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The set of integers is the prototype for all rings. The word ‘integer’
comes from the Latin integer meaning untouched: the prefix “in”
means ‘not’ and the root “tangere” means ‘to touch’. This word
was first used as a noun in 1571 by Thomas Digges (1546?–1595).

Negative numbers appear in Chap‑
ter 8 of The Nine Chapters on the
Mathematical Art (∼200 BCE), one of
the earliest Chinese texts on math‑
ematics. In contrast, ancient Greek
mathematicians including Diophan‑
tus (∼200–284) regarded negative
integers as “absurd”. Nevertheless,
negative integers are recognized and
developed in the Indian text Brāhma‑
sphuṭa‑siddhānta (628).

1.0 Negative Integers

How can we construct the set ℤ of integers from the set ℕ of
nonnegative integers? Except for zero, the additive inverse of a
nonnegative integer is not a nonnegative integer. The integers
address this deficiency by enlarging the set of numbers.

To construct the set ℤ, we represent each integer by a pair(𝑚1,𝑚2) or nonnegative integers. However, some pairs represent
the same integer. To formalize this idea, we introduce a relation
on pairs of nonnegative integers.

Informally, the pair (𝑚1,𝑚2) ∈ ℕ × ℕ
represents the difference 𝑚1 −𝑚2.

Definition 1.0.0. Two pairs (𝑚1,𝑚2) and (𝑛1, 𝑛2) of nonnegative
integers satisfy (𝑚1,𝑚2) ≃ (𝑛1, 𝑛2) if 𝑚1 + 𝑛2 = 𝑚2 + 𝑛1.

Observe that (𝑚1,𝑚2) ≃ (𝑛1, 𝑛2) if
and only if 𝑚1 + 𝑛2 = 𝑚2 + 𝑛1 or𝑚1 −𝑚2 = 𝑛1 − 𝑛2.

Lemma 1.0.1. The binary relation ≃ has the following three properties.
Reflexivity: For any pair (𝑚1,𝑚2) of nonnegative integers, we have(𝑚1,𝑚2) ≃ (𝑚1,𝑚2).
Symmetry: For any two pairs (𝑚1,𝑚2) and (𝑛1, 𝑛2) in ℕ × ℕ, the

relation (𝑚1,𝑚2) ≃ (𝑛1, 𝑛2) implies that (𝑛1, 𝑛2) ≃ (𝑚1,𝑚2).
Transitivity: For any three pairs (𝑘1, 𝑘2), (𝑚1,𝑚2), and (𝑛1, 𝑛2) inℕ × ℕ, the two relations (𝑘1, 𝑘2) ≃ (𝑚1,𝑚2) and (𝑚1,𝑚2) ≃ (𝑛1, 𝑛2)

imply that (𝑘1, 𝑘2) ≃ (𝑛1, 𝑛2).
Proof.
Reflexivity: For any pair (𝑚1,𝑚2) in ℕ × ℕ, we tautologically have𝑚1 +𝑚2 = 𝑚1 +𝑚2, so (𝑚1,𝑚2) ≃ (𝑚1,𝑚2). Equality is reflexive.

Symmetry: For any two pairs (𝑚1,𝑚2) and (𝑛1, 𝑛2) in ℕ × ℕ, the
relation (𝑚1,𝑚2) ≃ (𝑛1, 𝑛2) is equivalent to 𝑚1 +𝑛2 = 𝑚2 +𝑛1. It
follows that 𝑚2 + 𝑛1 = 𝑚1 + 𝑛2, so (𝑛1, 𝑛2) ≃ (𝑚1,𝑚2).

Equality is symmetric.

Transitivity: For any three pairs (𝑘1, 𝑘2), (𝑚1,𝑚2), and (𝑛1, 𝑛2) inℕ×ℕ, the two relations (𝑘1, 𝑘2)≃(𝑚1,𝑚2) and (𝑚1,𝑚2)≃(𝑛1, 𝑛2)
are equivalent to 𝑘1 + 𝑚2 = 𝑘2 + 𝑚1 and 𝑚1 + 𝑛2 = 𝑚2 + 𝑛1.
Combining commutativity and associativity of addition with the
cancellation law, we see that(𝑘1 + 𝑛2) + (𝑚1 +𝑚2) = (𝑘1 +𝑚2) + (𝑚1 + 𝑛2)= (𝑘2 +𝑚1) + (𝑚2 + 𝑛1) = (𝑘2 + 𝑛1) + (𝑚1 +𝑚2)
implies that 𝑘1 + 𝑛2 = 𝑘2 + 𝑛1, so (𝑘1, 𝑘2) ≃ (𝑛1, 𝑛2).

