Speaker: Brett Nasserden (University of Waterloo)

Title: Arithmetic dynamics on projective bundles over elliptic curves.

Abstract: Let X be a smooth projective variety defined over a number field K. Suppose that X is endowed with a surjective endomorphism $f : X \to X$. A numerical measure of the complexity of the morphism f is its dynamical degree, which can be defined as the spectral radius of the pullback morphism $f^* : N^1(X) \to N^1(X)$, where $N^1(X)$ is the Neron-Severi group of X. On the other hand, given a point P in X defined over K, we have the following arithmetic measure of complexity of f at P: The arithmetic degree of P with respect to f is defined to be the limit, as $n \to \infty$, $h(f^n(P))^{1/n}$ where $h(x)$ is the height of a point x in X. The Kawaguchi-Silverman conjecture predicts that if the forward orbit of P, $\{P, f(P), f^2(P), \ldots\}$, is Zariski dense, then the arithmetic degree of P with respect to f equals the dynamical degree of f.

In this talk, we will discuss how to prove the Kawaguchi-Silverman conjecture when X is the projectivization of certain vector bundles on an elliptic curve C. Specifically, Atiyah proved that for each integer $r > 0$, there is a unique indecomposable rank r degree zero vector bundle F_r on C with a non-zero global section. We will discuss how one may prove the Kawaguchi-Silverman conjecture for the projectivizations of these bundles. Along the way, we will extend some results of Atiyah in the following way: Atiyah showed that the Iitaka dimension of the line bundle $O(1)$ on $P(F_2)$ is zero. We prove that the Iitaka dimension of the line bundle $O(1)$ on $P(F_r)$ is strictly positive whenever $r > 2$ and relate this to the Kawaguchi-Silverman conjecture.