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Leopold Kronecker (1823–1891) famously declared that “Dear God
made the whole numbers, all else is the work of man”. This phrase
ambiguously refers to the set ℕ of nonnegative integers or the
larger set ℤ of integers, but this chapter focuses exclusively on the
smaller set. Familiar to people of ancient times, it actually took
over two millennia to gain a full understanding of these numbers.

The dictum “Die ganzen Zahlen hat
der liebe Gott gemacht, alles andere
ist Menschenwerk” was allegedly
uttered by Kronecker in Berlin in 1886.
It first appeared in print in the
memorial article: H. Weber, Leopold
Kronecker, Mathematische Annalen ΖΕ
(1893) 1–25.

0.0 Principle of Induction

What are the nonnegative integers ℕ∶= {0, 1, 2, … }? To understand
this fundamental set, we examine an axiomatic characterization.

The Italian mathematician Giuseppe
Peano (1858–1932) introduced these
axioms in his 1889 treatise titled
Arithmetices principia, nova methodo
exposita.

-ƨǂǘȂǘɊǘȌȂ ΒͩΒͩΒͩ A triple (𝒳,S, 𝑒) consisting of a set 𝒳, a function
S∶𝒳 →𝒳, and a distinguished element 𝑒 ∈ 𝒳 is a Peano system if
the following three axioms hold:
(A0) For any element 𝑥 in 𝒳, we have S(𝑥) ≠ 𝑒.
(A1) The function S∶ 𝒳 → 𝒳 is injective; for any two elements 𝑥

and 𝑦 in 𝒳, the equation S(𝑥) = S(𝑦) implies that 𝑥 = 𝑦.
(A2) For any subset 𝒴 ⊆ 𝒳 such that 𝑒 ∈ 𝒴 and S(𝑦) ∈ 𝒴 for all𝑦 ∈ 𝒴, we have 𝒴 = 𝒳.

The next result indicates that one may take the Peano axioms
as the definition of the nonnegative integers.

ÒǍƨȌȵƨǾ ΒͩΒͩΓͩ For the succesor function S∶ ℕ → ℕ, the triple(ℕ,S, 0) is a Peano system. For any Peano system (𝒳,S′, 𝑒), there exists
a bijection 𝜋∶ℕ→𝒳 such that 𝜋(0) = 𝑒 and 𝜋(S(𝑛)) = S′(𝜋(𝑛)) for
any 𝑛 in ℕ.

Every Peano system is isomorphic to
the canonical triple (ℕ,S, 0).

Sketch of proof. To prove the first part requires an independent
definition for the set ℕ. In set theory, the nonnegative integers are
usually constructed recursively as

0∶= {} = ∅1∶= {0} = 0 ∪ {0} = {∅}2∶= {0, 1} = 1 ∪ {1} = {∅, {∅}}3∶= {0, 1, 2} = 2 ∪ {2} = {∅, {∅}, {∅, {∅}}}4∶= {0, 1, 2, 3} = 3 ∪ {3} = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}⋮
and the successor function 𝑆∶ℕ→ℕ is defined by S(𝑛)∶= 𝑛 ∪ {𝑛}. In other words, the successor function

on ℕ satisfies S(𝑛) = 𝑛 + 1.

For the second part, consider the function 𝜋∶ℕ→𝒳 defined, via
induction, by 𝜋(0) = 𝑒 and 𝜋(S(𝑛)) = S′(𝜋(𝑛)). Since 𝑒 is not in the
image of S′ and S′ is injective, the function 𝜋 is also injective. To
establish that 𝜋 is surjective one uses axiom (A2).
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The axiom (A2), referred to as the principle of induction, is
the most complex and most frequently used. It may be more fa‑
miliar in the another guise. A property of the set ℕ is a function𝑃∶ℕ→ {true, false}. We say that the property 𝑃(𝑛) holds for some
nonnegative integer 𝑛 if and only if 𝑃(𝑛) = true. The common
form of induction is prescribed as follows.

2120191817 16 1514131211109876543
2

1
0

Figure 0.1: Induction is like
toppling dominoes. Pushing the
zeroth one is the base case. Each
subsequent domino being
knocked over by its predecessor is
the induction step.