Definition 1.0.2. The set ℤ of integers is the set of all equivalence
classes in ℕ × ℕ under the relation ≃.
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The equivalence class in ℤ∶= (ℕ×ℕ) / ≃ can be visualized as the
nonnegative integral points on lines with slope 1 in the real plane;
see Figure 1.1. By choosing the smallest nonnegative integral point
on each line, we obtain

(𝑚1,𝑚2) ≃ {(𝑘, 0) if 𝑚1 ⩾ 𝑚2 and 𝑚1 = 𝑚2 + 𝑘,(0, 𝑘) if 𝑚1 < 𝑚2 and 𝑚2 = 𝑚1 + 𝑘.

By the trichotomy, we see that {(𝑘, 0) | 𝑘 ∈ ℕ} ∪ {(0, 𝑘 + 1) | 𝑘 ∈ ℕ}
is a complete set of representatives for the equivalence classes: a
set that contains exactly one representative for each class. The
traditional notation is 𝑘∶= (𝑘, 0) and −𝑘∶= (0, 𝑘) for any 𝑘 ∈ ℕ.

Figure 1.1: The equivalence classes
in ℕ × ℕ as lines

The operations of addition and multiplication on the set ℤ of
integers may be defined in terms of representatives. For any pairs(𝑚1,𝑚2) and (𝑛1, 𝑛2) in ℕ × ℕ, we declare that(𝑚1,𝑚2) + (𝑛1, 𝑛2)∶= (𝑚1 + 𝑛1,𝑚1 +𝑚2)(𝑚1,𝑚2) (𝑛1, 𝑛2)∶= (𝑚1 𝑛1 +𝑚2 𝑛1,𝑚1 𝑛2 +𝑚2 𝑛1)
However, we need to check that these operations do not depend
on the choice of representatives. Consider four pairs (𝑗1, 𝑗2),(𝑘1, 𝑘2), (𝑚1,𝑚2), (𝑛1, 𝑛2) in ℕ × ℕ such that (𝑗1, 𝑗2) ≃ (𝑘1, 𝑘2) and(𝑚1,𝑚2) ≃ (𝑛1, 𝑛2). Commutativity and associativity for addition
of nonnegative integers give(𝑗1 +𝑚1) + (𝑘2 + 𝑛2) = (𝑗1 + 𝑘2) + (𝑚1 + 𝑛2)= (𝑗2 + 𝑘1) + (𝑚2 + 𝑛1) = (𝑘1 + 𝑛1) + (𝑗2 +𝑚2)
so (𝑗1, 𝑗2) + (𝑚1, 𝑛1) ∼ (𝑘1, 𝑘2) + (𝑛1, 𝑛2). Since commutativity and
associativity for addition of nonnegative integers also give((𝑗1 𝑚1 + 𝑗2 𝑚2) + (𝑘1 𝑛2 + 𝑘2 𝑛1)) + (𝑘2 𝑚1 + 𝑘1𝑚2 + 𝑘1𝑚1 + 𝑘2𝑚2)= (𝑗1 + 𝑘2)𝑚1 + (𝑗2 + 𝑘1)𝑚2 + 𝑘1(𝑚1 + 𝑛2) + 𝑘2(𝑚2 + 𝑛1)= (𝑗2 + 𝑘1)𝑚1 + (𝑗1 + 𝑘2)𝑚2 + 𝑘1(𝑚2 + 𝑛1) + 𝑘2(𝑚1 + 𝑛2)= ((𝑘1 𝑛1 + 𝑘2 𝑛2) + (𝑗2 𝑚1 + 𝑗1 𝑚2)) + (𝑘1 𝑚1 + 𝑘2𝑚2 + 𝑘1𝑚2 + 𝑘2𝑚1) ,
cancelling the trailing mixed terms yields(𝑗1 𝑚1 + 𝑗2 𝑚2) + (𝑘1 𝑛2 + 𝑘2 𝑛1) = (𝑘1 𝑛1 + 𝑘2 𝑛2) + (𝑗2 𝑚1 + 𝑗1 𝑚2) ,
so (𝑗1, 𝑗2)(𝑚1,𝑚2) ≃ (𝑘1, 𝑘2)(𝑛1, 𝑛2). It follows that addition and
multiplication on ℤ is well‑defined.

Having described the two key operations on integers, we next
verify that they have the expected properties.

