Problem Set #12 Due: Thursday, 1 December 2011

1. The graph of f(t) appears below.

- (c) The interval where g is convex.
- (d) The value of x where g takes its maximum on the interval [0,8].
- 2. (a) Find the derivative of the function: $H(z) = \int_{e^z}^{\cos(z)} \ln(w^3) dw$. (b) Find all continuous functions *h* satisfying $\int_0^x h(y) dy = [h(x)]^2 + C$ for some constant *C*.
- **3.** Let *g* be a differentiable function such that g(0) = 0 and $0 < g'(x) \le 1$ for all *x*. For all $x \ge 0$, prove that

$$\int_0^x (g(t))^3 dt \leqslant \left(\int_0^x g(t) dt\right)^2.$$

MATH 120: page 1 of 1