € {0,1}. Furthermore, {Z;} depends only on the sum of the M previous noise
samples, and the noise transition probability is given by, for ¢« > M + 1,

€+ ( ;"_:i—M e;)0
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where e; € {0,1}, for j =¢— M,...,7—1, and € is the channel bit error rate (BER), which

determines the marginal distribution of the noise process,
Pr{Z; =1} =e¢e=1—-Pr{Z;, = 0}. (4)

The non-negative parameter ¢ determines the amount of correlation in {Z;} and it is a
measure of the burstiness within the noise samples. The higher the noise correlation ¢ is, the
more bursty the channel becomes. The correlation coefficient of the noise process is given
by #‘5 [1]. Note that when 6 = 0, the channel model reduces to the (memoryless) binary
symmetric channel (BSC) with cross-over probability e. We further observe that the above
channel can be entirely described with only three parameters (¢, §, and AM). This channel
model offers a possible alternative to finite-state channels such as the Gilbert-Elliott noise
model.

In this paper, we only consider the first-order (M = 1) Markov noise process case; the

noise transition probability can be found as

€+ ed

PriZ;=1Z;_y = e} = 1+

(5)

where e € {0,1}, or written in matrix form, the state transition probability becomes

Qoo Qe | [ 5 5 .
Qom eap | | i

The capacity of this first-order Markov channel can be calculated as

1

C = lim max—I(X™";Y™") (7)
n—00 p(wn) n

= 1— H(Z|Z) (8)

- l—l(l—e)hb <1—i5> +ehb<;:§>], (9)

where X™ 2 (X1, Xo,..., Xn), Y" £ (Y1, Ya,...,Y,) and H(Zs|Z,) is the entropy rate of
the first-order Markov noise process, and hy(-) is the binary entropy function. Note that

the capacity of this channel model is monotonically increasing with ¢ (for fixed €) and is
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monotonically decreasing with € (for fixed ¢). When the noise correlation § increases, the
channel becomes more bursty; in the extreme case when ¢ — oo, the noise process becomes
deterministic (H(Z3|Z1) goes to zero) and the channel becomes noiseless. When the noise

correlation & = 0, we obtain (as expected) the capacity expression of the BSC
C =1— hy(e). (10)

For an input block X = (X, Xy, ..., X,) and an output block Y = (Y7,Y5,...,Y,), the

block channel transition probability matrix Pr{Y = y|X = x} is given by [1], for n > 2,

A
Pr{Y =y|X=x} = Qyx) (11)
= Pr{Z=¢} (12)
nlete 10]°T1—€¢)+(1—e 1)d]" “
= Pr(Z, = 1
iz = e 115252 [ (13)
where ¢; = x; ®y;,2 = 1,2,...,n. The above channel block distribution will be used later in

designing channel optimized vector quantizers (COVQs).

III Channel Optimized Quantizer Design

In this section, we briefly formulate the problem of designing channel optimized vector quan-
tizers (COVQ) for a channel with memory. The ensuing description of the COVQ design
follows [20] [10]. Assume that the source to be encoded is a real-valued, stationary, and
ergodic process {X;;t =0,1,...} with zero mean and unit variance. The source is encoded
with a k-dimensional, N-output level vector quantizer and the output of the VQ is trans-
mitted over the binary Markov channel with input and output alphabets J = {1,2,..., N}.
The number of output levels /V is usually taken values of power of 2 so there are n = log, N
bits to describe each sample or level. The overall encoder-decoder operation can be decom-
posed into three separate mappings, namely the encoding mapping, 7 : R¥ — 7, the channel
index mapping, b : J — J, and the decoding mapping, g : 7 — R”.

The encoding mapping, 7 is described in terms of the partition P = {S1,S5,,..., Sy}

of the k-dimensional Euclidean space R* according to v(x) = i, if x € S;, i € J,
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where x = (x,%9,...,2,) is a source output vector consisting of k source samples. The
channel index mapping, b is a one-to-one mapping, which assigns the encoder output ¢ an
index i = b(i) € J and index i is sent over the binary Markov channel. The channel is
characterized by the channel transition probability p(j|i') denoting the probability that the
index j is received given that i is transmitted and this transition probability is provided
in equation (13). Finally, the decoding mapping is described in terms of the codebook
C ={y1,¥2,-..,yn} according to g(j) =y;, je€J.

