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. INTRODUCTION

In [12], Poor and Verd establish a lower bound to the minimum error probabilitymafltihypothesis
testing. Specifically, given two random variabl&sandY” with joint distribution Py -, X taking values
in a finite or countably-infinite alphabét andY taking values in an arbitrary alphakt they show that
the optimal maximum-a-posteriori (MAP) estimation &f given Y results in the following lower bound

on the probability of estimation errar,:
PEZ(l—a)PX,y{(x,y)GXxy Px|y($|y)§a/} (l)

for eacha € [0, 1], where Px|y denotes the posterior distribution af givenY” and the prior distribution
Px is arbitrary (not necessarily uniform). This bound hasipertt information-theoretic applications such
as in the proof of the converse part of the channel codingrémedhat yield formulas for both capacity
ande-capacity for general channels with memory (not necegsexfibrmation stable, stationary, etc) [14],
[12]. It also improves upon previous lower bounds due to 8bar{13], [12, Eq. (7)] and to Veidand
Han [14], [12, Eq. (9)].

Furthermore, Poor and Veiduse the above bound to establish an information-spectasedupper
bound to the reliability functiorZ*(R) — i.e., the optimal error exponent or the largest rate of gdgtic
exponential decay of the error probability of channel co@s[5], [8], [15]- of general channels [12,
Eq. (14)]. They conjecture that this bound, which is expedsa terms of a large-deviation rate function for
the normalized channel information density (see SectieA Fgr the definition), is tight (i.e., exactly equal
to £*(R)) for all ratesR. In [1], it is however shown via a counterexample involvirige tmemoryless
binary erasure channel (BEC) that the bound is not tight at latest and a slightly tighter bound is
presented [1, Corollary 1].

In this work, we generalize the above Poor-\etdwer bound in (1) for the minimum error probability
of multihypothesis testing. The new bound is expressedmga®f the cdf of the tilted posterior distribution
of X givenY with tilting paramete > 1, and it reduces to (1) wheth= 1; see Theorem 1. We also
provide a sufficient condition under which our generalizedPverdi bound, without the multiplicative
factor (1 — «), is exact in the limit of¢ going to infinity. Specifically, the sufficient condition néices
having a unique MAP estimate o&f from Y almost surely inPy, where Py is the distribution ofY’; see
Theorem 2. We present a few examples to illustrate the gesfiiTheorems 1 and 2.

We proceed by applying the above results to the reliabilityction £*(R) of general channels. We
employ Theorem 1 to establish two information-spectrumengpunds toF*(R); see Theorem 3. One

upper boundEé,@(R), is a function of the tilting parameter, while the other boundEpy(R), involves



taking the limit infimum ofé. It turns out that if the channel satisfies a symmetry coonjtthen both
upper bounds can be expressed in terms of the informatiositgleri an auxiliary channel whose transition
distribution is nothing but the tilted distribution of theiginal channel distribution; see Observation 4.

We next use Theorem 2 to show that for the memoryless fingatiadditive white Gaussian noise
(AWGN) channel, the upper bounfipy(R) is tight, hence yielding an information-spectral formuta f
this channel's reliability function£*(R) = Epy(R) for all rates R between 0 and channel capacity;
see Theorem 4. The calculation or determination in closewlésletter) form of Epy(R) is however
a formidable task and remains a notoriously open problemi esquires solving the optimization of
a large-deviation rate function in additions to two limgiroperations; this makes it quite difficult to
compareEpy(R) to well-known lower/upper bounds t&*(R) (such as the random coding lower bound
and the sphere packing upper bound [9]1]5pr this AWGN channel. Nevertheless, the above multi-tette
asymptotic expression fob*(R) may be conceptually useful for the future determinationf6fR) in
computable single-letter form at low ratésVe also note that the equality*(R) = Epy(R) holds for a
class of channels satisfying the sufficient condition of drieen 2; see Corollary 1 and Observation 7.

Finally, we provide a lower bound tE,(fV)(R) for the case of memoryless channels, which is computable
for a given value of). We use this lower bound to demonstrate numerically thatifermemoryless BSC,
EY)(R) is not tight at all rates whefl = 1 (which corresponds to the original Poor-Vardeliability
function upper bound). We also numerically show that forrtemoryless Z-channeE,(:@(R) is not tight
at high rates for all considered valuesf{including large ones).

The rest of the paper is organized as follows. In Sectionhi, generalized Poor-Veidower bound
to the multihypothesis testing minimum error probability @stablished in terms of the tilted posterior
distribution with parametef (Theorem 1). A sufficient condition under which an exact esgron for
the error probability is given in terms of an asymptotic ¢interm of the bound (minus a multiplying
factor) is also shown (Theorem 2). Examples illustratingdiems 1 and 2 are provided in Section Ill. In
Section IV, the two upper bounds, given E)E,@(R) and Epy(R), respectively, for the channel reliability
function are proved (Theorem 3). Furthermore, it is noteat e, (1) provides an exact asymptotic

characterization for the channel reliability function #trates for the finite-input AWGN channel as well

The sphere packing bound [9] is referred to as the space partitionimgdbia [5].
%For the finite-input AWGN channel as well as the whole class of memargannelsF* (R) is already exactly determined in terms of a

simple (single-letter) expression at high rates (beyond some criticalsiatee the random coding and sphere-packing bounds coincide in that
rate region [9]. Further improvements were recently established fanémeoryless binary symmetric channel (BSC) and the continuous-input
AWGN channel in [2], [3], where it is shown thd ™ (R) is also exactly determined for ratésin some interval directly below the critical

rate.



as other channels (Theorem 4 and Corollary 1). Numerical pksinvolving the BSC and the Z-channel
indicating the looseness df,(fe(R) for specific choices of are next provided. Finally, conclusions are

stated in section V. Note that we will use the natural loganitthroughout.

Il. A GENERALIZED ERROR LOWER BOUND FOR MULTIHYPOTHESIS TESTING

We herein generalize the Poor-Vartbwer bound in (1) for the multihypothesis testing erraslmability.

Consider two (correlated) random variabl&sandY’, where X has a discrete (i.e., finite or countably
infinite) alphabett’ = {1, x9,z3,...} andY takes on values in an arbitrary alphaBétThe minimum

probability of errorP, in estimatingX from Y is given by
P 2 Pr[X #e(Y)] ©)
wheree(Y) is the MAP estimate defined as

e(Y) = arg max Pxpy (z]Y). (3)

Theorem 1:The above minimum probability of errd?. in estimatingX from Y satisfies the following
inequality
Pz (1= a)Pxy {(@.y) € X xV: PY)(aly) <} (4)
for eacha € [0,1] andé > 1, where for eacly € ),
Py ()

Ywex Py (@ly)’
is the tilted distribution ofPxy (-|y) with paramete® [6].

P (xly) & € X, (5)

Note: When# = 1, the above bound in (4) reduces to the Poor-Uebdund in (1).

Proof: Fix # > 1. We only provide the proof for < 1 since the lower bound trivially holds when
a=1.

