Problem Set #3

Due: 29 September 2011

- **1.** A function $f : \mathbb{R} \to \mathbb{R}$ is *even* if f(x) = f(-x) and *odd* if f(x) = -f(-x). For example, the functions $x \mapsto x^2$, $x \mapsto |x|$ and $x \mapsto \cos(x)$ are even, while $x \mapsto x$ and $x \mapsto \sin(x)$ are odd.
 - (a) In the four cases obtain by choosing $f : \mathbb{R} \to \mathbb{R}$ to be even or odd, and $g : \mathbb{R} \to \mathbb{R}$ to be even or odd, determine whether f + g is even, odd, or not necessarily either.
 - (b) Do the same for fg.
 - (c) Do the same for $f \circ g$.
- 2. Using the definition of a limit, establish the following:
 - (a) Show that $\lim_{x\to 1} \sqrt{x} = 1$.
 - (b) For any $a \in \mathbb{R}$, show that $\lim_{x \to a} \sin(x) = \sin(a)$.

Hint. The following sum-product trigonometric identity may be useful:

$$\sin(x) - \sin(a) = 2\sin\left(\frac{x-a}{2}\right)\cos\left(\frac{x+a}{2}\right).$$

- 3. (a) Use the definition of the limit to prove that $\lim_{x\to 0} \frac{1}{x} \neq \ell$ for every real number ℓ .
 - (b) Suppose that $\lim_{x\to a} f(x) = \ell$. If $\ell > 0$, then show that there exists a neighbourhood (a-r,a+r) of a such that f is positive on $(a-r,a+r) \setminus \{a\}$.