We denote the distortion caused by representing the source vector x by a codeword y as

d(x,y). The average overall distortion per source sample D(P,C) is described by

D(P.C)= 3 [ w0 Sttt v . (11

where p(x) is the k-fold probability density function of the source. Here we have dropped
the index mapping b since it is insignificant in the COVQ design [10]. The encoding rate is
given by
1
R = % log, N bits/sample. (15)
Using the square-error distortion criterion, it can be shown [15] [10], that given the

codebook C the optimal partition set can be expressed as

N N
Si = {X > (D Ix = yill* < Do pGiDlx — il Vl} ieJ. (16)
7=1 7=1
Similarly, the optimal codebook given the partition set is

vt = i]\;l p(jl7) fsi xp(x)dx
! Zi]\il p(jli) fsi p(x)dx

The COVQ design procedure is a straightforward extension of the LBG-V(Q design algo-

jeJ. (17)

rithm. The algorithm starts with an initial codebook, C(¥ to find the optimal partition set
PW using equation (16). With this newly computed PW)| it uses equation (17) to update
the optimal codebook CM. This process continues until the relative decrease in the average
distortion is less than a specified threshold and the algorithm converges to a locally optimal

solution. To obtain a channel optimized scalar quantizer (COSQ), we can simply take k = 1.



IV A DCT-COSQ Image Transmission System

A. System Description

In this subsection, we propose a DCT-based combined source-channel coding system to
transmit, grey-level images over the binary channel with additive Markov noise described in
Section II. The block diagram of our proposed system is illustrated in Figure 1.

A grey-level (8 bpp or 256 levels) image is first subdivided into 8 x 8 blocks and trans-
formed via the forward discrete cosine transform (FDCT) similar to the JPEG standard [32].
After proper normalization, higher frequency DCT coefficients are zonally masked out since
they are relatively insensitive to the human visual system. Ideally, one desires to arrange the
inter-block DC (or even AC) coefficients in a zigzag sequence similar to the JPEG standard
[32]. It is well known that the inter-block DC coefficients are highly correlated (correlation
coefficient, p = 0.977 for Lena and p = 0.993 for Baboon [13]). By arranging them in a zigzag
fashion, it becomes desirable to exploit the memory within these transform coefficients by
using channel optimized vector quantizers (COVQ). Unfortunately such an approach is not
feasible for a coding system with high quantization rates, since the computational complexity
and memory requirements grow exponentially with £ and R. For example, by taking k£ = 2
and R = 8 for the DC coefficient, the size of the codebook is 2'¢. We will therefore resort to
the use of a COSQ system for the compression and transmission of the DCT coefficients.

Both DC and AC coefficients are quantized via a bank of channel optimized scalar quan-
tizers (COSQ). Fized bit allocation tables are used for each 8 x 8 image coefficient block.
Since the DC coefficient (the coefficient with zero frequency) contains most of the energy in
each image block, it is quantized with an 8-bit rate quantizer; as for the AC coefficients, they
are quantized at rates that correspond to their level of activities. After quantization, the
indices of the quantization level are coded via a natural binary code (NBC) and sent over
the binary Markov channel. At the receiver end, they are decoded (instantaneously) and
the reconstructed image is obtained through the inverse discrete cosine transform (IDCT).

A bank of COSQs are designed off line using the method described in Section III. Here, we



have assumed a priori knowledge of the channel conditions and the statistics of the quan-
tizer input. The source distributions are assumed to be Gaussian for DC coefficients and
Laplacian for all the AC coefficients [21]. We next evaluate the performance of the proposed

system under various channel conditions.
B. System Performance and Comparisons

Experimental results for our proposed system indicate that large improvement over usual
tandem schemes, which employ interleaving/de-interleaving and are designed for the noiseless
channel, can be achieved. We performed the experiments on several images. To avoid
exhaustive listings, we only present numerical results for Lena (512 x 512). In Tables 1-3,
the average peak sgnal-to-noise ratio (PSNR) values of the reconstructed Lena are displayed
for various values of the channel correlation ¢, BER ¢, and overall operational rate in bits
per pixel (bpp). The objective measure PSNR (in dB) is defined as

