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Modular arithmetic is a system of arithmetic for integers, where
numbers “wrap around” when reaching a certain value, called
the modulus. The 12‑hour clock—the time convention in which
the day is divided into two 12‑hour periods—is probably the most
familiar example.

The modern approach to modular
arithmetic was developed by Carl
Friedrich Gauss (1777–1855) in his
book Disquisitiones Arithmeticae
published in 1801.

2.0 Equivalence Relations

What does it mean for two mathematical objects to be the same?
One of the foundational concepts in mathematics is that of an
equivalence relation on a set.

The history of equivalence in math‑
ematics is surprisingly long and
complicated; for example, see Amir
Asghari, Equivalence: an attempt at a
history of the idea, Synthese 196 (2019)
4657–4677.

Let 𝒳 be a set. The cartesian product 𝒳×𝒳 consists of all ordered
pairs (𝑥, 𝑦) of elements 𝑥 ∈ 𝒳 and 𝑦 ∈ 𝒴. A binary relation on 𝒳 is
any subset ℛ ⊆ 𝒳×𝒳. One kind of relation is especially interesting.

Definition 2.0.1. An equivalence relation on a set 𝒳 is a binary
relation ℛ on 𝒳 that has the following three properties.

(Reflexive) For any 𝑥 in 𝒳, the pair (𝑥, 𝑥) is in ℛ.
(Symmetric) For any (𝑥, 𝑦) in ℛ, the pair (𝑦, 𝑥) is in ℛ.
(Transitive) For any (𝑥, 𝑦) and (𝑦, 𝑧) in ℛ, the pair (𝑥, 𝑧) is in ℛ.

For any equivalence relation ℛ, we write (𝑥, 𝑦) ∈ ℛ as 𝑥 ∼ 𝑦.

Equality of elements is the prototype.
In fact, equality is the only relation
that is reflexive, symmetric, and
antisymmetric.

Remark 2.0.2. Lemma 1.0.1 shows that the relation ≃ on ℕ × ℕ,
used to define the set ℤ of integers, is an equivalence relation.

Problem 2.0.3. For any set 𝒳, verify that the subset ℛ ∶= 𝒳 × 𝒳 is
an equivalent relation.

The largest equivalence relation.

Solution. Since ℛ contains all pairs, reflexivity, symmetry, and
transitivity follow immediately.

Problem 2.0.4. For any set 𝒳, confirm that the diagonal subsetℛ∶= {(𝑥, 𝑦) ∈ 𝒳 × 𝒳 | 𝑥 = 𝑦} is an equivalent relation.
The smallest equivalence relation.

Solution. Since 𝑥 = 𝑥 for any 𝑥 ∈ 𝒳, reflexivity follows. Symmetry
and transitivity follow from the same properties for equality.

Problem 2.0.5. The parity relation on the integers is defined, for
any two integers 𝑚 and 𝑛, by 𝑚 ∼ 𝑛 if the difference 𝑚 − 𝑛 is
divisible by 2. Show that ∼ is an equivalence relation.

Solution. Since 𝑚 − 𝑚 = 0 is divisible by 2, reflexivity follows.
When 𝑚 − 𝑛 is divisible by 2, there exists an integer 𝑗 such that𝑚−𝑛 = 2𝑗. It follows that 𝑛−𝑚 = 2(−𝑗) and 𝑛−𝑚 is divisible by2, so parity is symmetric. When 𝑘 −𝑚 and 𝑚− 𝑛 are divisibile by2, there are integers 𝑖 and 𝑗 such that 𝑘 −𝑚 = 2𝑖 and 𝑚− 𝑛 = 2𝑗.
We obtain 𝑘− 𝑛 = (𝑘 −𝑚)+ (𝑚−𝑛) = 2𝑖 + 2𝑗 = 2(𝑖 + 𝑗), so 𝑘− 𝑛
is divisible by 2 and parity is transitive.
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A binary relation may satisfy any two of the defining properties
for an equivalence relation but fail to satisfy the third.

Remark 2.0.6.⦁ The weak inequality relation ⩽ on integers is not an equivalence
relation. It is reflexive and transitive, but not symmetric. For
instance, we have 2 ⩽ 3 and 3 ! 2.⦁ The relation {(𝑚,𝑛) ∈ ℤ × ℤ | gcd(𝑚,𝑛) > 1} is reflexive and
symmetric, but not transitive. Indeed, we have gcd(2, 6) = 2 > 1,
gcd(6, 3) = 3 > 1, and gcd(2, 3) = 1.⦁ The empty relation ∅ on a set 𝒳 is vacuously symmetric and
transitive. It is not reflexive unless 𝒳 = ∅.