ÒǍƨȌȵƨǾ ΒͩΒͩΔͩ To demonstrate that a property 𝑃(𝑛) holds for any
nonnegative integer 𝑛, it is enough to prove
Base case: 𝑃(0) holds, and
Induction step: for any nonnegative integer 𝑛, the assumption that𝑃(𝑛) holds implies that the property 𝑃(𝑛 + 1) holds.

Proof. Each property 𝑃 satisfied by (some or all of) the elements inℕ corresponds to a subset of ℕ, namely 𝒴 ∶= {𝑚 ∈ ℕ ∶ 𝑃(𝑚) holds}.
The principle of induction establishes that 𝒴 = ℕ.

The next two problems typify the basic use of induction. Notice
that the base case need to be 0.

¹ȵȌƕǴƨǾ ΒͩΒͩΕͩ For any positive integer 𝑛, verify that

𝑛−1∑𝑗=0(2𝑗 + 1) = 𝑛2 .
Inductive solution. When 𝑛 = 1, we have 2(0)+1 = (1)2, so the base
case holds. Assuming that ∑𝑛−2𝑗=0(2𝑗 + 1) = (𝑛 − 1)2 holds, we show
that the equation ∑𝑛−1𝑗=0(2𝑗 + 1) = 𝑛2 also holds. The induction
step is

𝑛−1∑𝑗=0(2𝑗 + 1) = ⎧
⎪⎩
𝑛−2∑𝑗=0(2𝑗 + 1)⎫⎪⎭+ ⎧⎩2(𝑛 − 1) + 1)⎫⎭

= (𝑛 − 1)2 + 2(𝑛 − 1) + 1 = ((𝑛 − 1) + 1)2 = 𝑛2 .
½ƨǾŷȵǮ ΒͩΒͩΖͩ Despite verifying the correctness of the formula,
the inductive solution to Problem 0.0.3 is unsatisfying. It feels
overly formal and does not seem to explain the true origins of this
equation. Figure 0.2 suggests a better way to understand this sum. Figure 0.2: Sum of odd integers

¹ȵȌƕǴƨǾ ΒͩΒͩΗͩ For any integer 𝑛 satisfying 𝑛 ⩾ 4, prove that

2𝑛 ⩾ 𝑛2 .
Inductive solution. For any integer 𝑛 greater than 1, we first prove,
by induction, that 𝑛2 ⩾ 2. When 𝑛 = 2, we have 22 = 4 > 2, so the
base case holds. Assuming that the inequality 𝑛2 − 2 ⩾ 0 holds, we
show that (𝑛 + 1)2 − 2 ⩾ 0 also holds. The induction step is

(𝑛 + 1)2 − 2 = (𝑛2 + 2𝑛 + 1) − 2 ⩾ 2𝑛 + 1 ⩾ 5 ⩾ 0 .
For any integer 𝑛 such that 𝑛 ⩾ 4, we now prove, via induction

on 𝑛, that 2𝑛 ⩾ 𝑛2. When 𝑛 = 4, we have 24 = 16 = 42, so the base
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case holds. Assuming that the inequality 2𝑛 − 𝑛2 ⩾ 0 holds, we
show that 2𝑛+1 − (𝑛 + 1)2 ⩾ 0. For the induction step, we have

2𝑛+1 − (𝑛 + 1)2 = 2 (2𝑛) − 𝑛2 − 2𝑛 − 1⩾ 2 (𝑛2) − 𝑛2 − 2𝑛 − 1 = (𝑛 − 1)2 − 2 .
Since the first paragraph establishes that (𝑛 − 1)2 − 2 ⩾ 0, we
deduce that 2𝑛+1 − (𝑛 + 1)2 ⩾ 0 as required.

Exercises

¹ȵȌƕǴƨǾ ΒͩΒͩΘͩ For all nonnegative integers 𝑛, give two different
proofs for the equation

𝑛∑𝑘=0 1(𝑘 + 1)(𝑘 + 2) = 𝑛+ 1𝑛 + 2
Άǘ· Verify this equation via induction on 𝑛.

Άǘǘ· Derive this equation using partial fractions.