From (2) and (3), the minimum error probabilify, incurred in testing among the values fsatisfies
1-P. = Pr[X =e(Y)]
— [ Pav(ewly) dPr(v)
y

_ /y(r;lea):é(PXW(:L’]y)) dPy (y)

= /y (T?? fx(y)) dPy (y)
= FE [max fx(Y)} ;

reX



where f,(y) £ Pxy(z]y). For a fixedy € Y, let h;(y) be thej-th element in the set

{fwl(y)7 fm2(y>7fx3(y)7 te }

such that its elements are listed in non-increasing order; i

hi(y) = ha(y) = haly) = -

and

{hi(y) ha(y), hs(y), -} = {fer W), fau (W), foa(9), - -}
Then

1 - P, = E[h(Y)). ()

Furthermore, for each,(y) above, defindz§9)(y) such thath§9) (y) be the respective element far(y)
satisfying

hi(y) = fo,(9) = Py (aly) & 1)) = PEy(ayly).
Sinceh,(y) is the largest amongh;(y)},>1,

ijl h?(y) 1+ ijz[hj(y)/hl (y))?
is non-decreasing ifl for eachy; this implies that

K(y) > hy(y) for6>1andy € Y. (7)

For anya € [0, 1), we can write
Pxy {(x,y) ceXx)Y: P)(f')y(ﬂy) > a} = / Pxy {x e X: P)(S)Y(ﬂy) > oz} dPy (y).
y
Noting that

Pxy {x exX P)(;)‘)Y(x]y) > a} = ZPXD/(x]y) -1 (P)(f')y(ﬂy) > a>

rzeX
o0

= ) hiy) -1 (hﬁ-e)(y) > a) 7

j=1
where1(-) is the indicator function, yields

Por{en e Xy ey >a} = [ (f)hj@)-l(hé”(y)>a)>dpy<y>

j=1

> / h(y) - 10 @) > a)dPy (y)
%

> / hi(y) - 1(hi(y) > a)dPy(y)
%
= Eh(Y) - 1(h(Y) > a)], (8)



where the second inequality follows from (7). To complete pinoof, we next relaté&[h,(Y)-1(hy(Y) >
a)] with E[h,(Y)], which is exactlyl — P.. Invoking [12, eq. (19)], we have that for amy< [0, 1] and
any random variablé/ with Pr{0 < U < 1} = 1, the following inequality holds with probability one

U<a+(1—-a)-U-1U > a).

Thus
EUl<a+(1—-a)EU-1(U > «a)].

Applying the above inequality to (8) by settirig = h,(Y"), we obtain

(1—a)Pyy {(:E,y) eXxY : PO (aly) > a} > (1= )E[h(Y)-1((Y) > a)]
> EmhY)] -«

(1-P)—«

(1—-a)— P,

where the first equality follows from (6). [ |
We next show that if the MAP estimatdY’) of X from Y is almost surely unique in (3), then the
bound of Theorem 1, without theg — «) factor, is tight in the limit ofé going to infinity.

Theorem 2:Consider two random variable¥ and Y, where X has a finite or countably infinite

alphabetX = {x1,x,23,...} andY has an arbitrary alphab@t. Assume that

P e > max P T 9
X1y (e(y)]y) jeihax X1y (7|y) 9

holds almost surely iPy, wheree(y) is the MAP estimate frony as defined in (3); in other words, the
MAP estimate is almost surely unique . Then, the error probability in the MAP estimation &f

from Y satisfies
}1:ﬁm&y“QMGXXy:%%@mga} (10)

for eacha € (0, 1), where the tilted distributiodD)((vg')Y(-\y) is given in (5) fory € ).

Proof: It can be easily verified from the definitions bf(-) and hg(’)(-) that the following two limits
hold for eachy € Y-
i O () =

where
((y) £ max{j € N: hj(y) = hi(y)} (11)



andN = {1,2,3,...} is the set of positive integers, and

hi(y) -1 (&~ >a) forj=1,2--- {(y
Jim h;(y) -1 (hge)(y) > oz) = i) (g(y) > ) (12)
>~ 0 for j > ((y)

where1(-) is the indicator function.

As a result, we obtain that for any € [0, 1),

lim Pxy {(m,y) X xY: Py (aly) > a}

= lim N ; . ©) o v
Jim y(thy) 1(n(y) > ))dP (v)

j=1

= /y Jim (i hy(y) - 1 <h§€) (y) > a)) dPy (y) (13)

_ /y (ez(y% hi(y) -1 (@ > a)) dPy (y), (14)

where (13) follows from the Dominated Convergence TheorepTfn. 16.4] since

> hy(w) 1 (A ) > a)| <D hily) = 1.

Furthermore, (14) holds since the limit (#) of

a2 () - 1 (B (9) > o)
exists for everyj = 1,2, --- by (12), hence implying (as shown in Appendix A) that
i S0, =3 fm s
j=1 j=1
Now condition (9) is equivalent to
Prle(Y) =12 Py {ye Y lly) =1} = L; (15)
thus,

Jim Pyy {(x,y) eXxY: PO (aly) > a} - / hi(y)-1(1 > a)dPy(y) = E[hi(Y)]
> Yy
= 1-P, (16)

where (16) follows from (6).



This immediately yields that fob < o < 1,

P. =1 —QILIEOPXY {(x y)eX xY: P)g)y(ﬂy) > a}
= Jim Py {(z.y) € X x Vi PO (aly) <o}
u
Observation 1:We first note that since the bound in (4) holds for evéry 1, it also holds in the

limit of # going to infinity (the limit exists as shown in the above pjoof
P.>(1—-a) elirgo Pxy {(x y) EX XY X|Y(x|y) < a} (17)

forany0 < a < 1.
Furthermore, if condition (9) does not hold (or equivalgritom (15), if Pr[¢(Y) = 1] < 1), but there
exists an integel. > 1 such thatPr[¢(Y") < L] = 1, then using (14), we can write (17) as

P, > (1-a) 1/y(§fhj(y)-1(@>a))dpy(y>

= (1-a) /y(i@@)) dPy (y / (%h (—y) > a)) dPy(y)]

J=1

= (1@/))(%%).1(%@) Z i )dPY v) (18)

) ]

Jj=1 j=L+1
To render this lower bound as large as possible, its formuta@indicates that although the multiplicative

constant(1 — «) favors a smalk, the integration term in (18) actually has its smallest galkhena is
less thanl /L (see (19)). Therefore, a compromise in the choice bfs to be made in order to maximize
the bound.

1. EXAMPLES FOR THE GENERALIZEDPOOR-VERDU BOUND

In this section, we provide four examples (three of them wvaithinite observation alphabet and one

with a continuous observation alphabet) to illustrate #&ults of the previous section.
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A. Ternary Hypothesis Testing

We revisit the ternary hypothesis testing example examinefll2, Figs. 1 and 2], where random
variables X andY have identical alphabet® = Y = {0,1,2}, X is uniformly distributed Px(z) =
1/3 Vx € X) andY is related toX via

(

l—v—vy ify==x

vy ifr=1and y=20
Pyix(ylz) = q vy ifr=2andy=0

vy ify#randy=1

Vg ify#xand y=2

\

where we assume that— v; — vy > vy > v > 0. In [12], v = 0.27 and v, = 0.33 are used.
A direct calculation reveals that the MAP estimation fuort(3) for guessingX from Y is given by
e(y) =y for everyy € ), resulting in a probability of error oP, = v; + v, = 0.6 whenwv; = 0.27 and

vy = 0.33. Furthermore, we obtain that, is exactly determined via
Hlim Pxy {(x,y) EXXY: P)(ﬁ)y(x]y) < a} =v +vy =P,

as predicted by Theorem 2, since condition (9) holds (siit® = 1 almost surely inPy, where/(-) is
defined in (11)).

