• p. 6, Theorem 2.1: replace “p ∈ [0, 1]” with “p ∈ (0, 1)” and replace “0 ≤ p ≤ 1” with “0 < p ≤ 1”

• p. 7, lines 8-10: replace

\[
k r \leq I(\frac{1}{2}) \leq I(\frac{2}{n}) \leq k + 1
\]

with

\[
k r \leq I(\frac{1}{2}) \leq I(\frac{1}{n}) \leq k + 1
\]

and replace

\[
\log_b n^k \leq \log_b 2^r \leq \log_b n^{k+1} \iff \frac{k}{r} \leq \frac{\log_b(2)}{\log_b(n)} \leq \frac{k + 1}{r}
\]

with

\[
\log_b n^k \leq \log_b 2^r < \log_b n^{k+1} \iff \frac{k}{r} \leq \frac{\log_b(2)}{\log_b(n)} < \frac{k + 1}{r}
\]

• p. 10, line above Lemma 2.4: a space should be inserted before “(its proof is left as an exercise)”

• pp. 44-45: replace the plus sign with the minus sign in front of the terms

\[
\frac{1}{n} \log_2 (1 - \alpha_n) \text{ and } \frac{1}{n} \log_2 [1 - \varepsilon - P_{X^n}(A^n_c(\delta))]
\]

• p. 48, Problem 2.15: assume that X and \(\hat{X} \) have a common alphabet \(X \) and that Z and \(\hat{Z} \) have a common alphabet Z.

• p. 65, three lines above Observation 3.7: the strict inequality should be equality

• p. 76, caption (a) of the table should be:

“A stationary ergodic (irreducible) first-order Markov source \(\{X_n\}_{n=1}^{\infty} \) with alphabet \(X \) is symmetric if its (unique) stationary distribution is the uniform distribution. This is achieved when the source’s transition probability matrix \([p_{x_1,x_2}] \), where \(p_{x_1,x_2} = P_{X_2|X_1}(x_2|x_1) \), \(x_1, x_2 \in X \), is doubly stochastic (i.e., it is a square non-negative matrix in which every row sums to 1 and every column sums to 1).”

• p. 82, lines 10-11: replace “\(\ell_{\text{max}} \) should be less than” with “\(\ell_{\text{max}} \) should be no larger than”

• p. 90, line 6 of Observation 3.35: replace “one can get” with “one may get”

• p. 94, item 2 of Definition 3.37: replace “node” with “nodes”

• p. 97, line 9 of item 2: “L = 3” should be “L = 7”

• p. 101, Problem 3.12: source symbols \(x \) should be replaced with sourcewords \(x^n \) as in Theorem 3.27 (but the upper bound on the average code rate is unchanged)

• p. 114, line 2 of Definition 4.5: the second “code” is redundant

• p. 116, Definition 4.7: in the definition of \(\mathcal{F}_n(\delta) \), “< \delta” should be “\(\leq \delta \)”

• p. 127, line 13 of Section 4.4: after “capacity of the BEC” add “(see Example 4.22 in Section 4.5)”

• p. 149, line 8 of the second item: “an output quantization” should be “and output quantization”

• p. 149, line 4 of the third item: the linebreak should be removed

• p. 151, problem 7: “DMC” should be “a DMC”

• p. 172, Definition 5.11: a logarithm is missing in the expectation; i.e., we have \(D(X \| Y) = E \left[\log_2 \frac{f_{Y,X}(X)}{f_{X}(X)} \right] \)

• p. 176, item 11: function g is invertible, continuously differentiable, with a non-zero Jacobian

• p. 180, line 3 of Theorem 5.20: replace “\(S_{X^n} = \mathbb{R}^n \)” with “\(S_{X^n} \subseteq \mathbb{R}^n \)”