2552
E{(Xi; — Xi;)?}

where X;; and Xij are, respectively, the transmitted and reconstructed 75" image pixel.
All simulation results were obtained by averaging over 25 experiments, and it was ob-
served that the PSNR values vary very little from experiment to experiment. Three overall
operational rates were used with fixed bit allocation tables listed in Table 4. The total num-
ber of bits B used for each 8 x 8 image block are 76, 58, and 24 bits (respectively yielding
rates equal to 1.19, 0.9, and 0.375 bpp). The bit allocation table for the 1.19 bpp system
is adopted directly from [30]; and in the 0.375 bpp system, only the first three transform
coefficients are preserved and given the highest level of protection. By fixed bit allocation
table, we mean that we apply the same table globally for any image under any channel con-
dition. The advantage of using a fixed bit allocation method over using an adaptive optimal
bit allocation technique is that the former one does not require overhead information. This
results in a reduction of the encoder/decoder complexity and the bandwidth requirement of
the overall system. The results obtained via this simple approach are not optimal. In the

next section, we will study the loss of optimality of using such fixed bit allocation tables.



The performance results for the decoded image Lena are presented in Tables 1-3. In these
tables, COSQ denotes our proposed scheme. Two reference tandem systems are next imple-
mented for comparison purposes. The first reference system, denoted by SQ-IL, employs a
Lloyd-Max quantizer for the DCT coefficients, followed with an NBC codeword assignment
over the interleaved Markov channel. In this case, we assume that the Markov channel has
been rendered memoryless (i.e. 6 = 0) via an ideal interleaver. Note that this system has
the same quantization rate as our proposed COSQ system. The second reference system, de-
noted by CC-IL, employs a Lloyd-Max quantizer followed by channel coding on the codebook
indices sent over the ideally interleaved (and thus memoryless) Markov channel. In order to
achieve a fair comparison, we maintain an identical overall operating bit rate (bandwidth) as
in our proposed scheme. Consequently, this system has a lower quantization rate. In essence,
the CC-IL system trades less channel error for greater quantization error with respect to the
SQ-IL system. The DCT coefficient are quantized according to bit allocation table provided
in Table 5. The channel code used here is a rate-1/2 convolutional code with constraint
length K =4, df,.. = 6 and generator polynomials gy = [1101] and g; = [1111] [34]. At the
receiver, maximum-likelihood Viterbi decoding is used. Note the channel code rate is chosen
somewhat heuristically as we do not address the problem of optimal rate allocation between
the source and channel codes in this work (cf the recent works in [12, 14, 28]).

As shown from the PSNR tables, the data in the ¢ = 0 column represent the PSNR values
for the compressed image Lena, in which the distortions are exclusively due to the quantiza-
tion errors. The data in the = 0 row represent the PSNR values for the BSC. It is apparent
that the COSQ system outperforms both reference systems in all cases, especially in very
noisy channel environments with high noise correlation. More specifically, the improvement
over the SQ-IL tandem system is as high as 12 dB for ¢ = 0.1 and § = 10.0 and rate equal to
1.19 bpp. It can be observed that both SQ-IL and CC-IL schemes are extremely sensitive to
the channel BER (¢); their performance degrade very quickly as the channel gets noisier. In
contrast, when € increases, the performance of the COSQ system degrades slowly and this

is particularly true for high channel correlation parameters.
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We next compare our simulation results with other recently proposed joint source-channel
coding systems for the same Markov channel. Tables 1 and 2 include the numerical results
for MAP-UNC, MAP-UEP I and MAP-UEP II described in [5]. Brieflyy, MAP-UNC, which
does not employ channel coding, utilizes a MAP detector that exploits the residual source
redundancy as well as the channel memory. MAP-UEP I (or II) employs additional channel
coding for the DC coefficients via an unequal error protection scheme. Comparing the en-
tries in the tables, it is clear that our combined source-channel coding scheme consistently
outperforms the above joint source-channel schemes especially for channels with high error
rates and high noise correlations. One reason why these MAP-detection joint source-channel
coding systems underperform with respect to the COSQ system is that because they uni-
formly apply the JPEG standard quantization matrices on all 64 DCT coefficients, which
can be inherently poor for noisy channels. Their performance can be improved by replacing
the JPEG matrices by appropriately chosen Loyd-Max quantizers®.