We next compute the new bound in (4) for= 0.27, v = 0.33 and for different values of > 1 and
plot it in Fig. 1, along with Fano’s original bound (referréml as “Fano” in the figure) given by
- log3 —I(X;Y) —log2

P, =0. 4
. > log 2 0.568348,
and Fano’s weaker (but commonly used) bound
I1(X;Y)+log2
poy1- 1Y) Hlos2 o onener

log 3
shown in [12, Fig. 2] (referred to as “Weakened Fano” in theirgy. The case off = 1 corresponds
to the original Poor-Verd bound in (1). As can be seen from the figure, bound (4)fer 20 and 100
improves upon (1) and both Fano bounds and approaches theprbability of error a9 is increased
without bound (e.g., fo = 100 and« | 0, the bound is quite close t6,). In Fig. 2, bounds (4) and
(1), maximized over € [0, 1], are plotted versus. It is observed that whef > 16, bound (4) improves

upon (1).
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0.6}
0.568348}:

0.4 [
0.358587

0.2k

o

Fig. 1. Lower bounds on the minimum probability of error for ExampleAilbound (4) versus for # = 1,20,100 and Fano’s original

and weakened bounds.

0.6
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0.574468'r """""""""""""""""""""""""""""" ;(:*:.{—?kw*:*rf',}f """"
*** .
e
05 /**
7 maximized bound fof) =1 -
e maximized bound foB > 1 -k
X ¥
0.4
] ] ] ] ] ] ] ] ] ]

Fig. 2. Lower bounds on the minimum probability of error for ExampleAilbounds (1) and (4) versus optimized overa.

B. Binary Erasure Channel

Suppose thak andY are respectively the channel input and output of a BEC witBugeprobability
e, whereX = {0,1} and)Y = {0,1,E}. Let Pr[X =0] =1 —p andPr[X = 1] = p with 0 < p < 1/2.
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Then, the MAP estimate ok from Y is given by

y ifye {01}

0 ify=E

e(y) =

and the resulting error probability 8, = ep.

Calculating bound (4) of Theorem 1 yields

(1—-a)Pxy {(a:,y) ceXx): P)(g)y(m\y) < a}

¢ 2
0 fo<a< —mm—
- 9p9+(1—p)9 1y
. p - P
=qep(l —a) if —F——— < ——— (20)
( ) pe(_g(l _)Gp)e p9+(1_p)9
. —p
el — « if ——————— < a<l.
\( ) PP+(1-p?f

Thus, takingd T oo and thena | 0 in (20) results in the exact error probabilitp. Note that in this
example, the original Poor-Veiidbound (i.e., withd = 1) also achieves the exact error probabilify by
choosinga = 1 — p; however this maximizing choice ef = 1 — p for the original bound is a function of
system’s statistics (here, the input distributignwhich is undesirable. On the other hand, the generalized
bound (4) can herein achieve its peak by systematicallyngpkit oo and then lettingy | 0.

Furthermore, since in this exampléy) = 1 for everyy € {0,1,E}, we have that (9) holds; hence, by
Theorem 2, (10) yields

P = lim Pyy {(:U,y) eXxY: PO (aly) < a}

= egpfor0<a<l,

where the last equality follows directly from (20) witholet(1 — «) factor.

C. Multiple-Use BEC

We now extend the previous example of the single-use BEC toake of using the memoryless BEC
times with an input:-tuple X™ = (X, --- , X,,) of independent and identically distributed (i.i.d.) rando
variablesX; with Pr[X; = 1] = p, where0 < p < 1/2. Here again we determine the MAP estimation of
X" by observing the channel outplt®. For a received output-tuple 4",

(1 o p)dog(:cn7yn)pd1E(x”7yn) |f dOl (Z‘n, yn) — le('xn7 yn> — O

Preapyn (a"[y") = | (21)
0 otherwise
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where dog (2", y") is the number of occurrences ¢f;,y;) = (0,E) in (z",y"), and the other-terms
are defined similarly. The above equation indicates thaafgiveny”, Pxny»(2z"|y") always peaks for
dig(xz™,y™) = 0 since0 < p < 1/2. Thus the MAP estimataf(y") replaces all erasures ¥ by 0’s while
keeping the O’s and 1's ip” unchanged (e.g., it = 5 andy™ = (0,0,E, E, 1), thene(y") = (0,0,0,0, 1)).
The resulting probability of error is given by

P = 1= Y Pxa(e(y")Propxa(y"le(y")

yneyn
= 1= i g (Z) (n B k) (L—p)"pe(1—e)""
(o

wherek is the number of erasurésin y™ and: is the number of 1's in/".
On the other hand, we directly obtain from (21) that condit{®) holds (or equivalently condition (15),
i.e., {(y™) = 1 with probability one inPy»). We can then apply Theorem 2 to obtain from (10) that

P, = 1—(1—¢p)Q
= elim Pxn yn {(a:”,y”) eXx)Y: P(ez‘yn(x”w”) < a} :

We next consider the case pf= 1/2, i.e,. the inputX™ is uniformly distributed. In this case, (21)

yields that
h(y") = ha(y") = - = har(y") = 27"
and
hor 1 (y") = horeya(y") = -+ = han(y") = 0

wherek is the number of erasureésin y™. Thus/(y™) = 2* and Theorem 2 no longer holds. Furthermore,
W (y") = hy(y") for every @ > 1; this implies that for the uniform-input multiple-use BEC,eth
generalized bound (4) does not improve upon the originar®eadl bound (1).

D. Binary Input Observed in Gaussian Noise

We herein consider an example with a continuous observaiigmabet) = R, whereR is the set of
real numbers. Specifically, let the observation be giverYby X + N, whereX is uniformly distributed

over ¥ = {—1,+1} and N is a zero-mean Gaussian random variable with variarfcéAssuming that



X and N are independent from each other, then

1 1

14

—z)2
2’ WGXP{_%}

Pxy(zly) =
% ' \/27ro‘ Xp{ ; ' 271'(7 p{ 202
exp{Z% 1

exp{g—yg} + exp{—%

14 exp{—%f—zy}

(22)

for x € {—1,+1}, y € R. This directly implies that the MAP estimate of from Y is given by

e(y) =411if y > 0ande(y) =
A 1 (F
Furthermore, since € {—1,+1}, we have

( exp{ 24} )9
exp{ 5 Frexp{- 5}

—1if y < 0. The resulting error probability i¥. = &(—1/0), where

exp—%dt is the cdf of the standard (zero-mean unit-variance) Gaasgistribution.