Theorem 1.0.3. For any integers 𝑘, 𝑚, and 𝑛, we have(𝑘 +𝑚) + 𝑛 = 𝑘+ (𝑚+ 𝑛) (associativity of addition)𝑚+𝑛 = 𝑛+𝑚 (commutativity of addition)𝑘(𝑚𝑛) = (𝑘𝑚)𝑛 (associativity of multiplication)𝑚𝑛 = 𝑛𝑚 (commutativity of multiplication)𝑘(𝑚+ 𝑛) = 𝑘𝑚+ 𝑘𝑛 (distributivity)

Sketch of proof. One verifies these properties by direct computa‑
tion with representatives using the relevant properties for addi‑
tion and multiplication on the set ℕ.
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Corollary 1.0.4. Every integer 𝑘 has the additive inverse (−1) 𝑘.

Proof. Suppose that the integer 𝑘 is represented by the pair (𝑚,𝑛)
of nonnegative integers. By definition, the product (−1) 𝑘 is repre‑
sented by (0, 1)(𝑚,𝑛) = ((0)𝑚 + (1)𝑛, (0)𝑛 + (1)𝑚) = (𝑛,𝑚) and
the sum 𝑘 + (−1)𝑘 is represented by(𝑚,𝑛) + (𝑛,𝑚) = (𝑚+ 𝑛,𝑚+ 𝑛) ≃ (0, 0)
We conclude that 𝑘 + (−1)𝑘 = 0.

Remark 1.0.5. The map 𝜂∶ℕ→ℕ × ℕ defined, for any nonnegative
integer 𝑛, by 𝜂(𝑛) ∶= (𝑛, 0) gives rise to an injective map 𝜂∶ℕ→ℤ.
Moreover, for any nonnegative integers 𝑚 and 𝑛, we have𝜂(𝑚+ 𝑛) = (𝑚+ 𝑛, 0) = (𝑚, 0) + (𝑛, 0) ,𝜂(𝑚𝑛) = (𝑚𝑛, 0) = (𝑚, 0)(𝑛, 0) .
Thus, the map 𝜂 is compatible with addition and multiplication.

Exercises

Problem 1.0.6. The canonical ordering ⩽ on the integers ℤ is
defined as follows. For any two integers 𝑚 and 𝑛, we declare that𝑚 ⩽ 𝑛 or 𝑛 ⩾ 𝑚 if 𝑛 −𝑚 is a nonnegative integer.

(i) For any integer 𝑚, demonstrate that 𝑚 ⩽ 𝑚.
(ii) When 𝑘 ⩽ 𝑚 and 𝑚 ⩽ 𝑛, establish that 𝑘 ⩽ 𝑛.

(iii) When 𝑚 ⩽ 𝑛 and 𝑛 ⩽ 𝑚, verify that 𝑚 = 𝑛.
(iv) For any two integers 𝑚 and 𝑛, show that 𝑚 ⩽ 𝑛 or 𝑚 ⩾ 𝑛.

Problem 1.0.7. Let 𝑘, 𝑚, and 𝑛 be integers.
(i) When 𝑚 ⩽ 𝑛, demonstrate that 𝑚+𝑘 ⩽ 𝑛+ 𝑘.

(ii) When 𝑘 > 0 and 𝑚 ⩽ 𝑛, establish that 𝑘𝑚 ⩽ 𝑘𝑛.
(iii) When 𝑘 < 0 and 𝑚 ⩽ 𝑛, establish that 𝑘𝑚 ⩾ 𝑘𝑛.

Problem 1.0.8. The absolute value function |•|∶ ℤ → ℕ is defined,
for any integer 𝑚, by

|𝑚|∶= {𝑚 if 𝑚 ⩾ 0,−𝑚 if 𝑚 < 0.
(i) Let 𝑛 be a nonnegative integer. For any integer 𝑚, prove that−𝑛 ⩽ 𝑚 ⩽ 𝑛 if and only if |𝑚| ⩽ 𝑛.

(ii) For any two integers 𝑚 and 𝑛, show that|||𝑛| − |𝑚||| ⩽ |𝑛 +𝑚| ⩽ |𝑛| + |𝑚| .
1.1 Division with Remainder

What is the division operation on integers? We start with the
simplest case.

Definition 1.1.0. Let 𝑚 and 𝑛 be two integers. We say ‘𝑚 divides 𝑛’,
‘𝑚 is a divisor of 𝑛’, or ‘𝑛 is a multiple of 𝑚’ if there exists an integer𝑘 such that 𝑛 = 𝑘𝑚.

Every integer divides 0 whereas 0 is a
divisor of only 0.
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Lemma 1.1.1. Let 𝑚 and 𝑛 be integers with 𝑛 ≠ 0. When 𝑚 divides 𝑛,
we have |𝑚| ⩽ |𝑛|.
Proof. As 𝑚 divides 𝑛, there exists an integer 𝑘 such that 𝑛 = 𝑘𝑚.
Both 𝑘 and 𝑚 are nonzero because 𝑛 is nonzero. It follows that|𝑘| ⩾ 1 and |𝑛| = |𝑘| |𝑚| ⩾ |𝑚|.