In the context of image coding, no final judgment can be made without a subjective
performance measure. In Figure 2, we show the image Lena sent using our proposed COSQ
system and the SQ-IL and CC-IL tandem systems under severe channel conditions (¢ = 0.1).
It can be clearly seen that the COSQ system provides the best performance. Additional
results for the images Goldhill compressed at a medium bit rate (0.9 bpp), and for Peppers
compressed at a low bit rate (0.375 bpp) are displayed in Figures 3 and 4, respectively. We
conclude that the COSQ system outperforms the reference tandem coding schemes both
objectively and subjectively.

We also observe that for a fixed ¢, the performance of the COSQ scheme designed for the
channel with memory outperforms the COSQ scheme designed for the memoryless channel.
This is illustrated in Figure 5 for the image Lena compressed at a rate of 1.19 bpp. For

example, at € = 0.1, there is (on average) an extra 3.45 dB gain for a system with § = 5.0

*However, as observed in [20] for the case of ideal stationary sources, it is expected that our COSQ system
will still outperform the MAP system (for moderate to high values of kR) since it is designed to minimize

the mean squared error while the MAP scheme minimizes the sequence error probability.

11



over the interleaved system (0 = 0). Finally, it can be remarked from the figure that the
gain due to the channel memory becomes more significant as the channel becomes noisier

(i.e., as the BER increases).

V Bit Allocation Mismatch

Bit allocation addresses the proper distribution of the available bits to the transform coeffi-
cients. It determines which coefficients should be kept for coding and transmission and how
coarsely the retained coefficients should be quantized. Bit allocation is usually performed
with either adaptive threshold coding or zonal coding. Threshold coding is an adaptive
method which is specified in the JPEG image standard. This coding scheme is based on
the fact that different image blocks have different spectral and statistical behaviors so that
adaptive bit allocation methods should be used for each image sub-block. Often in threshold
coding a quantization matrix is applied to the sub-block coefficient matrix and only the
coefficients with magnitudes above a certain threshold are retained. Thus the bit allocation
table will differ from sub-block to sub-block. In zonal coding, the locations for the coefficients
which carry the most information are retained via a zonal mask which is applied globally
for each image sub-block. However, the zonal bit allocation table is calculated adaptively
for each input image. In the presence of channel noise, channel optimized zonal coding
translates into adaptively computing the optimal bit allocation tables by considering the
channel parameters. In contrast, a simple fixed bit allocation scheme applies the same bit
allocation table for any image and under any channel condition. It results in reducing the
encoder/decoder complexity and does not require transmitting any overhead information.
Obviously, a system which employs a fixed bit allocation scheme will not be optimal. We
herein evaluate the loss of optimality due to the incorporation of the fixed bit allocation
method in our proposed system. This is achieved by comparing it to a similar system which
employs an optimal bit allocation scheme that minimizes the overall distortion. Here, we

have assumed that the exact optimal bit allocation tables are available at the decoder. The
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task of calculating the optimal bit allocation table in the context of the Markov channel can
be carried out by following the integer programming method provided in [31]. A detailed
description of the algorithm is presented in [7]. The typical optimal bit allocation matrices
are presented in Table 6 for Lena at 1.19 bpp under various channel conditions. Several
interesting observations can be made by close examination of the bit allocation matrices. In
all cases, most of the bits are concentrated, as expected, on the low frequency coefficients.
For fixed 9, when the channel gets noisier, the first few low frequency coefficients receive the
highest protection with the maximum number of allowable bits (8 bits). For fixed €, when
the channel gets more bursty (high ¢), the bit distribution slightly spreads out to the higher
frequency DCT coefficients.

Simulation results are presented in Tables 7-9, where COSQ-OPT denotes the schemes us-
ing the optimal bit allocation table and COSQ-FIX denotes the fixed bit allocation schemes.
The results clearly show that the loss of optimality by using the fixed bit allocation table is
very minor. In most cases, the loss is only about 1.0 dB in PSNR; this gap narrows as the

channel conditions deteriorate. A similar behavior is observed for various other images [7].

VI Mismatch in Channel Parameters

In the design of channel optimized quantizer, it is assumed that the knowledge of the source
distribution and the channel conditions are known a prior: for the quantizer design. In this
work, we assumed that the DC and AC transform coefficients follow the Gaussian and Lapla-
cian distributions respectively. The source mismatch is minor in most cases [21]. Channel
mismatch results have been reported in [9] for the BSC and in [20] for the compression of
ideal sources over binary Markov channel. The performance for the image Lena under vari-
ous channel mismatch conditions are listed in Tables 10 and 11. Here, we have followed the
notation used in [20], where €, and ¢; denote the actual and designed BER; §, and J,4 denote
the actual and designed noise correlation parameters. As shown from the PSNR data, for

fixed ¢, our proposed COSQ system are relatively insensitive to the channel BER mismatch

13



provided that ¢; > ¢,. For fixed €, we observe that the system performance are not very
sensitive to the mismatch of the noise correlation. We conclude that in general, it is better

to overestimate the true parameters rather than to underestimate them.