1

0)
P (xly) =

0
exp{—§¥}
) T (exp{;«' Tre (%

and the generalized Poor-Vérdound (4) yields

( exp{Z5}
exp{ % }+eXp{ 5

P. > (1=a)Pxy{(z.y) € X x Y : P (aly) <
1
= (1-a)Py(-1
( )P )/yGR:IQSQ \/2%02e
vrece{ 355
1
1 —a)Px(1
(1) X<{Lﬂzl<a —

>9 1+ exp{—:

2a:y }

°}
o[ U,

_ (1—a)/°° 1 exp{_(y+1)2}dy
2 5> log(L-1) V2mo? 202
2 1
<1—a>/“2b4w4> 1 (y— 1)
+ 5 . s exp 557 dy
2

(23)

Now taking the limitsé T oo followed by o | 0 for the right-hand side term in (23) yields exactly

(=)

= P,; hence the generalized Poor-Vardound (4) is asymptotically tight. The bound is illustcate

in Fig. 3 for o = 0.429858 which givesP, = 0.01. It can be seen that far = 100 and« | 0, bound (4)

is quite close taP,. Finally note that (22) directly ascertains that condit{®h of Theorem 2 holds; thus

P, is given by (10).
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0.01

0.008 [-.

0.006

0.004

0.002

Fig. 3. Example IlI-D: bound (4) versus for 6 = 1, 10, 100; o = 0.429858 and P. = 0.01.

V. CHANNEL RELIABILITY FUNCTION

We next use the results of Section Il to study the channedlvgiy function.

A. Preliminaries
Consider an arbitrary input proce¥sdefined by a sequence of finite-dimensional distributiorq,[1

[10]
x & {x"

I
VR
23
2
~
e
N—
——
8

Denote by

o0

ya{yn= (v v

the corresponding output process inducedXbyia a general channel with memory

n=1

W é {Wn == PY7L|Xn . Xn — yn}zozl

which is an arbitrary sequence afdimensional conditional distributions frotk™ to )}, whereX” and
Y are the input and output alphabets, respectively.

We assume throughout this section tatis finite and that)’ is arbitrary. Note though that for the
sake of clarity, we adopt the notations of a discrete prdibalsipace for)’ with the usual caveats (such
as replacing summations with integrals and working with dberopriate probability measures, e.g., see
[10, Remark 3.2.1]).
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Definition 1 (Channel block code)An (n, M) code ¢, for channelW with input alphabett and
output alphabed is a pair of maps f, g), where

fAL2,--- M} — X"
is the encoding function yielding codewordsél), f(2),---, f(M) € X™, each of length:, and
gyn_>{1727 7M}

is the decoding function. The set of tlié codewords is called the codebook and we also usually write
€, ={f(1),f(2),---, f(M)} to list the codewords.

The set{1,2,..., M} is called the message set and we assume that a megsagelrawn from
the message set according to the uniform distribution. Tovep messagé’ over channelW, its
corresponding codeword™ = (V') is sent over the channel. Théfi* is received at the channel output
andV = g(Y™) is yielded as the message estimate.

The code’s average error probability (or average proligboli decoding error) is given by

RG2S S W lm))

m=1 {ym:g(y")#m}

Since messag¥ is uniformly distributed over1,2,..., M}, we have thatP.(¢,) = Pr[V # V].

Definition 2 (Channel reliability function [12]):For any R > 0, define the channel reliability function

E*(R) for a channelW as the largest scalat > 0 such that there exists a sequence®f = (n, M,)

codes witR

1

8 < liminf ——log P.(€,)
n—oo n

and

1

R < liminf — log M,,. (24)
n—oo MNn

Observation 2: We have adopted the above definition of channel reliabitityction from [12] for the
sake of consistency. Note that this definition is not exaitBntical to the traditional definition of the
channel reliability function. IfP. n(n, R) denotes the probability of error of the best, [2"/]) code

(i.e., the code with smallest error probability) for chan®®, then the channel’s reliability function is

3When nog > 0 satisfies the definition, we simply sét*(R) = 0.
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traditionally defined a$
1
E(R) = liminf ——log P, min(n, R).

n—0o0 n
However, the following relation can be shown betwdei{ R) and E(R):
E(R) > E*(R) > l}%lE(th J).
Thus the above two definitions are equivalent except pgs&ibldiscontinuity rate points (of which there

are at most countably many &s'(R) and E(R) are non-increasing itk).

Definition 3 ([14]): Given thatY™ is the output of channeW™ = Py x» due to inputX™ with
distribution Py, the channel information density is defined as

: sy Wy Pynixn (y"]2")
ixnwn (2™ y") = log ——=——= = log - - (25)
X ) 08 T G T S Pan(@) Py (07187)
for (2™, y") € X" x Y™
Definition 4: Fix R > 0. For an inputX and a channeWw,
1 1
7Tx<R) £ hmlnf—ﬁlog PXan {(x”,y") S X" % y” . EanWn(ZL’n;yn> S R} (26)

is called a large-deviation rate function for the normalizeformation density=i .y (-, ).

Proposition 1 (Poor-Verd upper bound ta&*(R)): For a given channeW, its reliability function
E*(R) satisfies [12, Eq. (14)], [1, Theorem 1]

E*(R) <supmx(R) (27)
X

for any R > 0, wheremx (R) is the large-deviation rate function féfix.y~(-,-) as defined in (26).
Furthermore, the bound in (27) can be slightly tighteneddstricting the supremum operation over a

smaller set of inputs [1, Corollary 1]:
E*(R) < Epy(R) = sup 7x(R), (28)
XeQ(R)
for any R > 0, where

Q(R) £ {X : Each X" in X is uniformly distributed over its support S(X"),
o1 n
and R < liminf —log [S(X™)| ¢. (29)
n—oo M
*The limit supremum is also commonly used instead of the limit infimum in the itlefirof E(R), e.g., see [9, p. 160]. We could have

also used the limit supremum in the inequality 8rin Definition 2; in that case the results of this section would still hold by replacing

lim inf,, with limsup,, in Theorems 3 and 4 and Corollary 1.
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B. Upper Bounds for the Channel Reliability Function

Using Theorem 1, we provide a lower bound for the probabditgdecoding error of anyn, M) channel

code and establish two information-spectrum upper bouadshe channel reliability function.

Theorem 3:Every ¢, = (n, M) code for channeW has its probability of decoding error satisfying
P(€) = (1= a) Py { (27, y") € X" x V" 1y (@™ y7") < log(Ma) } (30)

for everya € [0, 1] and® > 1, where channel inpuk™ places probability mass/M on each codeword

of ¢, and ,
() Py xn (y"]2")

Jxnyn (27 9") = log - . (31)
e Z;EneX” PX”(xn)Pgn\Xn(yn‘xn)
Furthermore, the channel’s reliability function satisfies
1 1
E*(R) < sup liminf——log Pxnyn {(az”,y") eX" xY": —jg?,)lwn(x";y") < R}
XeQ(R) "> n n
£ Eg(R) (32)
for every R > 0 and# > 1, and
1 1
E*(R) < sup liminf lim ——log Pxnyn {(x",y") ceX" x Y. —jg?iwn(x”;y”) < R}
X€eQ(R) n—oo f—oco N n
2 Epv(R) (33)

for every R > 0, where the sef(R) is given in (29).