¹ȵȌƕǴƨǾ ΒͩΒͩΙͩ For all nonnegative integers 𝑛, verify that

𝑛∑𝑗=0 𝑗3 = ⎧
⎪⎩

𝑛∑𝑗=0 𝑗⎫⎪⎭
2

¹ȵȌƕǴƨǾ ΒͩΒͩΚͩ For any nonnegative integer 𝑛, prove that either𝑛 = 0 or there exists a nonnegative integer 𝑘 such that 𝑛 = S(𝑘).
¹ȵȌƕǴƨǾ ΒͩΒͩΛͩ Establish the following variant on the principle of
induction.

To verify that a property 𝑃(𝑛) holds for all nonnegative integers 𝑛, it
is enough to prove that
Base case: 𝑃(0) holds, and
Induction step: for any nonnegative integer 𝑛, the assumption that

the property 𝑃(𝑘) holds for all 𝑘 ⩽ 𝑛 implies that the property𝑃(𝑛 + 1) holds.

¹ȵȌƕǴƨǾ ΒͩΒͩΓΒͩ The sequence of square triangular numbers is de‑
fined by 𝑁0∶= 0, 𝑁1∶= 1, and 𝑁𝑘∶= 34𝑁𝑘−1 −𝑁𝑘−2 + 2 for all 𝑘 ⩾ 2.
The first few terms are 0, 1, 36, 1225, 41616, 1413721, 48024900, … .

Άǘ· Prove that 𝑁𝑘−1 𝑁𝑘+1 = (𝑁𝑘 − 1)2 for all 𝑘 ⩾ 1.
Άǘǘ· Verify that

𝑁𝑘 = ⎧
⎪⎩
(3 + 2√2)𝑘 − (3 − 2√2)𝑘4√2 ⎫

⎪⎭

2 .
0.1 Peano Arithmetic

How is a Peano system equipped with addition and multiplication?
To prove the well‑known properties of these binary operations, we
start with simple result.
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¹ȵȌȱȌȿǘɊǘȌȂ ΒͩΓͩΒͩ For any two functions 𝜑∶ℕ→ℕ and 𝜓∶ℕ × ℕ→ℕ,
there exists a unique function 𝜃∶ℕ × ℕ→ℕ such that, for any 𝑚 in ℕ,⦁ 𝜃(𝑚, 0) = 𝜑(𝑚), and⦁ 𝜃(𝑚,S(𝑛)) = 𝜓(𝜃(𝑚,𝑛),𝑚) for any 𝑛 in ℕ.

Proof. For each nonnegative integer 𝑚, the principle of induction
determines a function 𝛽𝑚∶ℕ → ℕ such that 𝛽𝑚(0) ∶= 𝜑(𝑚) and𝛽𝑚(S(𝑛))∶= 𝜓(𝛽𝑚(𝑛),𝑚) for any nonnegative integer 𝑛. Define the
function 𝜃∶ℕ × ℕ→ℕ by 𝜃(𝑚,𝑛) ∶= 𝛽𝑚(𝑛). By construction, the
function 𝜃 satisfies the two conditions. Since the conditions also
specify all the outputs, the function 𝜃 is uniquely determined.

Our definition for the addition of nonnegative integers is an
application of this proposition.

-ƨǂǘȂǘɊǘȌȂ ΒͩΓͩΓͩ The unique function 𝛼∶ℕ × ℕ→ℕ such that for
any two nonnegative integers 𝑚 and 𝑛, we have⦁ 𝛼(𝑚, 0) = 𝑚 and⦁ 𝛼(𝑚,S(𝑛)) = S(𝛼(𝑚,𝑛)),
is called addition and denoted by 𝑚+𝑛∶= 𝛼(𝑚,𝑛).

Apply Proposition 0.1.0 when 𝜑 = idℕ
and 𝜓(𝑚,𝑛) = S(𝑚).