Even when one integer fails to divide another, there exists a
valuable division operation. Specifically, division with remainder
(also known as Euclidean division) is the process of dividing one
integer, called the “dividend”, by another, called the “divisor”,
that produces an integer “quotient” and a nonnegative integer
“remainder” strictly smaller than the absolute value of the divisor.

Theorem 1.1.2. Let 𝑛 be a nonzero integer. For any integer 𝑚, there
exists unique integers 𝑞 and 𝑟 such that 𝑚 = 𝑞𝑛+ 𝑟 and 0 ⩽ 𝑟 < |𝑛|.

Only division by repeated subtraction
appears in Euclid’s Elements [Book
VII, Proposition 1]. In contemporary
pseudo‑code, this algorithm is

input: 𝑚,𝑛 ∈ ℕ with 𝑛 ≠ 0.
output: 𝑞, 𝑟 ∈ ℕ such that𝑚 = 𝑞𝑛+ 𝑟 and 0 ⩽ 𝑟 < 𝑛.
Set (𝑞, 𝑟)∶= (0,𝑚);
While 𝑟 ⩾ 𝑛 do(𝑞, 𝑟) = (𝑞 + 1, 𝑟 − 𝑛);
Return (𝑞, 𝑟).Proof. As (−𝑞)(−𝑛) + 𝑟 = 𝑞𝑛 + 𝑟 and |𝑛| = |−𝑛|, we may assume

that 𝑛 > 0. Consider the subset𝒳∶= {𝑚− 𝑘𝑛 | there exists 𝑘 ∈ ℤ such that 𝑚−𝑘𝑛 ⩾ 0} ⊆ ℕ .
When 𝑚 ⩾ 0, we have 𝑚 = 𝑚− 0(𝑛) ∈ 𝒳. When 𝑚 < 0, we have𝑚(1 − 𝑛) = 𝑚−𝑚𝑛 ∈ 𝒳 because 1 − 𝑛 ⩽ 0. Since 𝒳 is nonempty,
the Well‑Ordering Principle establishes that 𝒳 contains a least
element 𝑟. Hence, there exists an integer 𝑞 such that 𝑟 = 𝑚−𝑞𝑛 is
smallest nonnegative integer of the form 𝑚−𝑘𝑛. By construction,
we have 𝑚 = 𝑞𝑛 + 𝑟 and 𝑟 ⩾ 0. It remains to show that 𝑟 < 𝑛 and
to prove that 𝑞 and 𝑟 are the unique integers with these properties.

Suppose that 𝑟 ⩾ 𝑛. We would have0 ⩽ 𝑟 − 𝑛 = (𝑚− 𝑞𝑛) − 𝑛 = 𝑚− (𝑞 + 1)𝑛 .
However, this would imply that 𝑟 − 𝑛 ∈ 𝒳, which contradicts the
choice of 𝑟 as the least element in 𝒳. Thus, we deduce that 𝑟 < 𝑛.

Consider integer pairs (𝑞, 𝑟) and (𝑞′, 𝑟′) such that 𝑚 = 𝑞𝑛 + 𝑟,0 ⩽ 𝑟 < 𝑛, 𝑚 = 𝑞′ 𝑛 + 𝑟′, and 0 ⩽ 𝑟′ < 𝑛. The inequalities ensure
that |𝑟′ − 𝑟| < 𝑛 and the equations give (𝑞−𝑞′)𝑛 = 𝑟′−𝑟. Assuming𝑟′ − 𝑟 ≠ 0, the integer 𝑛 would divide 𝑟′ − 𝑟 and Lemma 1.1.1
would show that |𝑟′ − 𝑟| ⩾ |𝑛|. However, this would produce the
contradiction |𝑛| ⩽ |𝑟′ − 𝑟| < 𝑛. Hence, we deduce that 𝑟′ − 𝑟 = 0.
Since 𝑛 ≠ 0, it also follows that 𝑞 − 𝑞′ = 0.

We illustrate division with remainder
with a few small examples:79 = 2(32) + 15982 = 1(867) + 11588 278 = 15(5 803) + 1 233979010 = 135(7 209) + 5 7952 633 864 = 8(313 629) + 124 832

Notation 1.1.3. In many programming languages, the remainder
operator (or modulo operator) is denoted by 𝑟 = 𝑚 % 𝑛. In few
programming languages, the quotient operator (or floor division)
is denoted by 𝑞 = 𝑚 // 𝑛. In particular, we have𝑚 = (𝑚 // 𝑛)𝑛 + (𝑚 % 𝑛) .
Definition 1.1.4. For any two integers 𝑚 and 𝑛, a nonnegative
integer 𝑑∶= gcd(𝑚,𝑛) is a greatest common divisor of 𝑚 and 𝑛 if⦁ the integer 𝑑 divides both 𝑚 and 𝑛, and⦁ any integer that divides both 𝑚 and 𝑛 also divides 𝑑.