• p. 181: line 1 of the scalar case, replace “\(S_X = \mathbb{R} \)” with “\(S_X \subseteq \mathbb{R} \)” and in the proof, the three integrals should be over “\(S_X \)” instead of “\(\mathbb{R} \)”
We herein focus on the rate-distortion function of continuous memoryless sources under the absolute error distortion measure. In particular, we provide the expression of the rate-distortion function for Laplacian sources with parameter λ (i.e., with variance $2\lambda^2$) and derive an upper bound on the rate-distortion function of arbitrary zero-mean real-valued sources with absolute mean λ (i.e., $E[|Z|] = \lambda$). When $\lambda/D \gg 1$, the upper bound approaches the rate-distortion function of Laplacian sources; hence in this low-distortion regime, Laplacian sources maximize the rate-distortion function (while Theorem 6.26 shows that Gaussian sources maximize the rate-distortion function under the squared error distortion measure for all distortion values). It is worth pointing out that in image coding applications, the Laplacian distribution is a good model to approximate the statistics of transform coefficients such as discrete cosine and wavelet transform coefficients [315, 375]. Finally, analogously to Theorem 6.27, we obtain a Shannon lower bound on the rate-distortion function under the absolute error distortion.

Theorem 6.29 Under the additive absolute error distortion measure, namely $\rho_n(z^n, \hat{z}^n) = \sum_{i=1}^n |z_i - \hat{z}_i|$, the rate-distortion function of a memoryless Laplacian source $\{Z_i\}$ with mean zero and parameter $\lambda > 0$ (variance $2\lambda^2$ and pdf $f_Z(z) = \frac{1}{\lambda}e^{-|z|/\lambda}, z \in \mathbb{R}$) is given by

$$R(D) = \begin{cases} \log_2 \frac{\lambda}{D}, & \text{for } 0 < D \leq \lambda \\ 0, & \text{for } D > \lambda. \end{cases}$$

Furthermore, the rate-distortion function of any continuous memoryless source $\{Z_i\}$ with a pdf of support \mathbb{R}, zero mean and $E[|Z|] = \lambda$ (where $\lambda > 0$ is a fixed parameter) satisfies

$$R(D) \leq \log_2 \left(\frac{\lambda}{D} + 1 \right) \text{ for } 0 < D \leq \lambda.$$

Proof: For $0 < D \leq \lambda$, a zero-mean Laplacian Z with parameter λ and any $f_{\hat{Z}|Z}$ satisfying $E[|Z - \hat{Z}|] \leq D$,

$$I(Z; \hat{Z}) = h(Z) - h(Z|\hat{Z}) = \log_2(2e\lambda) - h(Z - \hat{Z}|\hat{Z}) \geq \log_2(2e\lambda) - h(Z - \hat{Z}) \quad \text{(by Lemma 5.14)} \geq \log_2(2e\lambda) - \log_2(2eD) = \log_2 \frac{\lambda}{D},$$

where the last inequality follows since $h(Z - \hat{Z}) \leq \log_2(2eE[|Z - \hat{Z}|]) \leq \log_2(2eD)$ by Observation 5.21 and the fact that $E[|Z - \hat{Z}|] \leq D$. Subject to $D \leq \lambda$, we can choose independent V and \hat{Z} such that $Z = V + \hat{Z}$ and V
is a zero-mean Laplacian random variable with parameter D (i.e., $E[|V|] = D$).\(^1\) Thus, $h(Z - \hat{Z}|\hat{Z}) = h(V|\hat{Z}) = h(V) = \log_2(2eD)$ and the lower bound $\log_2(\lambda/D)$ is achieved.

For $D > \lambda$, let \hat{Z} satisfy $\Pr(\hat{Z} = 0) = 1$ and be independent of Z. Then $E[|Z - \hat{Z}|] \leq E[|Z|] + E[|\hat{Z}|] = \lambda < D$. For this choice of \hat{Z}, $R(D) \leq I(Z; \hat{Z}) = 0$ and hence $R(D) = 0$. This completes the derivation of $R(D)$ for a Laplacian Z.

We next prove the upper bound on $R(D)$ for an arbitrary Z with mean zero and $E[|Z|] = \lambda$. Since

$$R(D) = \min_{f_{\hat{Z}|Z}} I(Z; \hat{Z}),$$

we have that for any $f_{\hat{Z}|Z}$ satisfying the distortion constraint,

$$R(D) \leq I(Z; \hat{Z}) = I(f_Z, f_{\hat{Z}|Z}).$$

For $0 < D \leq \lambda$, choose $\hat{Z} = Z + W$, where W is a zero-mean Laplacian random variable that is independent of Z and that satisfies $E[|W|] = D$. Thus

$$E[|\hat{Z}|] = E[|Z + W|] \leq E[|Z|] + E[|W|] = \lambda + D$$

and

Hence this choice of \hat{Z} satisfies the distortion constraint. We can therefore write for this \hat{Z} that

