Problem Set \#12

Due: Thursday, 1 December 2011

1. The graph of $f(t)$ appears below.

If $g(x):=\int_{0}^{x} f(t) d t$, then find the following:
(a) $g(0)$
(b) $g^{\prime}(1)$
(c) The interval where g is convex.
(d) The value of x where g takes its maximum on the interval $[0,8]$.
2. (a) Find the derivative of the function: $H(z)=\int_{e^{z}}^{\cos (z)} \ln \left(w^{3}\right) d w$.
(b) Find all continuous functions h satisfying $\int_{0}^{x} h(y) d y=[h(x)]^{2}+C$ for some constant C.
3. Let g be a differentiable function such that $g(0)=0$ and $0<g^{\prime}(x) \leqslant 1$ for all x. For all $x \geqslant 0$, prove that

$$
\int_{0}^{x}(g(t))^{3} d t \leqslant\left(\int_{0}^{x} g(t) d t\right)^{2}
$$