The second requirement states that
every common divisor 𝑘 of 𝑚 and𝑛 must divide 𝑑. Since Lemma 1.1.1
implies that |𝑘| ⩽ |𝑑|, we see that 𝑑 is
the ‘greatest’ common divisor.
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Lemma 1.1.5. For any nonzero integer 𝑚, we have gcd(𝑚, 0) = 𝑚. Because every integer divides 0,
there is no greatest common divisor
of 0 and 0. For consistency with
Lemma 1.1.5 and Theorem 1.1.7, we
declare that gcd(0, 0) = 0.

Proof. Since 𝑚 divides 𝑚 and 𝑚 divides 0, we see that 𝑚 is a com‑
mon divisor of 𝑚 and 0. Moreover, any common divisor of 𝑚 and0 clearly divides 𝑚, so gcd(𝑚, 0) = 𝑚.

There is an extremely inefficient method for computing great‑
est common divisors.

Problem 1.1.6. Determine gcd(165, 105).
Proof. We can list all divisors:165 ∶ −165,−55,−33,−15,−11,−5,−3,−1, 1, 3, 5, 11, 15, 33, 55, 165 ,105 ∶ −105,−35,−21,−15,−7,−5,−3,−1, 1, 3, 5, 7, 15, 21, 35, 105 .
The largest integer on both lists is 15, so gcd(165, 105) = 15.

The existence and uniqueness of a
greatest common divisor follows
from a similar argument. Construct
the finite list of the divisors for each
integer and take the largest element
appearing on both lists.

Greatest common divisors have another interpretation.

Theorem 1.1.7. For any two integers 𝑚 and 𝑛, there exists integers 𝑗
and 𝑘 such that gcd(𝑚,𝑛) = 𝑗𝑚 + 𝑘𝑛. When 𝑚 and 𝑛 are not both0, the greatest common divisor gcd(𝑚,𝑛) is the smallest positive integer
linear combination of 𝑚 and 𝑛.

Proof. When 𝑚 = 𝑛 = 0, we have gcd(𝑚,𝑛) = gcd(0, 0) = 0 and0 = (0)𝑚 + (0)𝑛, so we may assume that 𝑚 and 𝑛 not both zero.
Consider the subset𝒳∶= {𝑗𝑚+ 𝑘𝑛 || 𝑗 ∈ ℤ, 𝑘 ∈ ℤ, and 𝑗𝑚+ 𝑘𝑛 > 0} ⊂ ℕ .
As (𝑚)𝑚 + (𝑛)𝑛 = 𝑚2 + 𝑛2 > 0, we see that 𝒳 is nonempty. Thus,
the Well‑Ordering Principle establishes that 𝒳 has a unique least
element 𝑑. We claim that 𝑑 = gcd(𝑚,𝑛).

We first demonstrate that 𝑑 is common divisor of 𝑚 and 𝑛.
When 𝑚 = 0, the positive integer 𝑑 divides 0. When 𝑚 ≠ 0,
Theorem 1.1.2 establishes that there are unique integers 𝑞 and 𝑟
such that 𝑚 = 𝑞𝑑 + 𝑟 and 0 ⩽ 𝑟 < 𝑑. Since𝑟 = 𝑚− 𝑞𝑑 = 𝑚− 𝑞(𝑗𝑚+ 𝑘𝑛) = (1 − 𝑞 𝑗)𝑚+ (−𝑞𝑘)𝑛
and 𝑟 < 𝑑, the defining property of 𝑑 implies that 𝑟 = 0, so 𝑑
divides 𝑚. By symmetry, we also conclude that 𝑑 divides 𝑛.

It remains to show that every common divisor also divides 𝑑.
Suppose that the integer 𝑒 divides both 𝑚 and 𝑛. There exists
integers 𝑢 and 𝑣 such that 𝑚 = 𝑢𝑒 and 𝑛 = 𝑣𝑒. We obtain𝑑 = 𝑗𝑚+ 𝑘𝑛 = 𝑗 𝑢 𝑒 + 𝑘𝑣 𝑒 = (𝑗 𝑢 + 𝑘𝑣)𝑒 ,
which proves that 𝑒 divides 𝑑.

Corollary 1.1.8. For any two integers 𝑚 and 𝑛, we have gcd(𝑚,𝑛) = 1
if and only if 1 is an integer linear combination of 𝑚 and 𝑛.