$$R(D) \leq I(Z; \hat{Z}) = h(\hat{Z}) - h(\hat{Z}|Z) = h(\hat{Z}) - h(W + Z|Z) = h(\hat{Z}) - h(W|Z) = h(\hat{Z}) - h(W) \quad \text{ (by independence of } Z \text{ and } W)$$

$$= h(\hat{Z}) - \log_2(2eD) \leq \log_2[2e(\lambda + D)] - \log_2(2eD) \quad \text{ (by Observation 5.21)}$$

$$= \log_2 \left(\frac{\lambda}{D} + 1 \right).$$

\(\square\)

Note: (Tighter upper bounds) A tighter upper bound than $\log_2(\lambda/D) + 1$ can be shown using a similar proof with the exception that $E[|\hat{Z}|]$ above is determined exactly; it is as follows:

$$R(D) \leq \log_2 \left(g(\frac{\lambda}{D}) \right) \quad \text{for } 0 < D \leq \lambda,$$

where, setting $U = Z/\lambda$ (with pdf $f_U(u) = \lambda f_Z(\lambda u)$, $u \in \mathbb{R}$), the function

$$g(a) := \int_0^\infty f_U(u) \int_-\infty^\infty \left| s + au \right| e^{-|s|} ds du, \quad a \geq 1$$

\(^1\)Indeed, with a zero-mean Laplacian Z and $Z = V + \hat{Z}$, where V and \hat{Z} are independent of each other, we can write

$$\frac{1}{1 + \lambda^2 t^2} = \frac{1}{1 + D^2 t^2} \Rightarrow \phi_Z(t) = \phi_{\hat{Z}}(t) = \frac{1 + D^2 t^2}{1 + \lambda^2 t^2} = \frac{D^2}{\lambda^2} + \left(1 - \frac{D^2}{\lambda^2} \right) \frac{1}{1 + \lambda^2 t^2},$$

where $\phi_Z(t) := E[e^{jtZ}]$ is the characteristic function of \hat{Z} (where $t = \sqrt{-1}$). Thus \hat{Z} equals zero with probability D^2/λ^2 and is zero-mean Laplacian distributed with parameter λ with probability $1 - D^2/\lambda^2$.
can be numerically computed. Furthermore, it can be shown that if the source has a symmetric pdf (i.e., $f_Z(z) = f_Z(-z)$ for all $z \in \mathbb{R}$), then $g(a) \leq g(1) + a - 1$ for $a \geq 1$; resulting in the following simpler upper bound (that is still tighter than $\log_2(\frac{\lambda}{D} + 1)$):

$$R(D) \leq \log_2 \left(\frac{\lambda}{D} + b \right) \quad \text{for } 0 \leq D \leq \lambda,$$

where $b := 2 \int_0^\infty e^{-u} f_U(u) du \leq 1$. For example, if Z is uniform over $[-2\lambda, 2\lambda]$, then $b = \frac{1}{2} (1 - e^{-2}) = 0.432$.

- p. 247, line 4 of Observation 6.31: replace "$d(\cdot, \cdot)$" with "$d(\cdot)$"
- p. 252, 257 & 258, Tables 6.1-6-3: The top of the last column should be $D_{SL} = 10^{-2}$
- p. 265, Property 4 of Property A.10: replace "$(\forall A \in \mathbb{R})$" with "$(\forall L \in \mathbb{R})$"
- p. 271, item 5: the inequalities hold provided we do not have sums of the form $\infty - \infty$.
- p. 281: in the item before last, the first displayed equation should be:

$$\Pr[X_n = x_{k+1} | X_{n-1} = x_k, \ldots, X_{n-k} = x_1] = \Pr[X_{k+1} = x_{k+1} | X_k = x_k, \ldots, X_1 = x_1].$$

- p. 282: the last line should end with a period instead of a comma
- p. 288, statement in parentheses in Theorem B.13: replace "$-\mu$" with "μ"
- p. 292, Theorem B.16 and footnote 11: replace "$O \in \mathbb{R}^m$" with "$O \subset \mathbb{R}^m$"
- p. 294, bottom line: after "both convex" add "(where $\mathcal{X} \subseteq \mathbb{R}^n$ is a convex set)"