½ƨǾŷȵǮ ΒͩΓͩΔͩ Since 1 ∶= S(0), the conditions in the definition
of addition demonstrate that, for any nonnegative integer 𝑚, we
have 𝑚+ 1 = 𝑚+ S(0) = S(𝑚+ 0) = S(𝑚).
|ƨǾǾŷ ΒͩΓͩΕͩ For any nonnegative integer 𝑚, we have 0 +𝑚 = 𝑚. The distinguished element 0 in ℕ is

the additive identity.
Proof. Consider 𝒳 ∶= {𝑚 ∈ ℕ | 0 + 𝑚 = 𝑚}. Since first condition
for addition gives 0 + 0 = 0, so 0 ∈ 𝒳. Assuming 𝑛 ∈ 𝒳, second
condition for addition shows that 0 + S(𝑛) = S(0 + 𝑛) = S(𝑛), so
S(𝑛) ∈ 𝒳. The principle of induction establishes that 𝒳 = ℕ.

|ƨǾǾŷ ΒͩΓͩΖͩ For any two nonnegative integers 𝑚 and 𝑛, we have
S(𝑚) + 𝑛 = S(𝑚+ 𝑛) .

Proof. Let 𝑚 be a nonnegative integer. Consider the subset𝒳∶= {𝑛 ∈ ℕ |S(𝑚)+𝑛 = S(𝑚+𝑛)}. The first condition for addition
gives S(𝑚) + 0 = S(𝑚) = S(𝑚 + 0), so 0 ∈ 𝒳. Assuming 𝑛 ∈ 𝒳,
second condition for addition and the definition of 𝒳 show that

S(𝑚) + S(𝑛) = S(S(𝑚) + 𝑛) = S(S(𝑚+ 𝑛)) = S(𝑚+ S(𝑛)) ,
so S(𝑛) ∈ 𝒳. Thus, the principle of induction gives 𝒳 = ℕ.

Our definition for multiplication is very similar.

-ƨǂǘȂǘɊǘȌȂ ΒͩΓͩΗͩ The unique function 𝜇∶ℕ × ℕ→ℕ such that for
any two nonnegative integers 𝑚 and 𝑛, we have⦁ 𝜇(𝑚, 0) = 0 and⦁ 𝜇(𝑚,S(𝑛)) = 𝜇(𝑚,𝑛) +𝑚.
is called multiplication and denoted 𝑚𝑛∶= 𝜇(𝑚,𝑛).

Apply Proposition 0.1.0 when𝜑(𝑚) = 0 and 𝜓(𝑚,𝑛) = 𝑚+ 𝑛.
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½ƨǾŷȵǮ ΒͩΓͩΘͩ For any nonnegative integer 𝑚, the second condi‑
tion in multiplication gives 𝑚1 = 𝑚0+𝑚 = 𝑚.

The successor 1∶= S(0) is the
multiplicative identity.

|ƨǾǾŷ ΒͩΓͩΙͩ For any nonnegative integer 𝑚, we have 0𝑚 = 0.

Proof. Consider 𝒳 ∶= {𝑚 ∈ ℕ | 0𝑚 = 0}. The first condition
for multiplication implies that (0)(0) = 0, so 0 ∈ 𝒳. Assuming𝑛 ∈ 𝒳, the second condition for multiplication, the definition
of 𝒳, and the second condition for addition demonstrate that0 S(𝑛) = 0𝑛 + 0 = 0 + 0 = 0, so S(𝑛) ∈ 𝒳. The principle of
induction again yields 𝒳 = ℕ.

We are now in a position to prove the fundamental properties
of addition and multiplication.

ÒǍƨȌȵƨǾ ΒͩΓͩΚͩ For any nonnegative integers 𝑘, 𝑚, and 𝑛, we have

(𝑘 +𝑚) + 𝑛 = 𝑘+ (𝑚+ 𝑛) (associativity of addition)𝑚+𝑛 = 𝑛+𝑚 (commutativity of addition)𝑘(𝑚𝑛) = (𝑘𝑚)𝑛 (associativity of multiplication)𝑚𝑛 = 𝑛𝑚 (commutativity of multiplication)𝑘(𝑚+ 𝑛) = 𝑘𝑚+ 𝑘𝑛 (distributivity)

Proof.⦁ Let 𝑘 and 𝑚 be nonnegative integers. Consider the subset𝒳 ∶= {𝑛 ∈ ℕ | 𝑘 + (𝑚 + 𝑛) = (𝑘 + 𝑚) + 𝑛}. The first condition
for addition gives 𝑘 + (𝑚+ 0) = 𝑘 +𝑚 = (𝑘 +𝑚) + 0, so 0 ∈ 𝒳.
Assuming 𝑛 ∈ 𝒳, the second condition for addition yields