Proof.⇒: Suppose that gcd(𝑚,𝑛) = 1. The first part of Theorem 1.1.7
implies that 1 is an integer linear combination of 𝑚 and 𝑛.⇐: Suppose that 1 is an integer linear combination of 𝑚 and 𝑛.
Because 1 is the smallest positive integer, the second part of
Theorem 1.1.7 implies that 1 is the greatest common divisor of𝑚 and 𝑛.
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Exercises

Problem 1.1.9. Let 𝑘, 𝑚, and 𝑛 be integers.
(i) Prove that gcd(𝑘𝑚,𝑘𝑛) = |𝑘| gcd(𝑚,𝑛).

(ii) Prove that gcd(𝑘,gcd(𝑚,𝑛)) = gcd(gcd(𝑘,𝑚), 𝑛).
Problem 1.1.10. For any two integers 𝑚 and 𝑛, a nonnegative
integer ℓ∶= lcm(𝑚,𝑛) is a least common multiple of 𝑚 and 𝑛 if⦁ the integer ℓ is a multiple of both 𝑚 and 𝑛, and⦁ any integer that is a multiple of 𝑚 and 𝑛 is also a multiple of ℓ.
For any two positive integers 𝑚 and 𝑛, prove that

gcd(𝑚,𝑛) lcm(𝑚,𝑛) = 𝑚𝑛 .
Problem 1.1.11. Let 𝑘, 𝑚, and 𝑛 be three integers such that 𝑚 ≠ 0
or 𝑛 ≠ 0.

(i) Demonstrate that the equation 𝑚𝑥+ 𝑛𝑦 = 𝑘 has an integer
solution if and only if 𝑘 is a multiple of gcd(𝑚,𝑛).

(ii) Given an integer solution (𝑥0, 𝑦0) to 𝑚𝑥+𝑛𝑦 = 𝑘, prove that
all solutions have the form𝑥 = 𝑥0 + 𝑗 lcm(𝑚,𝑛)𝑚 𝑦 = 𝑦0 − 𝑗 lcm(𝑚,𝑛)𝑛
for some integer 𝑗.

1.2 Fundamental Theorem of Arithmetic

What are the atoms or minimal elements for the multiplicative
structure of the integers? We begin with a comparative notion.

Definition 1.2.0. Two integers 𝑚 and 𝑛 are coprime or relatively
prime if gcd(𝑚,𝑛) = 1.

Corollary 1.2.1. Let ℓ, 𝑚, and 𝑛 be integers. When gcd(ℓ,𝑚) = 1 and𝑘 divides the product 𝑚𝑛, the number ℓ divides 𝑛.

Proof. Theorem 1.1.7 shows that there exists integers 𝑗 and 𝑘 such
that 𝑗 ℓ + 𝑘𝑚 = 1. Distributivity, together with associativity and
commutativity for integer multiplication, give𝑛 = (1)𝑛 = (𝑗 ℓ + 𝑘𝑚)𝑛 = (𝑗 𝑛)ℓ + (𝑚𝑛)𝑘 .
Since ℓ divides the product 𝑚𝑛, there is an integer 𝑖 such that𝑚𝑛 = 𝑖 ℓ. It follows that𝑛 = (𝑗 𝑛)ℓ + (𝑚𝑛)𝑘 = (𝑗 𝑛)ℓ + (𝑖 ℓ)𝑘 = (𝑗 𝑛 + 𝑖 𝑘)ℓ ,
so ℓ divides 𝑛.

Before examining a couple formulations of minimality, we use
division with remainder to obtain a much better algorithm for
computing greatest common divisors. In particular, this approach
avoids factorization.

Theorem 1.2.2 (Euclidean Algorithm).
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input: Two integers 𝑚 and 𝑛.
output: The greatest common divisor of 𝑚 and 𝑛.
Set 𝑗∶= |𝑚|;
Set 𝑘∶= |𝑛|;
While 𝑗 ≠ 0 do

Set 𝑟∶= 𝑗 % 𝑘;
Set 𝑗∶= 𝑘;
Set 𝑘∶= 𝑟;

Return 𝑘.
Proof. We first claim that gcd(𝑚,𝑛) = gcd(𝑛,𝑚%𝑛). Set 𝑞∶= 𝑚//𝑛
and 𝑟 ∶= 𝑚 % 𝑛. Theorem 1.1.2 establishes that 𝑚 = 𝑞𝑛 + 𝑟 and0 ⩽ 𝑟 < |𝑛|. It is enough to prove that the pairs (𝑚,𝑛) and (𝑞, 𝑟)
have the same common divisors.