Definition 2.0.7. Let ∼ be an equivalence relation on a set 𝒳. For
any 𝑥 ∈ 𝒳, the set [𝑥]∶= {𝑤 ∈ 𝒳 | 𝑥 ∼𝑤} is the equivalence class of 𝑥.

Remark 2.0.8. For parity on ℤ, the two equivalence classes are[0] = {0,±2,±4,±6, … } and [1] = {±1,±3,±5,±7, … }. The integers in the parity class [0] are
even whereas those in [1] are odd.

Proposition 2.0.9. For any equivalence relation on the set 𝒳, the set 𝒫
of equivalence classes have the following three properties:⦁ The family 𝒫 does not contain the empty set: ∅ ∉ 𝒫.⦁ The union of the sets in 𝒫 is equal to 𝒳: ⋃𝒜∈𝒫 𝒜 = 𝒳.⦁ The intersection of any two distinct sets in 𝒫 is empty: for any two set𝒜 and ℬ in ℬ, the relation 𝒜 ≠ ℬ implies that 𝒜 ∩ ℬ = ∅.
In other words, the equivalence classes form a partition of the set 𝑋.

Proof. For any 𝑥 ∈ 𝒳, reflexivity means 𝑥∼𝑥, so 𝑥 ∈ [𝑥]. Hence, we
see that the empty set is not an equivalence class and the union
of the equivalence classes equals 𝒳. For any elements 𝑥 and 𝑦 in𝒳, symmetry shows that 𝑦 ∈ [𝑥] implies that 𝑥 ∈ [𝑦]. For any
elements 𝑥, 𝑦, and 𝑧 in 𝒳, transitivity asserts that 𝑦 ∈ [𝑥] and𝑧 ∈ [𝑦] implies that 𝑧 ∈ [𝑥]. It follows that any two equivalence
classes are either equal or disjoint.

Definition 2.0.10. For any equivalent relation ∼ on the set 𝒳, the
quotient set, denoted by 𝒳/∼, is the set of equivalence classes. The
canonical map 𝜋∶𝒳→𝒳/∼ is defined, for all 𝑥 ∈ 𝒳, by 𝜋(𝑥) = [𝑥].

By construction, the canonical map𝜋∶𝒳 → 𝒳/∼ is surjective.

A map 𝜑∶𝒳 → 𝒴 determines a well‑defined map 𝜑∶𝒳/∼→ 𝒴 if,
for all elements 𝑥 and 𝑦 in 𝒳, the relation [𝑥] = [𝑦] implies that𝜑(𝑥) = 𝜑(𝑦). In other words, the output of 𝜑 does not depend on
the choice of representatives.

When 𝜑∶ 𝒳 → 𝒴 is well‑defined,
we have 𝜑 = 𝜑𝜋. We visualize
this property via the commutative
diagram: 𝒳 𝒴

𝒳/∼

𝜑
𝜋 𝜑

Exercises

Problem 2.0.11. Define a binary relation on the set ℝ of real num‑
bers as follows: for any two real numbers 𝑥 and 𝑦, we have 𝑥 ∼ 𝑦 if
there is an integer 𝑘 such that 𝑥 − 𝑦 = 2𝑘𝜋. Verify that this is an
equivalence relation. Describe the set of equivalence classes. Are
addition and multiplication well‑defined on the quotient set ℝ/∼?
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2.1 Congruence

How do we generalize the parity relation to divisibility by any non‑
negative integer? The basic notion is remarkable straightforward.

Definition 2.1.1. Let ℓ be a nonnegative integers. Two integers𝑚 and 𝑛 are congruent modulo ℓ, denoted by 𝑚 ≡ 𝑛 mod ℓ, if the
difference 𝑚−𝑛 is divisible by ℓ. The number ℓ is the modulus.

Congruence modulo 0 is simply the
relation =.

Lemma 2.1.2. For any nonnegative integer ℓ, congruence modulo ℓ is
an equivalence relation on the set ℤ of integers.