VII A COVQ Image Transmission System

As a completion to our simulation studies, we present some experimental results by using
a COVQ system that is directly applied on the pixels of the image Lena (without DCT
coding) before transmission over the Markov channel. The dimension was chosen to be
4 x 2 pixels (or k& = 8) and a rate of 1.0 bpp was maintained. A set of training images
(Goldhill, Airplane, Tiffany, Peppers, and Sailboat) was used to obtain the empirical k-fold
source distribution. Again the quantizers were assumed to be matched to both the source
distribution and the channel conditions. All results were obtained over 25 experiments and
the PSNR performance for Lena are shown in Table 12. In this table, VQ-IL denotes a
tandem system with VQ (designed for noiseless channel) and transmission of the codebook
indices over the interleaved Markov channel. Similar observations can be made as in the
case of the DCT-based COSQ system. The COVQ system outperforms the VQ-IL scheme in
all cases, especially at bad channel conditions. By comparing the COVQ PSNR values with
those from the COSQ system with rate 0.9 bpp in Table 2, we remark that the performance
of the COVQ system is quite similar. However, it should be emphasized that the COVQ
system depends on the training image sequences and has a high encoding complexity, while
the DCT-based COSQ system, which uses a fixed source distribution for the DC and AC

coefficients, is image independent.

VIII Conclusions

In this paper, we propose a DCT-based combined source-channel coding system for the

reliable communication of grey-level images over binary bursty channels. The system consists
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of a channel optimized quantization scheme that exploits the channel memory. Experimental
results demonstrate considerable objective and subjective performance improvements over
traditional tandem coding schemes and some other recently proposed joint source-channel
coding systems. We also illustrate the benefits of using the knowledge about the channel
memory by incorporating it into the quantizer design, as opposed to employing interleaving
and designing a system for the memoryless channel. The loss of optimality due to the
use of fixed zonal coding is also studied; it is observed that such loss is relatively small.
This suggests the possibilities for reducing the system complexity/bandwidth. Finally, an
alternative COVQ system directly applied on the image pixels (without DCT coding) was
implemented. Future work may include the investigation of robust image quantizers that

exploit the channel soft decision information [3].
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Figure 1: A DCT-COSQ image transmission system.
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Decoded Lena with SQ-IL,
PSNR =15.84 dB

Decoded Lena with CC-IL, Decoded Lena with COSQ,
PSNR =17.05dB 0 =10.0, PSNR = 27.88 dB

Figure 2: Lena: Overall rate is 1.19 bpp; Markov channel with ¢ = 0.1.
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Decoded Goldhill with SQ-IL,
PSNR =16.32 dB

Decoded Goldhill with CC-IL, Decoded Goldhill with COSQ),
PSNR =17.87 dB 0 =10.0, PSNR = 27.85 dB

Figure 3: Goldhill: Overall rate is 0.90 bpp; Markov channel with e = 0.1.
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Decoded Peppers with SQ-IL,
PSNR =15.82 dB

Decoded Peppers with CC-IL, Decoded Pepper with COSQ),
PSNR =17.82 dB 0 =10.0, PSNR =25.22 dB

Figure 4: Peppers: Overall rate is 0.375 bpp; Markov channel with ¢ = 0.1.
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Figure 5: Lena: Gain due to memory over Markov channel; overall rate is 1.19 bpp.
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| System [ e=0 [€e=0.005 [ e=0.01 | e=0.05 | e=0.1 |

COSQ 32.33] 30.42 | 29.50 | 25.18 [ 22.42
MAP-UNC [5] [31.75] 2629 [ 2393 | 17.76 | 15.25
MAP-UEP I [5] [31.75 | 29.70 [ 28.37 [ 23.17 [ 18.28