𝑘 + (𝑚+ S(𝑛)) = 𝑘 + S(𝑚+ 𝑛) = S(𝑘 + (𝑚+ 𝑛))= S((𝑘 +𝑚) + 𝑛) = (𝑘 +𝑚) + S(𝑛)
so S(𝑛) ∈ 𝒳. The principle of induction implies that 𝒳 = ℕ and
the associativity of addition.⦁ Let 𝑚 be a nonnegative integer. Consider the subset𝒳 ∶= {𝑛 ∈ ℕ | 𝑚 + 𝑛 = 𝑛 +𝑚}. Lemma 0.1.3 shows that 0 ∈ 𝒳.
Assuming 𝑛 ∈ 𝒳, Lemma 0.1.4, the definition of 𝒳, and the
second condition for addition imply that

S(𝑛) +𝑚 = S(𝑛 +𝑚) = S(𝑚+ 𝑛) = 𝑚+ S(𝑛) ,
so S(𝑛) ∈ 𝒳. The principle of induction yields 𝒳 = ℕ and the
commutativity of addition.⦁ Let 𝑘 and 𝑚 be nonnegative integers. Consider the subset𝒳 ∶= {𝑛 ∈ ℕ | 𝑘(𝑚 + 𝑛) = 𝑘𝑚 + 𝑘𝑛}. The first conditions for
addition and multiplication give

𝑘(𝑚+ 0) = 𝑘𝑚 = 𝑘𝑚+ 0 = 𝑘𝑚+ 𝑘0
so 0 ∈ 𝒳. Assuming 𝑛 ∈ 𝒳, the second conditions for addition
and multiplication, the definition of 𝒳, and associativity of
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addition imply that

𝑘(𝑚+ S(𝑛)) = 𝑘 S(𝑚+ 𝑛) = 𝑘 (𝑚+ 𝑛) + 𝑘= (𝑘𝑚+ 𝑘𝑛) + 𝑘= 𝑘𝑚+ (𝑘𝑛 + 𝑘) = 𝑘𝑚+ 𝑘 S(𝑛)
so S(𝑛) ∈ 𝒳. The principle of induction shows that 𝒳 = ℕ and
distributivity.⦁ Let 𝑘 and 𝑚 be nonnegative integers. Consider the subset𝒳∶= {𝑛 ∈ ℕ | 𝑘(𝑚𝑛) = (𝑘𝑚)𝑛}. The first condition for multipli‑
cation gives 𝑘(𝑚0) = 𝑘0 = 0 = (𝑘𝑚)0, so 0 ∈ 𝒳. Assuming𝑛 ∈ 𝒳, the second condition for multiplication, distributivity,
and the definition of 𝒳 yield

𝑘(𝑚 S(𝑛)) = 𝑘(𝑚𝑛+𝑚) = 𝑘(𝑚𝑛) + 𝑘𝑚= (𝑘𝑚)𝑛 + (𝑘𝑚)= (𝑘𝑚)(𝑛 + 1) = (𝑘𝑚)S(𝑛)
so S(𝑛) ∈ 𝒳. The principle of induction implies that 𝒳 = ℕ and
the associativity of multiplication.⦁ We first claim that S(𝑚)𝑛 = 𝑚𝑛 + 𝑛 for any two nonnegative
integers 𝑚 and 𝑛. To prove this claim, fix a nonnegative integer𝑚 and consider 𝒴 ∶= {𝑛 ∈ ℕ | S(𝑚)𝑛 = 𝑚𝑛 + 𝑛}. The first
conditions for multiplication and addition give S(𝑚)0 = 0 =0 + 0 = 𝑚0 + 0, so 0 ∈ 𝒴. Assuming 𝑛 ∈ 𝒴, second condition
for multiplication, the definition of 𝒴, the properties of addition,
distributivity, and the second condition for addition show that

S(𝑚) S(𝑛) = S(𝑚)𝑛 + S(𝑚) = (𝑚𝑛+ 𝑛) + (𝑚+ 1)= 𝑚𝑛+𝑚+𝑛+ 1= 𝑚(𝑛 + 1) + (𝑛 + 1) = 𝑚S(𝑛) + S(𝑛)
so S(𝑛) ∈ 𝒴. Thus, the principle of induction gives 𝒳 = ℕ and
establishes the claim.

