Problem Set \#1

Due: 15 September 2011

1. There is a useful way of describing the points of the closed interval $[a, b]$. As usual, we assume that $a<b$.
(a) Consider the interval $[0, b]$, for $b>0$. Prove that if x lies in $[0, b]$, then we have $x=t b$ for some t with $0 \leq t \leq 1$. What is the significance of the number t ? What is the midpoint of the interval $[0, b]$?
(b) Prove that if $x \in[a, b]$, then we have $x=(1-t) a+t b$ for some t with $0 \leq t \leq 1$. What is the midpoint of the interval $[a, b]$? What is the point $1 / 3$ of the way from a to b ?
(c) Prove conversely that if $0 \leq t \leq 1$ then $(1-t) a+t b$ is in $[a, b]$.
2. If X and Y are sets, then the union $X \cup Y$ is the set consisting of all elements that are in either X and Y (or in both X and Y). The intersection of X and Y is the set $X \cap Y$ consisting of all elements that are in both X and Y. The empty set, denoted by \varnothing, is the set that contains no element.

Describe each of the following subsets of \mathbb{R} as a union of intervals.
(a) $A=\left\{x \in \mathbb{R}: x^{2}+4 x+13<0\right\} \cap\left\{x \in \mathbb{R}: 3 x^{2}+5>0\right\}$
(b) $B=\{x \in \mathbb{R}:(x+2)(x-1)(x-5)<0\} \cap\left\{x \in \mathbb{R}: \frac{3 x+1}{x-2} \geq 0\right\}$
(c) $C=\left\{x \in \mathbb{R}: \frac{x^{2}-5 x+4}{x^{2}-9}<0\right\} \cup\{x \in \mathbb{R}: \sqrt{7 x+1}+x=17\}$
3. Let x_{1}, x_{2}, y_{1}, and y_{2} be four real numbers.
(a) Show that $\left(x_{1}^{2}+x_{2}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}\right)=\left(x_{1} y_{1}+x_{2} y_{2}\right)^{2}+\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}$.
(b) Prove the Cauchy-Schwarz inequality:

$$
\begin{equation*}
x_{1} y_{1}+x_{2} y_{2} \leq \sqrt{x_{1}^{2}+x_{2}^{2}} \sqrt{y_{1}^{2}+y_{2}^{2}} \tag{CS}
\end{equation*}
$$

(c) Deduce that equality holds in (CS) only when $y_{1}=y_{2}=0$ or when there is a number λ such that $x_{1}=\lambda y_{1}$ and $x_{2}=\lambda y_{2}$.