Proof. Let 𝑘, 𝑚, and 𝑛 be integers.⦁ Since 𝑚 − 𝑚 = 0 = (0) ℓ, we have 𝑚 ≡ 𝑚 mod ℓ and the
congruence relation is reflexive.⦁ Suppose that 𝑚≡ 𝑛 mod ℓ. Since 𝑚− 𝑛 is divisible by ℓ, there
exist an integer 𝑗 such that 𝑚−𝑛 = 𝑗 ℓ. We have 𝑛−𝑚 = (−𝑗) ℓ,
so 𝑛−𝑚 is also divisible by ℓ. We deduce that 𝑛≡𝑚 mod ℓ and
congruence relation is symmetric.⦁ Suppose that 𝑘 ≡𝑚 mod ℓ and 𝑚≡ 𝑛 mod ℓ. When 𝑘 −𝑚 and𝑚− 𝑛 are divisible by ℓ, there exists integers 𝑖 and 𝑗 such that𝑘 −𝑚 = 𝑖 ℓ and 𝑚−𝑛 = 𝑗 ℓ. It follows that𝑘 − 𝑛 = (𝑘 −𝑚) + (𝑚− 𝑛) = 𝑖 ℓ + 𝑗 ℓ = (𝑖 + 𝑗)ℓ ,
so 𝑘−𝑛 is also divisible by ℓ. We conclude that 𝑘≡𝑛 mod ℓ and
congruence relation is transitive.

Notation 2.1.3. For any nonnegative integer ℓ, the congruence
classes modulo ℓ are[𝑚]ℓ ∶= {𝑛 ∈ ℤ | 𝑚 ≡ 𝑛 mod ℓ}= {𝑚 ∈ ℤ | there exists 𝑘 ∈ ℤ such that 𝑚−𝑛 = 𝑘ℓ}= {𝑚+ 𝑘ℓ | 𝑘 ∈ ℤ} .
It follows that [𝑚]ℓ = [𝑛]ℓ if and only if 𝑚 ≡ 𝑛 mod ℓ. For any
nonnegative integer ℓ, the set of congruence classes modulo ℓ is
denoted by ℤ/⟨ℓ⟩∶= ℤ/≡.

Other popular notations are ℤ/ℓ
and ℤ/ℓℤ. Although the notationℤℓ is unfortunately used by some, it
conflicts with the standard notation
for another important concept.

Remark 2.1.4. When ℓ = 3, there are three congruence classes:[0]3 = {… ,−9,−6,−3, 0, 3, 6, 9, … } = {0 + 3𝑘 | 𝑘 ∈ ℤ} ,[1]3 = {… ,−8,−5,−2, 0, 1, 4, 7, … } = {1 + 3𝑘 | 𝑘 ∈ ℤ} ,[2]3 = {… ,−7,−4,−1, 0, 2, 5, 8, … } = {2 + 3𝑘 | 𝑘 ∈ ℤ} .
Proposition 2.1.5. Let ℓ be a positive integer. For any integer 𝑚, we
have [𝑚]ℓ = [𝑚 % ℓ]ℓ. Moreover, the set ℤ/⟨ℓ⟩ consists of exactly theℓ elements [0]ℓ, [1]ℓ, [2]ℓ, … , [ℓ − 1]ℓ.

Proof. By division with remainder, there exists integers 𝑞 and 𝑟
such that 𝑚 = 𝑞ℓ + 𝑟, 0 ⩽ 𝑟 < ℓ, and 𝑟 = 𝑚 % ℓ. Since 𝑚− 𝑟 = 𝑞ℓ,
we see that 𝑚≡ 𝑟 mod ℓ or [𝑚]ℓ = [𝑟]ℓ.

We claim the that classes [0]ℓ, [1]ℓ, [2]ℓ, … , [ℓ − 1]ℓ are distinct.
Suppose that 𝑟 and 𝑠 are integers such that 0 ⩽ 𝑟 < ℓ, 0 ⩽ 𝑠 < ℓ,
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and [𝑟]ℓ = [𝑠]ℓ. The inequalities give 0 ⩽ |𝑟 − 𝑠| < ℓ. The equality
implies that |𝑟 − 𝑠| is divisible by ℓ. Assuming |𝑟 − 𝑠| ≠ 0, we would
have ℓ ⩽ |𝑟 − 𝑠| < ℓ which is a contradiction. Therefore, we deduce
that |𝑟 − 𝑠| = 0 and 𝑟 = 𝑠.

Lastly, the first part demonstrates that every congruence class
equals a listed one. The claim shows that no two of these congru‑
ence classes coincide.