Next, consider the subset 𝒳∶= {𝑛 ∈ ℕ |𝑚𝑛 = 𝑛𝑚}. The claim,
the definition of 𝒳, and distributivity imply that

S(𝑛)𝑚 = 𝑛𝑚+𝑚 = 𝑚𝑛+𝑚 = 𝑚(𝑛+ 1) = 𝑚 S(𝑛)
so S(𝑛) ∈ 𝒳. The principle of induction yields 𝒳 = ℕ and the
commutativity of multiplication.

Exercises

¹ȵȌƕǴƨǾ ΒͩΓͩΛͩ For any three nonnegative integers 𝑘, 𝑚, and 𝑛,
demonstrate that 𝑘 +𝑚 = 𝑘+ 𝑛 if and only if 𝑚 = 𝑛.

¹ȵȌƕǴƨǾ ΒͩΓͩΓΒͩ For any two nonnegative integers 𝑚 and 𝑛, show
that 𝑚+𝑛 = 0 if and only if 𝑚 = 𝑛 = 0.

¹ȵȌƕǴƨǾ ΒͩΓͩΓΓͩ For any three nonnegative integers 𝑘, 𝑚, and 𝑛
such that 𝑘 ≠ 0, demonstrate that 𝑘𝑚 = 𝑘𝑛 if and only if 𝑚 = 𝑛.
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¹ȵȌƕǴƨǾ ΒͩΓͩΓΔͩ For any two nonnegative integers 𝑚 and 𝑛, show
that 𝑚𝑛 = 0 if and only if 𝑚 = 0 or 𝑛 = 0.

¹ȵȌƕǴƨǾ ΒͩΓͩΓΕͩ For any two nonnegative integers 𝑚 and 𝑛, show
that 𝑚𝑛 = 1 if and only if 𝑚 = 𝑛 = 1.

¹ȵȌƕǴƨǾ ΒͩΓͩΓΖͩ Formulate the definition for exponentiation
for nonnegative integers and prove that, any three nonnegative
integers 𝑘, 𝑚, and 𝑛, we have

𝑚0 = 1 , (𝑚𝑛)𝑘 = 𝑚𝑘 𝑛𝑘 ,𝑚𝑘+𝑛 = 𝑚𝑘𝑚𝑛 , (𝑚𝑛)𝑘 = 𝑚𝑛𝑘 .
0.2 Well‑Ordering Principle

How is a Peano system endowed with a total order? We record an‑
other basic feature before describing the canonical binary relation
on nonnegative integers.

|ƨǾǾŷ ΒͩΔͩΒͩ Let 𝑛 be a nonnegative integer such that 𝑛 ≠ 0. For any
nonnegative integer 𝑚, we have 𝑚 ≠ 𝑚+𝑛.

Proof. Consider 𝒳 ∶= {𝑚 ∈ ℕ | 𝑚 ≠ 𝑚+𝑛 for all nonzero 𝑛 in ℕ}.
As 0 ≠ 𝑛 = 0 + 𝑛, we have 0 ∈ 𝒳. Assuming 𝑚 ∈ 𝒳, we claim that
S(𝑚) ≠ S(𝑚) + 𝑛. Commutativity and second defining condition
for addition give S(𝑚)+𝑛 = 𝑛+S(𝑚) = S(𝑛+𝑚) = S(𝑚+𝑛). Hence,
it suffices to show that S(𝑚) ≠ S(𝑚 + 𝑛). Since S is injective, this
relation is equivalent to 𝑚 ≠ 𝑚+ 𝑛, so S(𝑚) ∈ 𝒳. The principle of
induction implies that 𝒳 = ℕ.

-ƨǂǘȂǘɊǘȌȂ ΒͩΔͩΓͩ The nonnegative integer 𝑚 is less than the non‑
negative integer 𝑛, denoted by 𝑚 < 𝑛, (or 𝑛 is greater than 𝑚 and𝑛 > 𝑚) if there exists a nonzero 𝑘 ∈ ℕ such that 𝑛 = 𝑚+ 𝑘.

We also use the notation 𝑚 ⩽ 𝑛 (or𝑛 ⩾ 𝑚) when 𝑚 = 𝑛 or 𝑚 < 𝑛.