Proof: When the channel inpuX™ is uniformly distributed over the cod€,, C A" of size M, the

tilted distributionP)(f,zlyn of Theorem 1 becomes

Pg}n\yn@n‘yn)
D gnexn P§n|yn (@ [y")
Pin (™) Py (4" |27) [ PYn (y")
D anean Pin (@) PYosen (V" [27) / PYa (y™)
Pyojxa(y"la™)
Y nean Pynn (47127)
Pyn (y" ™) /M

= - - (34)
D ancaen Pxn (") Py e (y7]27)

9 n n
Py (2"y")
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for all z" € ~,. Hence inequality (30) follows directly from Theorem 1 arg#). We next prove (33);
the proof of (32) is identical by omitting the limit ovér Settinga = e~ in (30) yields

1 1
—logP < —Zlog(l—e™
~log (C,) < - og (1—e™)

1
—ﬁlogPXan{( )EX”XJJ”'—]&Q%W,L( y") < logM }

which implies in light of (17)

N—00 n—oo f—oo

1
hmmf——logP (€,) < liminf lim ——logPXan{(a:”;y”) EX" XY
n

1
—Jﬁ(iwn( y") < logM }
We can then conclude by definition of the channel reliabfiityction that

1
E*(R) = sup lim mf——logP (€,)
{G=8(X")}p>1:X€Q(R) T

1
< sup liminf lim ——log PXan{(x”;y”) EXT XY
XEQ(R) n—oo OH—oo n

1
a3 < Liog S = .
When considering only the sequence of code®{R), we can replaceL log |S(X™)| —~ by R (if v is

chosen to be small enough such thak liminf,_.. L log |S(X™)| — v is valid for the considered input

X) as such a replacement can only (ultimately) increase tiperupound; we thus obtain

1
E*(R) < sup lim inf lim ——logPXan{( y") e X x Y —jX%Wn( "yt) < R}.
n

Observation 3: Whend = 1, jgfiw,,,(x”;y”) in (31) reduces to

Pyajxn (y"]2") ~ log Pynixn(y"|z") _ i (27 ")
> snenn Pxn (@) Pyajxn (y|37) Pyn(y") ’
which is the channel information density as defined in (25).

log

In this case, the generalized upper bound for the channabilgly function Eéﬁ,( R) of (32) reduces

to the Poor-Verd upper boundipy(R) of (28) (as expected, since fér= 1, (4) reduces to (1)).

Observation 4: Note that whenfd > 1, the denominator of the fraction in (31) (in other words,
Y anexn PXn(i:”)P%Xn (y™|2™)) is not a legitimate distribution since it does not sum to overg” € Y.
However, if

Y Plaa@ ") = D Plan(§'E") Va"i" e Xt n=1,2,---, (35)

neyn 7L eyn
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then jgglwn (z™;y™) can be reformulated as follows

Pgn|Xn(y"]x")
Zyneyn Pye'nlxn (?jnlxn)

Py xa(y"|2")
N n|X7L
Zﬁ:" n PXn (.Tn) — —
e Zgne)}n Pf/n'Xn (yn’xn)
po

yopen (4"127)

(0 n, n
GO @y = log

= log - 7 (36)
Sinean P ()P (y7]27)
-(0 n n

é ZA(XZL,Y”(:U Y )7

where for eachy” € )",
P@ﬂ 7L(yn’$n)
P(Gn) n(yn|xn> L ynX _ " e X"
e 2 gneyn Plapn (7]27)

is the tilted distribution with parametef of the channel statistic®y~ x~(-|z™). Note thatPﬁ?| o IS @

legitimate distribution (IikeP)(g)Y defined in Theorem 1). As a result, the new denominator of rhetion
in (36) (.., Y e pn Pxn(@")PY)

yn|xn
of the output due to an input with distributiaRy» sent over a channel with (legitimate) tilted statistics

(y™|z™)) is a true distribution ony™; it is indeed the distribution

Pi(,‘),gw. We thus conclude that for channels satisfying the invagacondition of (35), the upper bounds
for the channel reliability function in (32) and (33) arewsdty based on the channel information density

©)

ixnyn (25 y™) of anauxiliary channelwhose transition probabilityaﬁ) is thetilted counterpart of the

|xn
original channel transition probabilityy»|x=.
When the output alphabet is finite, the chanWél satisfies (35) if it isow-symmetrici.e., if the rows
of its transition matrix[p,n,] of size |X"| x |V"|, wherep,n,» = Pyn x«(y"|2"), are permutations of
each other for each. Note that channels whose transition mafpix-,~| is symmetric in the Gallager
sense [9, p. 94] for each are row-symmetric; such channels include the memoryless &RICBEC.
When the output alphabet is continuous (i.e., With= R) and the channel is described by a sequence of
n-dimensional transition (conditional) probability delysunctions (pdfs)fy~ x-, the invariance condition

of (35) translates into

[ B i i = [ 518 di @7)
g ERn gneRn

V" " e X" n=1,2---. The memoryless finite-input AWGN channel and the memorytesary-
input (with X = {—1, +1}) output-symmetrichannel, i.e., whose transition pdf satisfigsx (y| — 1) =
frix(—yl +1) ¥V y € R, fulfill (37).



21

Observation 5: It can be shown along similar lines as the proof of [1, TheorHnthat one can

interchange the supremum and limit infimum (ovgrin Eéf,)(R) and Epy(R) and obtain
lim Egy(R +7) < Egy(R) < BRy(R) and lim Epy(R +7) < Eev(R) < Ep(R).  (38)
Y Y

where

1
Eoy(R) = liminf sup lim —— log PXan{(x",y") EX" x Y

n—oo X"eQn(R) 6—o0 n

L non
e (2 y )SR},

n

1 1
Eg)(R) £ liminf sup  ——log Pyny {(x", Yy e Xt x Y =0 (@) < R}
n—o00 X”GQn(R) n n
and
Qu(R) £ {Xn Pxn(z") L foran e S(X™) and R < ! 10g|S(X”)|}
n = . Xn T — e — €T - .
[S(X™)] n

The new expressions that take the supremum @) before lettingn approaching infinity provide an
alternative possibility for the evaluation of the two boanth particular,Q, (R) becomes a finite set as
the input alphabet is finite; hence, taking the supremum @gi?) can be replaced with a maximization
operation. Inequality (38) nevertheless implies t%@(R) = E,&@(R) and Epy(R) = Ep,(R) almost

everywhere inR (since these functions are non-increasingiin

C. Information-Spectral Characterization of the Relialyilfunction for a Class of Channels

We next employ Theorem 2 to show that the upper bound in (38plg for the memoryless finite-
input AWGN channel as well as a larger class of channels, h@noeiding an information-spectral
characterization for the reliability function of these ohals. This exact expressiaii*(R) = Epy(R)
holds for all ratesk (below channel capacity), albeit its determination in &rgtter form (i.e., solving
the optimization of a large-deviation rate function) rensaa challenging open problem.

We first focus on the Gaussian channel and then present th# fes a wider class of channels.
Consider a finite-input AWGN channel describedYy= X; + Z;, i = 1,2,---, whereX,, Y; and Z; are
the channel’s input, output and noise at timeespectively. We assume that the noise procgss i.i.d.
with eachZ; being a zero-mean Gaussian random variable with variatice 0. We also assume that

the noise and input processes are independent from each othe
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Theorem 4:The channel reliability functiorZ*(R) of the above finite-input AWGN channel satisfies

E'(R) = Ee(R)

1
= sup liminf lim ——log Pxnyn {(:r;”,y ye X x Y —j)?iwn(;c y") < R}

X€eQ(R) ™ f—c0 N

1
= sup liminf lim ——log Pxnyyn {( yr) e Xt x Y —z')?zlwn( oyt < R}
XEQ( ) n—oo O—oo n n

for any 0 < R < C', whereC denotes the channel’s capacity, ajﬂﬁwn(x”,y") andig?lwn (", y") are

given in (31) and (36), respectively.

