Problem Set \#3

Due: 29 September 2011

1. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is even if $f(x)=f(-x)$ and odd if $f(x)=-f(-x)$. For example, the functions $x \mapsto x^{2}, x \mapsto|x|$ and $x \mapsto \cos (x)$ are even, while $x \mapsto x$ and $x \mapsto \sin (x)$ are odd.
(a) In the four cases obtain by choosing $f: \mathbb{R} \rightarrow \mathbb{R}$ to be even or odd, and $g: \mathbb{R} \rightarrow \mathbb{R}$ to be even or odd, determine whether $f+g$ is even, odd, or not necessarily either.
(b) Do the same for $f g$.
(c) Do the same for $f \circ g$.
2. Using the definition of a limit, establish the following:
(a) Show that $\lim _{x \rightarrow 1} \sqrt{x}=1$.
(b) For any $a \in \mathbb{R}$, show that $\lim _{x \rightarrow a} \sin (x)=\sin (a)$.

Hint. The following sum-product trigonometric identity may be useful:

$$
\sin (x)-\sin (a)=2 \sin \left(\frac{x-a}{2}\right) \cos \left(\frac{x+a}{2}\right) .
$$

3. (a) Use the definition of the limit to prove that $\lim _{x \rightarrow 0} \frac{1}{x} \neq \ell$ for every real number ℓ.
(b) Suppose that $\lim _{x \rightarrow a} f(x)=\ell$. If $\ell>0$, then show that there exists a neighbourhood $(a-r, a+r)$ of a such that f is positive on $(a-r, a+r) \backslash\{a\}$.