COSQ 32.33] 31.06 | 30.32 | 27.43 [ 25.87
MAP-UNC [5] [31.75] 2559 [ 23.28 | 18.38 | 16.38
MAP-UEP I [5] [ 381.75 | 30.77 | 29.93 | 24.49 [ 18.83
10 COSQ 32.33] 3141 | 30.83 | 28.98 [27.74
10 | MAP-UNC [5] | 31.75 | 26.20 | 24.07 | 19.04 | 17.17
10 | MAP-UEP I [5] [ 31.75 [ 31.02 | 30.32 | 24.77 | 18.95
| 0| SQ-IL [32.33] 2730 | 24.99 | 1859 | 15.69 |
| 0 ] CC-IL | 28.88 | 28.87 | 28.86 | 25.61 | 17.18 |

G O O| O O O &

Table 1: Average PSNR (dB) of decoded Lena over the Markov channel (M = 1) with BER €
and correlation parameter 0 using a fixed bit allocation table at 1.19 bpp. MAP-UEP I has
a rate of 1.31 bpp [5].

| 6 | System | =0 | =0.005 | €=0.01 | e=0.05 | e=0.1 |
0 COSQ 30.49 | 29.26 | 28.63 | 24.92 | 22.29
0 | MAP-UEP II [5] | 28.52 | 2826 | 27.90 | 24.36 | 18.83
5 COSQ 30.49 | 29.58 | 29.01 | 26.93 | 25.58
5 | MAP-UEP II [5] | 28.52 | 28.39 | 28.20 | 24.66 | 18.80
10 COSQ 30.49 | 29.85 | 29.49 [ 28.23 | 27.20
10 | MAP-UEP IT [5] | 28.52 | 28.39 | 28.23 | 24.67 | 18.84

| 0| SQ-IL | 30.49 | 26.57 | 24.56 | 18.50 | 15.68 |

| 0] CC-1L [28.28 | 28.27 | 28.26 | 25.33 | 17.19 |

Table 2: Average PSNR (dB) of decoded Lena over the Markov channel (M = 1) with BER €
and correlation parameter § using a fixed bit allocation table at 0.90 bpp. MAP-UEP II hasa
rate of 0.97 bpp [5].

| & | System | e=0 [€e=0.005 | e=0.01 | e=0.05 | e=0.1 |
| 0] COSQ [26.16 | 25.80 | 25.60 | 23.74 [ 21.71 |
| 5] COSQ | 26.16 | 25.91 | 25.07 | 24.72 | 23.98 |
|10 | COSQ | 26.16 | 26.00 | 25.89 | 25.36 | 24.92 |
| 0 | SQIL |26.16 | 24.37 | 23.06 | 18.19 [ 15.58 |
| 0 | CC-IL | 2553 | 25.52 | 25.51 | 23.88 [ 17.48 |

Table 3: Average PSNR (dB) of decoded Lena over the Markov channel (M = 1) with BER €
and correlation parameter 0 using a fixed bit allocation table at 0.375 bpp.
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B =24

8§ 8 0000 O0O0

B =58

8 76 40000

B =76

8 76 43 000

8 00 0 0000

000O0O0O0O0® O

000O0O0O0O0® O

000O0O0O0TO® O

000O0O0O0TOT® O

000O0O0O0O0® 0

000O0O0O0O0® 0

76 500000

6 5000000

4 0000O0O0O0

000O0O0O0TO® O
000O0O0O0TOT® O
000O0O0O0O0® 0
000O0O0O0O0® 0

76 540000

6 5400000
4 4000000

300 000O0O0
000O0O0OO0OTO® O
000O0O0O0O 0O 0
000O0O0O0O0® 0

Table 4: Global fixed bit allocation tables for the DCT-COSQ system.

B =24

4 4000000

B =58

76 300000

B =76
76 510000
6 5100000
51000000
10000000
000O0O0O0O0® 0
000O0O0OO0OTO® O
000O0O0OO0TO® O
000O0O0OO0OTO® O

400 000O0O0

000O0O0O0O0® O

000O0O0O0O0® O

000O0O0O0O0® 0

000O0O0O0TOT® O

000O0O0OO0TO O® O

000O0O0OO0O® O

6 4000000

30000000
000O0O0O0O0® O
000O0O0O0O0® 0
000O0O0O0TOT® O
000O0O0OO0TO O® O
000O0O0OO0O® O

Table 5: Global fixed bit allocation tables for the CC-IL tandem system.
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76 bits, or 1.19 bpp.