Proof: Fix 0 < R < C. Letits channel inpuX™ be uniformly distributed over a codeboe®, C A™

and letY™ be the corresponding channel output. Then,afore €,
Pxn (27) fyn xn (y"]2")
fyn(y™)

|Cnl - fym(ym) (2m0®)n/2 20° ’
where|| - || denotes the Euclidean norm. For a giwghreceived at the channel output/ify™) as defined

in (11) is greater than or equal to 2, then there exist distodewords:™ andz” in €, such that

n

. " 1
m— 2P =yt - 2P equalentlyZ(:vi—@)yi:52(96 — I7);

=1 i=1
hence such/™ belongs to an (affine) hyperplane Rf'. In other words, we have that

|y

{y" e R": L(y") = 2} C YV(€,),
where

V(€,) £ {y" eR": ||ly" — z"|* = ||y" — 2"||” for somez", " € €, andz" # i"}

consists of the union o('f’”")

hyperplanes inR™. But as the Lebesgue measure of every hyperplane
in R™ is zero (since its volume is zero), we then obtain that thevaldmite union of hyperplanes has
Lebesgue measure zero. This,. {)(~€,)} = 0 which directly yields thaPr[¢(Y™) > 2] = 0, and hence

Pr[/(Y"™) = 1] = 1. Theorem 2 then implies that

P.(€,) = hm Pxnyyn {( yr) e X x Y. anWn( ayt) < 10gM+loga}

—00

for o € [0,1). As a result, witha: = e~ for arbitrarily smally > 0,

hmmf——logP (€,)

n—oo

1
= lim inf lim —ElogPXan{( )GX”Xy"'—j;ZWn( y") < log|r€ | —~ }

n—oo f—oco
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Wherejgflwn(x”,y") is as defined in (31). As stated in the proof of Theorem 3, threnohl input that
achieves the channel reliability should has the chasand supports satisfyinigm inf,, . + log [S(X™)|—
~ strictly larger but arbitrarily close t@. This concludes to

1
E*(R) = sup lim inf ——log P.(-C,)
{G=S(X")},>1:XEQ(R) N7 N

1 1
= sup liminf lim ——log Pxny» {(m”,y") eX" x Y —jg?,)LWn (" y") < R}
XeQ(R) n—oo f—oo n n

£ FEpv(R).

Furthermore, since this channel satisfies (37), we cancep’ﬁ&wn(:c”; y") with zglw (z™;y™) in the

expression of£py(R) as shown in Observation 4 to obtain that
E*(R) = sup liminf lim —llog Pxnyyn {(:c”,y”) EX" x Y lig@,,wn(w”;y") < R} :
XeQ(R) " =00 N n
u

An information-spectral representation Bf (R) for the memoryless finite-input AWGN channel is thus
established for all rates, although its solution in closgddle-letter) form is still a daunting task.

We emphasize that the above finding also holds for any chasatisfying/(Y™) = 1 almost surely in
Py~ as shown above; we hence have the following result (whiokcty follows from Theorem 2 along

the same lines as the above proof).

Corollary 1: Given a channeW , if for its input X uniform over any block codebook,,, the following

holds almost surely Py«

max Pyn xn(y"|z") > max  Pyajxn(y™]z" 39
max Pynjx»(y"[2") e g Prnx (y"]z") (39)
foreachn =1,2,---, whereey;(y") = arg maxync.g, Pynx»(y"|2") is the maximum likelihood estimate

of the transmitted codeword from the received channel dujputhen the channel reliability function of

W is given by

E*(R) = Epy(R)
[0

1
= sup liminf lim —— log Pxny» {(x”,y”) EX" XY —jynyn (2 y") < R}
X€eQ(R) n—oo f—oco N n

for any0 < R < C, where(C is the channel’s capacity.
Furthermore, if the channel satisfies the invariance candit(35) or (37), ther]jgf,lwn(a:”;y”) =

iﬁ?lwn(x”;y”), which is the information density for the auxiliary chanmneith transition distribution
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PX(V(’,?'XH (i.e., the tilted distribution of the original channel disttion P« x»). In this case the channel
reliability function becomes

E*(R) = Epv(R)

1 1
= sup liminf lim —— log Pxny» {(x",y") eX" x Y": —ig?lwn(x”;y") < R}
XeQ(R) n—oo 6f—oo n n

forany0) < R < C.

Observation 6: Corollary 1 requires condition (39) to be valid for any bloakdebook-€,, and for
eachn = 1,2,---. One can immediately weaken the condition by considerinly sufficiently largen;
but without further knowledge on the optimal codebook (egleintly, the optimal channel inpuX that
achievesEpy(R)), it may be hard to derive an alternative condition for (3@ttholds unanimously for
any codebook. In particular, for discrete memoryless chan(i@iC) with finite or countably infinite
output alphabets, a codebook that fails condition (39) damys be constructed except if the channels
are not noiseless (i.e., perfeétHence, in its current form, Corollary 1 is not useful for diteroutput

channels; instead, it is of interest for continuous-outghannels.

Observation 7: In light of the above observation, we further consider clegwith continuous-output
alphabets. For a channel that admits a channel transitignthpel proof of Theorem 4 actually indicates

that as long as-{Y(€,)} = 0 for any block codebook¢,, where
V(€)= {y" €R™: fynxn(y"|z") = fynixa(y"|2") for somez", 7" € €, anda™ # 7"},

we havePr[{(Y™) = 1] = 1 and (39) holds. We note that this is indeed valid for any seqe®f transition

pdf's for which the number of solutions i, satisfying

fyn'Xn (yn |:En) - fYn'Xn (yn |i’n)

®As a simple proof, note that for a noisy DMC there exist two inputsi’ € X and an outputb € ) satisfying
min{ Py x (bla), Py|x(bla’)} > 0. Then for a codebookg, consisting of two distinct codewords™ and ", where one of them is
the permutation of the other, and their components are eitlera’, we obtain

Prntyn (@) = Pxn (2")Pynjxn (y"[2") _ Pynjxn(y"a") _ Pxn(&")Pynixn(y"|2")
X"y Pyn (yn) [€Cn| - Pyn(y™) Pyn(ym)

= Pxn‘yn ({Enlyn)

for the channel outpuj™ satisfyingy; = b for everyl < < n; hence/(y") > 2 with Py« (y") = 1 Pyn|xn (y"|2z")+3 Pyn xn (y"|Z") >
0. This codebook therefore violates condition (39).

