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1. For all nonnegative integers n, prove by induction that
n

∑
k=0

k 2k = (n−1)2n+1 +2 .

Solution. We proceed by induction on n. When n = 0, we have

n

∑
k=0

k 2k = (0)20 = 0 =−2+2 = (0−1)20+1 +2 ,

so the base case holds. Assume that
n
∑

k=0
k 2k = (n−1)2n+1 +2. It follows that

n+1

∑
k=0

k 2k =

(
n

∑
k=0

k 2k

)
+(n+1)2n+1

=
(
(n−1)2n+1 +2

)
+(n+1)2n+1

= (n−1+n+1)2n+1 +2

= (2n) 2n+1 +2 =
(
(n+1)−1

)
2n+2 +2

which completes the induction.



2. (i) Use the Euclidean Algorithm to calculate gcd(210,48).

Solution. The Euclidean Algorithm involves repeatedly dividing the dividend by
the remainder until one reaches 0:

210 = (4)(48)+18

48 = (2)(18)+12

18 = (1)(12)+6

12 = (2)(6)+0

Since the final nonzero remainder is the greatest common divisor, we see that
gcd(210,48) = 6.

(ii) For Euler’s totient function φ , compute φ(24).

Solution. Euler’s totient function φ(24) counts the positive integers up to 24 that
are coprime to 24. Using sieve methods, we have

φ(24) =

∣∣∣∣∣∣
 1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24


∣∣∣∣∣∣= 8 .



3. Define a relation on R2 as follows: (x1,x2)∼ (y1,y2) if and only if x2
1 + x2

2 = y2
1 + y2

2.
(i) Demonstrate that ∼ is an equivalence relation.

Solution. We verify the three defining properties of an equivalence relation:
(Reflexive) Consider any (x1,x2) in R2. Since x2

1 + x2
2 = x2

1 + x2
2, we see that

(x1,x2)∼ (x1,x2), so the relation is reflexive.
(Symmetric) Suppose that we have the relation (x1,x2)∼ (y1,y2). By definition,

we have x2
1 + x2

2 = y2
1 + y2

2. We see that y2
1 + y2

2 = x2
1 + x2

2 and (y1,y2)∼ (x1,x2),
so the relation is symmetric.

(Transitive) Suppose that (x1,x2)∼ (y1,y2) and (y1,y2)∼ (z1,z2). By definition,
we have x2

1+x2
2 = y2

1+y2
2 and y2

1+y2
2 = z2

1+z2
2. We deduce that x2

1+x2
2 = z2

1+z2
2

and (x1,x2)∼ (z1,z2), so the relation is transitive.
We conclude that this relation ∼ on R2 is an equivalence relation.

(ii) Describe the set of equivalence classes.

Solution. For any pair (x1,x2) ∈ R2, we have x2
1 + x2

2 ⩾ 0. For each nonnegative
real number r, the equivalence class {(x1,x2) ∈ R2 | x2

1 + x2
2 = r2} consists of all

points in the real plane lying on a circle of radius r centred at the origin. Since

each pair (x1,x2) lies on the unique circle of radius
√

x2
1 + x2

2, the interval [0,∞)

forms a system of distinct representatives.



4. (i) Establish that, for any integer m, we have m2 ≡ 0,1, or 4 mod 8.

Solution. Since {0,1,2,3,4,5,6,7} is a system of distinct representatives modulo
8 and

02 ≡ 0 mod 8 42 ≡ 16 ≡ 0 mod 8

12 ≡ 1 mod 8 52 ≡ 25 ≡ 1 mod 8

22 ≡ 4 mod 8 62 ≡ 36 ≡ 4 mod 8

32 ≡ 9 ≡ 1 mod 8 72 ≡ 49 ≡ 1 mod 8

we conclude that, for any integer m, we have m2 ≡ 0,1, or 4 mod 8.

(ii) Confirm that the equation x2 + y2 + z2 = 8007 has no integer solutions.