Table 6: Optimal bit allocation matrices for Lena at B
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| & | System | =0 | e=0.005 | e=0.01 | €=0.05 | e=0.1 |
0 [ COSQ-OPT  [33.07] 30.71 [ 29.74 | 25.43 | 22.55
0 | COSQ-FIXED [ 32.33 | 3042 | 29.50 | 25.18 | 22.42
5 | COSQ-OPT  [33.07| 31.48 [ 30.61 | 27.55 | 26.00
5 | COSQ-FIXED | 32.33 | 31.06 | 30.32 | 27.43 | 25.87
10 | COSQ-OPT  [33.07] 31.88 | 31.32 | 29.17 [ 28.11
10 | COSQ-FIXED | 32.33 | 31.44 | 30.83 | 28.98 | 27.74

Table 7: Performance comparison between COSQ systems using fixed and optimal bit al-
location tables; PSNR (dB) of decoded Lena over the Markov channel with BER ¢ and

correlation parameter 0 at 1.19 bpp.

| & | System | =0 | e=0.005 | e=0.01 | €=0.05 | e=0.1 |
0 [ COSQ-OPT [31.76 | 29.87 [ 29.05 | 25.07 | 22.40
0 | COSQ-FIXED [ 30.49 | 29.26 | 28.63 | 24.92 | 22.29
5 | COSQ-OPT [31L.76 | 30.40 [ 29.62 | 27.12 | 25.75
5 | COSQ-FIXED [ 30.49 | 29.58 | 29.01 | 26.93 | 25.58
10 | COSQ-OPT [ 31.76 | 30.83 | 30.25 | 28.65 | 27.43
10 | COSQ-FIXED | 30.49 | 29.85 | 29.49 | 28.23 | 27.20

Table 8: Performance comparison between COSQ systems using fixed and optimal bit al-
location tables; PSNR (dB) of decoded Lena over the Markov channel with BER ¢ and

correlation parameter 0 at 0.9 bpp.

| & | System | =0 [ €=0.005 [ e=0.01 | e=0.05 | e=0.1 |
0 [ COSQ-OPT [27.91] 26.85 [ 26.41 | 23.81 | 21.74
0 | COSQ-FIXED [ 26.16 | 25.80 | 25.60 | 24.74 | 21.71
5 [ COSQ-OPT [27.91] 27.00 [ 26.76 | 25.24 | 24.29
5 | COSQ-FIXED [ 26.16 | 25.91 | 25.70 | 24.72 | 23.98
10 | COSQ-OPT [ 27.91| 2744 | 27.14 | 26.22 | 25.39
10 | COSQ-FIXED | 26.16 | 26.00 | 25.89 | 25.36 | 24.92

Table 9: Performance comparison between COSQ systems using fixed and optimal bit al-
location tables; PSNR (dB) of decoded Lena over the Markov channel with BER € and

correlation parameter § at 0.375 bpp.
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| €4=0.0 [ €,=0.01 | ¢, =0.1
=00 [32.33 [31.88 |31.02
€,=0.01 [ 24.97 |30.83 | 30.52
e,=0.1 |15.63 [26.28 |27.74

Table 10: Performance (in dB) of decoded Lena under mismatch in € ( 6, = d4 = 10.0).

| | 64=0.0 | 64=5.0 | 04 = 10.0
0,=0.0 |29.50 |26.29 |24.85
0,=5.0 |26.33 [30.32 [30.01
0,=10.0 | 26.66 [ 30.82 [ 30.83

Table 11: Performance (in dB) of decoded Lena under mismatch in 6 ( ¢, = ¢4 = 0.01).

| & | System | e=0 [€e=0.005 | e=0.01 | e=0.05 | e=0.1 |
0 [ COVQ [30.07] 29.27 [ 28.37 | 24.43 | 21.83
0 | VQIL [ 30.07| 2224 | 19.67 | 13.56 | 11.23
5
5

COVQ | 30.07 | 30.01 29.30 | 26.49 | 25.07
VQ-IL | 30.07 | 22.24 19.67 | 13.56 | 11.23
10 | COVQ | 30.07 | 30.04 29.73 | 27.84 | 26.54
10 | VQ-IL | 30.07 | 22.24 19.67 | 13.56 | 11.23

Table 12: Average PSNR (dB) of decoded Lena over the Markov channel (M = 1) using
COVQ with dimension = 4 x 2, R =1 bit per sample.
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