Notably, for a channel satisfyingin{ Py x (bla), Py|x (bla’)} = 0 for every unequak,a’ € X andb € ), the error rate is zero for any
codebook<,,. So, only under such a noiseless situation can the finite- or countablet@MC meet the strict requirement théy™) = 1

with probability one for any codebooi,, .
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for given codewords™, 2" in -G, and giveny" ! is either finite or countable (as this condition immediately
implies that)(-€,) has Lebesgue measure zero). A large class of channelsystiisfcondition. For
example, channels with memoryless additive noise, whegenthise pdf is not uniform or piecewise-
uniform, satisfy this condition and hence (39) and Corollaryrhis allows for most standard continuous
distributions for the noise, such as the generalized-GasBstribution with shape parameter- 0 (e.g.,

cf. [11]); this distribution includes the Gaussian and laapn distributions as special cases, realized for

¢ =2 andc = 1, respectively.

D. Examples of Channels for which ttﬁ)@(R) Bound Is Not Tight

As already mentioned, the (analytical or numerical) corapon of both upper boundsE,(a@(R) and
Epy(R), to the channel reliability function, given in (32) and (38spectively, is formidable since they
involve a difficult supremum operation of input processe®ii1?) in addition to the limit operations.

We can however Iower-bounE,(ﬁ)(R), for a given (fixed)d, using an auxiliary class of i.i.d. inputs
and compare this lower bound (@(R) with familiar channel reliability function upper boundsu¢h
as the sphere-packing upper bound). If the former is shovbetstrictly larger than the latter for a range
of rates, then this indicates that for that partiCLﬂarEé,@(R) is not tight. The lower bound t@é@(R),
which we denote byF'(R,#), is derived in Appendix B and given in (43) for the case of meress
channels. We herein calculatg R, #) numerically to demonstrate thﬂt,(fv)(R) is not tight within a rate
range and for certain choices 6f(including ¢ = 1 which gives the Poor-Vetdbound of (28)); this is
shown for two standard binary-input memoryless channbks:BSC and the Z-channel.

1) Memoryless BSCFor the BSC with crossover probability settingp = Py (1) ands = ﬁ in (43)
yields

ES)(R) > F(R.0)
T ol { (1 - 1) R— inf log (1—p)(L—e)tH070% 4 pet+0=07
0<s<1 s p:hp(p)>R [(1—=p)(1—¢)+ pge](l—us)
(1-— p)51+9—9/s +p(1 - 8)1+9—9/s
(e )
for reals¢ > 1 and0 < R < C = log(2) — hy(g), where C' is the channel capacity ant,(c) =

—cloge — (1 —¢)log(1 — ¢) is the binary entropy function.
We compareF'(R, 6) with the sphere packing upper bound to the BSC'’s reliabilityction (e.g., [9],
[5]), which is denoted byFs,(R) and given by

Es(R) = sup {(1 _ %) (R—log2) — élog (1—2)° + aﬂ}

0<s<1
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for 0 < R < C. In Fig. 4, we plotEsy(R) and F'(R, §) for 6 = 1 and 2 and: = 0.01. The figure indicates
that ford = 1, F(R,0) > Esp(R) for all ratesR. This directly implies that

Epy(R) = ES7V(R) > F(R,0) > Eg(R)

forall 0 < R < C. Now recall that the sphere-packing upper boufg R) is loose at low rates (for rates
R less than the critical rate [9]) and tight (i.e., exactly &qto the channel reliability functiods*(R))

at high rates (rates between the critical rate and capadity)s for the BSC, the Poor-Vardound of
(28) is not tight for all rates. Furthermore, note from theufig that sincel’(R, 0) < Esy(R) for § = 2,
we cannot make a conclusion regarding the tightnesEéfjf(R) in this case (this is also observed for
0 > 2).

3 —
' F(R,1) <o
Esp(R) —k—
a F(R,2) o

R (nats)

Fig. 4. BSC with crossover probability= 0.01: lower boundF (R, 0) to Eéf,’(R) for # = 1,2 and the sphere packing bourd, (R).

2) Memoryless Z-Channelle next consider the memoryless binary Z-channel deschipéd x (0[1) =
e and Py x(0]0) = 1. Again, settingp £ P¢(1) ands = 1%,3 in (43) yields
Eg(R) > F(R.6)
1 1 — 1+6—-0/s
= sup (1——)R— inf log ptpe — + (1 —¢)
0<s<1 s pihi(p)>R [1—p+pe?)'/°

for > 1 and0 < R < C = log (1 +(1- 5)516:>. Furthermore, the channel’'s sphere packing upper

bound is given by

= s {(1- ) 0t o[ e 4]

0<s<1 S 0<p<1
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for 0 < R < C. In Fig. 5, we plotEs,(R) and F'(R, §) for § = 1, 3,10, 100 ande = 0.01. We remark from
the figure that for all considered valueséfincluding ¢ very large not shown herein);(R, §) > Esy(R)
for high rates. This leads us to conclude that for the Z-chbmoundEéf{}(R) of (32) is not tight at high

rates even whef approaches infinity.

1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 C log(2)
R (nats)

Fig. 5. Z-channel with crossover probability= 0.01: lower boundF (R, 6) to EF(,(\’,)(R) for 6 = 1,3,10,100 and the sphere packing
bound E, (R).

Observation 8:1t should be emphasized that the above numerical exampdesdiag the looseness of
Eé@(R) within a rate region and for given values ®fdo not shed any light on the tightness By (R)
given in (33), since the expression Bfy(R) requires taking the limit with respect tobeforetaking the

limit with respect to the blocklength.

V. CONCLUSION

In this work, we generalized the Poor-Vértbwer bound for the multihypothesis testing error probabi
ity. The new bound, which involves the tilted posterior disition of the hypothesis given the observation
with tilting paramete®, reduces to the original Poor-Vérdound whert = 1. We established a sulfficient
condition under which the bound (without its multiplicatifactor) provides the exact error probability
whend — oco. We also provided some examples to illustrate the tightoésse bound in terms of.

We next applied the new bound to obtain two new upper infolonagpectrum based bounds to the
reliability function of general channels with memorEé@(R) and Epy(R), given in (32) and (33),

respectively. It was shown thatey,(R) is tight at all rates (below channel capacity) for a class of
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channels that include the finite-input memoryless Gausskannel, hence providing an information-
spectral characterization for these channels’ religbfliinction. The determination ofpy(R) in closed

form and its calculation remains a challenging problemd&dly at low rates) as it involves taking the limit
with respect tod followed by optimizing the resulting large-deviation rdtenction over a constrained
set of input processes (see (33)). It is anticipated that. ichannel inputs are unlikely to be a valid
optimizer for Epy(R). Although the evaluation ofipy(R) for non-i.i.d. channel inputs appears difficult,

the judicious use of Markovian inputs might be worthwhilgdstigating in the future.

APPENDIXA

Lemma 1:If the limit (in n) of a, ; exists for everyj =1,2,3,..., then

lim Zan] Z lim a, ;.
Proof: Since for any sequencd$, } and {cn}

liminf (b, + ¢,) > liminf b, + liminf ¢,,

n—oo n—oo n—oo

we recursively have that

(o]
ligriirolf Z an; > liminfa,; + liminf Z n,

n—oo n—oo

j=1 7=2

> liminfa,; + hm mf apo + liminf Z n,j

n—oo n—oo
7j=3

v

oo
> liminf a,, ;.
> ) liminfan,
j=1
Similarly, since

lim sup (b, + ¢, ) < limsupb,, + lim sup ¢,,

n—oo n—oo n—oo
we obtain that
lim sup Z apj < Z lim sup ay, ;.
n—oo n—oo
Since
limsup @, ; = liminf a, ; = hm 0 ap,j for every j,
N—00 n—00
we have

Znh_)ngoam > hmsupZanj > hgrig}fZaw > Znhlrc}oam,

n—o0

which immediately yields the desired result. [ |
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APPENDIXB

We derive a lower bound t(Eé,ev)(R) given in (32), which can be numerically evaluated for defer
values off when the channel is memoryless.