½ƨǾŷȵǮ ΒͩΔͩΔͩ Let 𝑛 be a nonnegative integer. Since 𝑛 = 0 + 𝑛, we
see that 0 ⩽ 𝑛.

An important trichotomy arises from this definition.

¹ȵȌȱȌȿǘɊǘȌȂ ΒͩΔͩΕͩ For any two nonnegative integers 𝑚 and 𝑛, exactly
one of the following binary relations holds: 𝑚 < 𝑛, 𝑚 = 𝑛, or 𝑚 > 𝑛.

Proof. We first show that the relations are mutually exclusive.⦁ Suppose that 𝑚 < 𝑛 and 𝑚 = 𝑛. Hence, there is a nonzero 𝑘 ∈ ℕ
such that 𝑚 = 𝑛 = 𝑚+ 𝑘, which contradicts Lemma 0.2.0.⦁ Suppose that 𝑚 < 𝑛 and 𝑚 > 𝑛. Hence, there exists a nonzero𝑘 ∈ ℕ such that 𝑛 = 𝑚 + 𝑘 and a nonzero ℓ ∈ ℕ such that𝑚 = 𝑛 + ℓ. We deduce that 𝑛 = 𝑛 + (𝑘 + ℓ) which again
contradicts Lemma 0.2.0.⦁ Suppose that 𝑚 = 𝑛 and 𝑚 > 𝑛. By symmetry, this is equivalent
to the first case.
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It remains to show that one of the relations always holds. Fix a
nonnegative integer 𝑚 and consider the subset

𝒳∶= {𝑛 ∈ ℕ | 𝑚 < 𝑛 or 𝑚 = 𝑛 or 𝑚 > 𝑛} .
When 𝑚 = 0, we have 0 ∈ 𝒳. When 𝑚 ≠ 0, we have 𝑚 = 0+𝑚, so0 < 𝑚 and 0 ∈ 𝒳. Assuming that 𝑛 ∈ 𝒳, there are three cases:⦁ Suppose that 𝑚 < 𝑛. Hence, there exists a nonzero 𝑘 ∈ ℕ such

that 𝑛 = 𝑚 + 𝑘. The second defining condition for addition
gives S(𝑛) = S(𝑚+ 𝑘) = 𝑚+ S(𝑘), so 𝑚 < S(𝑛) and S(𝑛) ∈ 𝒳.⦁ Suppose that 𝑚 = 𝑛. Since S(𝑛) = 𝑛 + 1 = 𝑚 + 1, we see that𝑚 < S(𝑛), so S(𝑛) ∈ 𝒳.⦁ Suppose that 𝑚 > 𝑛. Hence, there exists a nonzero 𝑘 ∈ ℕ such
that 𝑚 = 𝑛 + 𝑘. When 𝑘 = 1, we have 𝑚 = 𝑛 + 1 = S(𝑛), so
S(𝑛) ∈ 𝒳. When 𝑘 ≠ 1, there exists a nonzero ℓ ∈ ℕ such that𝑘 = S(ℓ). It follows that

𝑚 = 𝑛+ 𝑘 = 𝑛+ S(ℓ) = 𝑛 + (ℓ + 1) = (𝑛 + 1) + ℓ = S(𝑛) + ℓ ,
so S(𝑛) < 𝑚 and S(𝑛) ∈ 𝒳.

Thus, the principle of induction implies that 𝒳 = ℕ.

&ȌȵȌǴǴŷȵʁ ΒͩΔͩΖͩ Let 𝑘, 𝑚, and 𝑛 be nonnegative integers such that𝑘 ≠ 0. We have 𝑚 < 𝑛 if and only if 𝑘𝑚 < 𝑘𝑛.

Proof.⇐: Suppose that 𝑚 < 𝑛. Hence, there exists a nonzero ℓ ∈ ℕ such
that 𝑛 = 𝑚+ ℓ. Distributivity gives 𝑘𝑛 = ℓ (𝑚+ ℓ) = 𝑘𝑚+ 𝑘ℓ.
Since 𝑘ℓ is nonzero, we deduce that 𝑘𝑚 < 𝑘𝑛.⇒: Suppose that 𝑘𝑚 < 𝑘𝑛 and consider two cases.⦁ Suppose that 𝑚 = 𝑛. It follows that 𝑘𝑚 = 𝑘𝑛 contradicting

the inequality 𝑘𝑚 < 𝑘𝑛.⦁ Suppose that 𝑚 > 𝑛. The first direction shows that 𝑘𝑚 > 𝑘𝑛
which also contradicts the inequality 𝑘𝑚 < 𝑘𝑛.