Let 𝑒 be a common divisor of 𝑚 and 𝑛. Hence, there exists inte‑
gers 𝑢 and 𝑣 such that 𝑚 = 𝑢𝑒 and 𝑛 = 𝑣𝑒. It follows that𝑟 = 𝑚− 𝑞𝑛 = 𝑢𝑒 − 𝑞𝑣 𝑒 = (𝑢 − 𝑞𝑣)𝑒 ,
so 𝑒 divides 𝑟. As 𝑒 already divides 𝑛, we see that 𝑒 is a common
divisor of 𝑛 and 𝑒. Conversely, let ℓ be a common divisor of 𝑛 and𝑟. There exists integers 𝑠 and 𝑡 such that 𝑛 = 𝑠ℓ and 𝑟 = 𝑡 ℓ. It
follows that 𝑚 = 𝑞𝑛+𝑟 = 𝑞𝑠 ℓ+𝑡 ℓ = (𝑞 𝑠+𝑡)ℓ, so ℓ divides 𝑚. Asℓ already divides 𝑚, we see that ℓ is a common divisor of 𝑚 and 𝑛.

Finally, each step in the while loop replaces the pair (𝑗, 𝑘) with
the pair (𝑘, 𝑗 %𝑘). Our first claim shows that replacement does not
change the greatest common divisor. The algorithm terminates
because sequence of remainders is decreasing and goes to zero in
less than 𝑛 steps.

Problem 1.2.3. Compute the greatest common divisor of 21 837
and 2 088.

Solution. Since the Euclidean algorithm gives21 837 = 10(2 088) + 957 ,2 088 = 2(957) + 174 ,957 = 5(174) + 87 ,174 = 2(87) + 0 .
we see that gcd(21 837, 2 088) = 87.

Definition 1.2.4. An integer 𝑝 is irreducible if 𝑝 ≠ ±1 and the only
divisors of 𝑝 are ±1 and ±𝑝. A nonzero integer, except for ±1, is
reducible (or composite) if it is not irreducible.

Remark 1.2.5. The Sieve of Eratosthenes provides a straightforward
way to generate the list of irreducible positive integers. List the
integers from 2 to 𝑛. The smallest entry 2 is prime. Cross out the
multiplies of 2 from our list. The smallest remaining entry 3 is
prime because it is not divisible by any smaller prime. Cross out
the multiplies of 3. Repeat.

The Greek polymath, Eratosthenes of
Cyrene (276BCE–194BCE), is famous
for his work on prime numbers and
for measuring the diameter of the
earth.

Using this method, Table 1.1 lists the 25 irreducible positive
integers less than 100.
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2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 8081 82 83 84 85 86 87 88 89 9091 92 93 94 95 96 97 98 99

Table 1.1: Irreducible positive
integers less than 100

We record a simple consequence of irreducibility.

Lemma 1.2.6. Let 𝑝 be an irreducible integer. For any integer 𝑚 that is
not a multiple of 𝑝, we have gcd(𝑝,𝑚) = 1.

Proof. Suppose that 𝑑 is a common divisor of 𝑝 and 𝑚. We see
that 𝑑 = ±1 or 𝑑 = ±𝑝 because 𝑑 divides 𝑝 and 𝑝 is irreducible.
Since 𝑑 also divides 𝑚 and 𝑝 is not a divisor of 𝑚, we deduce that𝑑 = ±1. As gcd(𝑝,𝑚) ⩾ 0, we conclude that 𝑑 = 1.

Definition 1.2.7. A integer 𝑝 is prime if 𝑝 ≠ ±1 and 𝑝 dividing the
product 𝑚𝑛 of two integers 𝑚 and 𝑛 implies that 𝑝 divides 𝑚 or 𝑝
divides 𝑛.

In mathematics, the word ‘or’ is not
exclusive. The definition allows for
the possibility that 𝑝 may divide both𝑚 and 𝑛.

Warning 1.2.8. The definition for a prime is unconventional. Most
references do not include 0 as a prime integer. However, this
choice does align with the prevailing terminology for ideals. ☡

The next result recovers the standard definition.

Proposition 1.2.9. A nonzero integer 𝑝 is prime if and only if it is
irreducible.

Proof. When 𝑝 = ±1, then 𝑝 is neither irreducible nor prime, so
the assertion holds. We may, thereby, assume that 𝑝 is an integer
other than 0 or ±1.⇒: Suppose that the integer 𝑝 is prime. Consider a divisor 𝑑 of 𝑝.

Hence, there exists an integer 𝑞 such that 𝑝 = 𝑞𝑑. As (1)𝑝 = 𝑞𝑑,
the integer 𝑝 divides the product 𝑞𝑑. By definition, we see that𝑝 divides 𝑞 or 𝑝 divides 𝑑.⦁ When 𝑝 divides 𝑑, Lemma 1.1.1 establishes that |𝑑| ⩽ |𝑝| and|𝑝| ⩽ |𝑑|, so |𝑑| = |𝑝| and 𝑑 = ±𝑝.⦁ When 𝑝 divides 𝑞, there exists an integer 𝑘 such that 𝑞 = 𝑘𝑝.

