Problem Set \#7

Due: Thursday, 27 October 2011

1. Construct counterexamples for the following statements.
(a) If a function $g(x)$ is differentiable at $x=a$ and a function $f(x)$ is not differentiable at $g(a)$, then the function $(f \circ g)(x)$ is not differentiable at $x=a$.
(b) If a function $g(x)$ is not differentiable at $x=a$ and a function $f(x)$ is differentiable at $g(a)$, then the function $(f \circ g)(x)$ is not differentiable at $x=a$.
(c) If a function $g(x)$ is not differentiable at $x=a$ and a function $f(x)$ is not differentiable at $g(a)$, then the function $(f \circ g)(x)$ is not differentiable at $x=a$.
2. If the function f is three times differentiable and $D[f] \neq 0$ then the Schwarzian derivative of f at x, denoted $S[f]$, is defined to be

$$
S[f]:=\frac{D^{3}[f]}{D[f]}-\frac{3}{2}\left(\frac{D^{2}[f]}{D[f]}\right)^{2}
$$

(a) Let $f(x):=\frac{a x+b}{c x+d}$ where a, b, c, and d are constants satisfying $a d-b c \neq 0$. Show that $S[f]=0$.
(b) For functions g and h, show that $S[g \circ h]=(S[g] \circ h)(D[h])^{2}+S[h]$.
3. Let P be the population of a certain region as a function of time t. The rate of change of this population depends on the current population and is given by

$$
\frac{d P}{d t}=k P(\ell-P)
$$

for positive constants k and ℓ.
(a) For what nonnegative values of P is the populations increasing? Decreasing? For what values of P does the population remain constant?
(b) Find $\frac{d^{2} P}{d t^{2}}$ as a function of P.