Consider a general chann®& = {IWW"™}> | with finite input alphabett’ and arbitrary output alphabet
Y. Fix R > 0. Given an i.i.d. procesX = {X"}>, with alphabetX and entropyH(X) > R and a
constant) < § < H(X) — R arbitrarily small, define the (weakly)-typical set as:

F.(0|X) = {x”EX":‘—llogPXn(a:”)—H()_()‘ §5}
n

= {x”EX”: §5}.

We now recall the consequence of the Asymptotic Equipartifroperty for i.i.d. (memoryless) sources
(e.g., see [9], [7]).

-3 log Pe(wn) — H(X)

Proposition 2: Given an i.i.d. sourcq X, }>° , with entropy H(X) and anyd greater than zero, then
its §-typical setF, (6| X) satisfies the following.
1) If 2" € F,(0|X), thene (X)) < po (27) < emH(X)=0),
2) Pxn (}“5(5\5()) < ¢ for sufficiently largen, where the superscript™ denotes the complement set
operation.
3) |Fn(6|X)] > (1 — 8)enHX)=9) for sufficiently largen, and|F,(5|X)| < e"HX)+9) for everyn,
where|F, (5| X)| denotes the number of elements (5| X).

Let X = {X"}° | be a process that is uniformly distributed ov&r(5| X) for eachn; i.e., P, (z") =
Fo| 6|X)| for 2" € F,(6]X) andn = 1,2,---. From Proposition 2, we also obtain that fersufficiently
large andz™ € F, (5| X),

Pgn(z")
Pgn(zm)
For X to belong to the seQ(R) as defined in (29), it is required that

(1 —0)e™ < Pgn(z™)|Fn(0|X)] = < e, (40)
| . o1 _

liminf — log [S(X")| = liminf — log |F (4| X)| > R. (41)
n—oo N n—oo 1

But condition (41) can be guaranteed by settiHigX) > R and takingd < H(X) — R (as already

assumed) since

1 - 1 o -
lim inf — log | (8| X)| > lim inf — log(1 — §)e"#X)=9) = H(X) - § > R,
n—oo Mn n—oo M
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where the inequality follows from property 1 of PropositidnHence, such[)i’”};’f’:1 process, uniformly
distributed over its support, belongs t(R). Thus, we can Iower-bound?é,ev)(R) for channelW =
{Wn}ee, and a givery > 1 as follows

L

-(0 n.,,n
GO @y < R}

1
E}(ﬁ,)(R) £ sup liminf——log PXan{(x",y”) eX"xY": -

XeQ(R) "> n

1 1
> liminf —— log Pxnwn{(x”,y”) eX"x Y =9 (pryn) < R}.
n

n—oo n]Xan

For n sufficiently large, we can write

3O (@ y")
e Pl
> gnean Pxn (I”)P3n|xn (y™|z")
o A Py 072" | A
D inera %) P (w")Pﬁn\Xn (Y"|2") + X ingr, 5% Pxn (x”)Pgn‘Xn (y"|zm)
ot
diner,6x) Pxn (x”)P{?n\Xn (y[zm)
g P
T 2uanerao1x) Pxn (@">P3n\m (yn[am)
g O P )

D inexn Pxn (9?3”>P1€"|Xn (ylzm)
= log(l —9)—2né +j§§iwn(l’n; y"),

where the first inequality follows from the lower bound in Y48ccordingly,

1 1
E,(D@(R) > lirlillicgf—ﬁlog Pxnwn{(x”,y") eEX" x Y ﬁjgiwn (™ y") < R}

n—oo

1 1
> liminf ——log PX,LW”{(x”,y") eX" xY": —log(l —9)—26
n n
1 N n n
+Ej§?iwn(x ;y") < R}

- 1 L (0
= liminf — = log Penynd (27, y") € X" x Y71 = (g yn
i int — 1 log Py { (707) € 00 7 L0 07

<R- %log(l —8)+ 25}. (42)

Observe that

e2n6

1—-9

Py (2™, y") = Pgn(2") Pynjxn (y"|2") < Pgn(2") Pynixn (y"]2"),
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where the inequality follows from (40). Then, we can furth@ver-bound the right-hand side term of
(42) to obtain

1 2nd
EY(R) > liminf——log (e—Ponn{(x",y") EX" X Y-

1. o 1
ﬁjﬁ—flwn(fc ") < R— ﬁlog(1—5)+25})

1
= hmiﬂf——IOngnm{( y") € X" x Y J'%Wn( ”;y”)SRJrv}—%,
n

where it suffices to take > 20 to havey > —% log(1 — ¢§) + 24 for n sufficiently large.
In summary, we have shown that for any chanbl = {1V}, the upper boundc%)(R) to its

channel reliability function satisfies

1
EY(R) > liminf—ﬁlogPXan{( Yy E X X Y Lo (”;y")§R+7}—25

m in I xnwn (7
for # > 1 and any i.i.d. input proces¥ with
H(X)>R
0<d<HX)-R
v > 20.

We next specialize the above lower bound for the case whemeh®” is memoryless. For a memoryless

channel with an i.i.d. input, we have fer< 0,

Peope {( )X L0 ey < Rw}

= Py Tyt) e AT x Y ,OZlog Pg‘X@iui) >np(R+ )
- XnWwn ) >
=1 Zz'e)( PX( ,)P$|X(yi|‘r,)
plog Y‘X<y\z> n
= o) ZPX x) Py x (y|r)e R
reX yey
0 [ 5 Pttt (oYY
- ¢ (1) Pyx
TEX YeY > wex Px (@) Y|x(y|x )

n

P1+p9

o ) ) DN

I3
T (Swex Pr@) Pk yla)
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where the inequality follows from Markov’s inequality. Téufor p < 0, we have

1 1

1+4-p6 "
1 P y|x
> liminf —— log e~ PE+7) Zsz(x) Y|X( ) 5 — 20
e S e P (@) Pl (o)
2EX yey vex I'X vix\Y
P1+p9 y T
> lmint { p(R+7) —log |33 Pe(o) SN B
e i (Deer Pr@) Pl 0l)
0
Py (yle)

— 20.

= p(R+7)—log Px(x) 5
a:eZX yezy (meey Px(x’)Pﬁ\x(y\x’))

Sincep < 0, v should be made as small as possible. Buy as 24, it should thus approack to obtain

) Péﬁ?"(y!x)
Epy(R) = pR—log ZZPX@) 5| —2(1—p)d.
zeX yey (Zg;/ey PX<x/)P}9/|X (y|$,>>

Taking 6 | 0 yield the following lower bound taE%) (R) for a memoryless channel

0) PL (ylw)
Epy(R) = sup  sup § pR —log Z Z Px(x) p
P> 1 <0 i (T Pe@) Pl (l))
= F(R,0) (43)

for 6 > 1.
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