It follows that 𝑝 = 𝑞𝑑 = 𝑘𝑑 𝑝 and (1 − 𝑘𝑑)𝑝 = 0. As 𝑝 ≠ 0, we
deduce that 1 − 𝑘𝑑 = 0. Since 𝑘𝑑 = 1, the integer 𝑑 divides 1
which implies 𝑑 = ±1.

Therefore, we conclude that either 𝑑 = ±𝑝 or 𝑑 = ±1 which
shows that 𝑝 is irreducible.⇐: Suppose that the integer 𝑝 is irreducible. Assume that 𝑝
divides a product 𝑚𝑛 of integers and 𝑝 does not divide 𝑚.
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Lemma 1.2.6 shows that gcd(𝑝,𝑚) = 1 and Corollary 1.2.1 shows
that 𝑝 divides 𝑛. Therefore, 𝑝 is prime.

We end by establishing that every integer is a unique product of
primes.

Theorem 1.2.10 (Fundamental Theorem of Arithmetic). Any integer𝑚 may be written as 𝑚 = 𝑢𝑝1 𝑝2 ⋯ 𝑝𝑟 where 𝑢 = ±1, each 𝑝𝑗 is a
nonnegative prime integer, and 𝑟 ⩾ 0. Moreover, this factorization is
unique up to reordering the factors.

Proof. It is enough to prove the statement for integers 𝑚 greater
than 1, because the factor 𝑢 incorporates signs and (by our con‑
ventions) 0 is a nonnegative prime.
Existence: Consider the subset𝒳∶= {𝑛 ∈ ℤ|𝑛 > 1 and 𝑛 is not a product of finitely many primes} .

Suppose that 𝒳 is nonempty. The Well‑Ordering Principle
would establish that 𝒳 contains a unique least element 𝑛. Since𝑛 ∈ 𝒳, it would not be a product of primes, so 𝑛 would not be a
prime itself. Hence, there would exist integers 𝑗 and 𝑘 such that𝑛 = 𝑗 𝑘, 1 < 𝑗 < 𝑛, and 1 < 𝑘 < 𝑛. As 𝑛 is the smallest integer
in 𝒳, we would deduce that 𝑘 ∉ 𝒳 and 𝑗 ∉ 𝒳. It would follows
that 𝑘 and 𝑗 do have factorizations into primes. However, the
product of this factorizations would be a factorization of 𝑛 into
primes which contradicts 𝑛 ∈ 𝒳. We conclude that 𝒳 = ∅
and every integer greater than 1 is a product of finitely many
primes.q

Uniqueness: Consider the subset𝒴∶= {𝑛 ∈ ℤ | the factorization of 𝑛 into primes is not unique} .
Suppose that 𝒴 is nonempty. The Well‑Ordering Principle
would establish that 𝒴 contains a unique least element 𝑛. Write
two distinct factorizations for 𝑛:𝑛 = 𝑝1 𝑝2 ⋯ 𝑝𝑟 = 𝑞1 𝑞2 ⋯ 𝑞𝑠
where all 𝑝𝑖 and 𝑞𝑗 are positive primes. Both 𝑟 and 𝑠 are integers
greater than 0 because 𝑛 ≠ 1. We are assuming that these
factorizations are not the same up to reordering.
From the equation, we see that 𝑝1 divides the product 𝑞1 𝑞2 ⋯ 𝑞𝑠.
Since 𝑝1 is irreducible, it must divide one of the 𝑞𝑗. After relabel‑
ing the factors 𝑞𝑗, we may assume that 𝑝1 divides 𝑞1. As 𝑞1 is
prime, its divisors are ±1 and ±𝑞1. Becase 𝑝1 is positive prime, it
is not equal to ±1 or −𝑞1, so 𝑝1 = 𝑞1. By cancelling the factors,
we obtain 𝑝2 𝑝3 ⋯ 𝑝𝑟 = 𝑞2 𝑞3 ⋯ 𝑞𝑠. Since this product is less
than 𝑛 our choice of 𝑛 implies that this second factorization
is unique up to reordering the primes. Hence, we deduce that𝑟 − 1 = 𝑠 − 1 and 𝑞𝑗 = 𝑝𝑗 for all 2 ⩽ 𝑗 ⩽ 𝑟 (up to reorder‑
ing). However, this establishes that the two factorizations for 𝑛
do coincide, contradicting our assumption. We conclude that𝒴 = ∅ and the factorizations are unique.