Solution. If the given equation had integer solutions, then it would have also have
solutions modulo 8. Reducing modulo 8 gives x2 + y2 + z2 ≡ 7 mod 8. Using
part (i), we know that m2 ≡ 0,1, or 4 mod 8. To have x2 + y2 + z2 ≡ 7 mod 8, an
odd number of the 3 squares must be congruent to 1 modulo 8. When all 3 are
congruent to 1 modulo 8, we have x2 + y2 + z2 ≡ 3 ̸≡ 7 mod 8. When 1 square is
congruent to 1 modulo 8, we have x2 + y2 + z2 ≡ 0 or 5 ̸≡ 7 mod 8. We conclude
that x2 + y2 + z2 ̸≡ 7 mod 8, so there are no integer solutions.
Remark. One can enumerate the 10 possible cases:

x2 + y2 + z2 ≡



0 mod 8 if x2,y2,z2 are all congruent to 0 modulo 8, or two
are congruent to 4 and the other is congruent to 0

1 mod 8 if one of x2,y2,z2 is congruent to 1 modulo 8
and the other two are both congruent to 0 or 4

2 mod 8 if two of x2,y2,z2 are congruent to 1 modulo 8
and the other is congruent to 0

3 mod 8 if x2,y2,z2 are all congruent to 1 modulo 8

4 mod 8 if one of x2,y2,z2 are congruent to 4 modulo 8
and the other two are both congruent to 0 or 4

5 mod 8 if one of x2,y2,z2 is congruent to 0 modulo 8, one
is congruent to 1, and the other is congruent to 4

6 mod 8 if two of x2,y2,z2 are congruent to 1 modulo 8,
and the other is congruent to 4

Having enumerated all possibilities,



5. Let F3 := Z/⟨3⟩ be the field with 3 elements. Consider the two polynomials f := x4 +2x3 + x2 +2 and
g := x3 +2x in the polynomial ring F3[x].

(i) Find the quotient and remainder for the division of f by g.

Solution. We have

x+2
x3 +2x x4+2x3+ x2+0x+2

x4+0x3+2x2

2x3+2x2+0x+2
2x3+0x2+ x+0

2x2+2x+2

so the quotient is f // g = x+2 and the remainder is f % g = 2x2 +2x+2.

(ii) Does the polynomial f have a multiple root in F3? Explain your reasoning.

Solution. Since {0,1,2} is a system of distinct representatives modulo 3 and

f ([0]3) = [2]3
f ([1]3) = [1]3 +[2]3 +[1]3 +[2]3 = 0
f ([2]3) = [1]3 +2[2]3 +[1]3 +[2]3 = [2]3

it follows that [1]3 is the only root of polynomial f . Observe that

D( f ) = 4x3 +6x2 +2x = x3 +2x = g

and g([1]3) = [1]3 + 2[1]3 = [0]3. Hence, [1]3 is a root of f having multiplicity
greater than 1.

Remark. One can verify that f = (x+2)2(x2 + x+2).



6. Consider the following subset of real (2×2)-matrices

R :=
{[

a b
−b a

] ∣∣∣ a,b ∈ R
}
.

(i) Let M2(R) be the ring of all real (2×2)-matrices. Prove that R is a subring of M2(R).

Solution. For any real numbers a, b, c, and d, we have[
a b
−b a

]
−
[

c d
−d c

]
=

[
(a− c) (b−d)
−(b−d) (a− c)

]
∈ R ,[

a b
−b a

][
c d
−d c

]
=

[
(ac−bd) (ad +bc)
−(ad +bc) (ac−bd)

]
∈ R ,

and setting a = 1 and b = 0 implies I2 ∈ R. Thus, the subset R is a subring of
M2(R).

(ii) Prove that R is a commutative ring.

Solution. Since R is a commutative ring, we have[
c d
−d c

][
a b
−b a

]
=

[
(ac−bd) (ad +bc)
−(ad +bc) (ac−bd)

]
=

[
a b
−b a

][
c d
−d c

]
which shows that the ring R is also commutative.

(iii) Is R a field? Provide a proof or counterexample.

Solution. When (a,b) ̸= (0,0), we have a2 +b2 ̸= 0 and

1
a2 +b2

[
a −b
b a

][
a b
−b a

]
=

1
a2 +b2

[
a2 +b2 0

0 a2 +b2

]
=

[
1 0
0 1

]
= I2 .

Hence, every nonzero element in R is a unit and R is a field.

Remark. One verifies that R ∼= C.



Space for additional work. If you want this work to be graded, then clearly indicate which problem you
are continuing on both this page and the page with the original problem.