From the trichotomy, we deduce that 𝑚 < 𝑛.

|ƨǾǾŷ ΒͩΔͩΗͩ Let 𝑚 and 𝑛 be nonnegative integers. When 𝑚 < 𝑛, we
have S(𝑚) ⩽ 𝑛.

Proof. Since 𝑚 < 𝑛, there is a nonzero 𝑘 ∈ ℕ such that 𝑛 = 𝑚+ 𝑘.
When 𝑘 = 1, we have 𝑛 = 𝑚 + 1. When 𝑘 > 1, there exists a
nonzero ℓ ∈ ℕ such that 𝑘 = 1 + ℓ. It follows that 𝑛 = 𝑚 + 1 + ℓ
and S(𝑚) = 𝑚+ 1 < 𝑛.

Using the total order on nonnegative integers, the principle of
induction has another fundamental reformulation.

ÒǍƨȌȵƨǾ ΒͩΔͩΘ (Well‑ordering of nonnegative integers)ͩ Every
nonempty subset of the set ℕ of nonnegative integers contains a unique
least element (with respect to ⩽).

Proof. Let 𝒳 be a nonempty subset of nonnegative integers.
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Uniqueness: Suppose that 𝑥 and 𝑥′ are both least elements of 𝒳.
Since 𝑥 ⩽ 𝑥′ and 𝑥′ ⩽ 𝑥, the trichotomy implies that 𝑥 = 𝑥′.

Existence: Suppose that 𝒳 has no least element. Consider a second
subset 𝒴 ∶= {𝑛 ∈ ℕ | 𝑛 ⩽ 𝑥 for all 𝑥 ∈ 𝒳}. Remark 0.2.2 proves
that 0 ∈ 𝒴. Assume that 𝑛 ∈ 𝒴. Since 𝒳 has no least element, it
follows that 𝑛 ∉ 𝒳 and 𝑛 < 𝑥 for all 𝑥 ∈ 𝒳. Lemma 0.2.5 shows
that S(𝑛) = 𝑛 + 1 ⩽ 𝑥 for all 𝑥 ∈ 𝒳, so S(𝑛) ∈ 𝒴. Hence, the prin‑
ciple of induction establishes that 𝒴 = ℕ. However, this would
imply that ∅ = 𝒳 ∩ 𝒴 = 𝒳 which contradicts the hypothesis
that 𝒳 is nonempty. We conclude that every nonempty subset
of nonnegative integers has a least element.

Exercises

¹ȵȌƕǴƨǾ ΒͩΔͩΙͩ For any three nonnegative integers 𝑘, 𝑚, and 𝑛,
establish the following.

Άǘ· When 𝑘 ⩽ 𝑚 and 𝑚 ⩽ 𝑛, we have 𝑘 ⩽ 𝑛.
Άǘǘ· When 𝑘 < 𝑚 and 𝑚 ⩽ 𝑛, we have 𝑘 < 𝑛.

Άǘǘǘ· When 𝑘 ⩽ 𝑚 and 𝑚 < 𝑛, we have 𝑘 < 𝑛.

¹ȵȌƕǴƨǾ ΒͩΔͩΚͩ For any three nonnegative integers 𝑘, 𝑚, and 𝑛
such that 𝑘 ≠ 0, prove that 𝑚 < 𝑛 if and only if 𝑘 +𝑚 < 𝑘+ 𝑛.

¹ȵȌƕǴƨǾ ΒͩΔͩΛͩ Establish that any nonempty subset of ℕ that is
bounded above has a unique greatest element (with respect to ⩽).

¹ȵȌƕǴƨǾ ΒͩΔͩΓΒͩ For any nonnegative integers 𝑚 and 𝑛 with 𝑛 ≠ 0,
prove that there exists a nonnegative integer 𝑘 such that 𝑚 < 𝑘𝑛.