Remark 2.1.6. Given an equivalence relation on a set 𝒳, a system of
distinct representatives or transversal is a subset of 𝒳 having exactly
one element from each equivalence class. Proposition 2.1.5 shows
that the subset {0, 1, 2, … , ℓ − 1} ⊂ ℤ is a transversal for congruence
modulo ℓ. This is only one of infinitely many viable transversals.
Another choice that is more symmetric about 0 is

The choice of a transversal produces
a lifting map 𝜆∶ (𝒳/∼) → 𝒳 defined
by 𝜆([𝑥]) ∶= 𝑥. Any lifting map is a
one‑sided inverse of the canonical
map 𝜋∶𝒳→𝒳/∼ meaning 𝜋𝜆 = id𝒳/∼.

{−⌊(ℓ − 1)/2⌋, … ,−1, 0, 1, 2, … , ⌊ℓ/2⌋} .
To do algebra in ℤ/⟨ℓ⟩, we equipe this quotient set with addition

and multiplication.

Lemma 2.1.7. Let ℓ be a nonnegative integer and let 𝑗, 𝑘, 𝑚, and 𝑛 be
integers. When 𝑗 ≡ 𝑘 mod ℓ and 𝑚≡𝑛 mod ℓ, we have𝑗 +𝑚≡ 𝑘+ 𝑛 mod ℓ and 𝑗𝑚 ≡ 𝑘𝑛 mod ℓ .
Proof. Since 𝑗 ≡ 𝑘 mod ℓ and 𝑚≡𝑛 mod ℓ, there exists integers 𝑢
and 𝑣 such that 𝑗 − 𝑘 = 𝑢ℓ and 𝑚−𝑛 = 𝑣ℓ. It follows that(𝑗 +𝑚) − (𝑘 + 𝑛) = (𝑗 − 𝑘) + (𝑚− 𝑛) = 𝑢ℓ + 𝑣ℓ = (𝑢 + 𝑣) ℓ(𝑗𝑚) − (𝑘𝑛) = (𝑘 + 𝑢ℓ)(𝑛 + 𝑣ℓ) − (𝑘 ℓ)= 𝑘𝑣ℓ + 𝑛𝑢ℓ + 𝑢𝑣ℓ2 = (𝑘𝑣 + 𝑛𝑢+ 𝑢𝑣ℓ)ℓ .
We conclude that ℓ divides (𝑗 +𝑚) − (𝑘 + 𝑛) and (𝑗𝑚) − (𝑘𝑛), so𝑗 +𝑚≡ 𝑘+ 𝑛 mod ℓ and 𝑗𝑚 ≡ 𝑘𝑛 mod ℓ.

The lemma proves that congruence classes for the addition
and the multiplication of integers is independent of the choice of
representatives, so the quotient set ℤ/⟨ℓ⟩ inherits these operations
from ℤ. More formally, we make the following two definitions.

Definition 2.1.8. Let ℓ be a nonnegative integer. For any two
elements [𝑚]ℓ and [𝑛]ℓ in ℤ/⟨ℓ⟩, we define

Addition and multiplication on the
right side are the familiar operations
on the set ℤ of integers whereas the
addition and multiplication on the left
side are new operations.

[𝑚]ℓ + [𝑛]ℓ ∶= [𝑚+ 𝑛]ℓ and [𝑚]ℓ [𝑛]ℓ ∶= [𝑚𝑛]ℓ .
Problem 2.1.9. Simplify 113 modulo 13.

Solution. We have113 = (11)(11)(11) ≡ (−2)(−2)(−2) ≡ −8 ≡ 5 mod 13 .
Addition is not well‑defined for all quotients sets.

Remark 2.1.10. For two integers, ‘having the same sign’ is an
equivalence relation with two classes: [−1] = {… ,−3,−2,−1} and[1] = {0, 1, 2, … }. In this case, addition does depend on the choice
of representatives. For instance, we have(−1) + (1) = (−1 + 1) = 0 (−4) + (1) = (−4 + 1) = −3
but [−1] = [−4] and [0] = [1] ≠ [−1] = [−3].
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Exercises

Problem 2.1.11. Let 𝑚 be an integer. Confirm that𝑚2 ≡ 0 or 1 mod 3 and 𝑚2 ≡ 0 or 4 mod 5 .
Problem 2.1.12. Let 𝑝 be a prime integer such that 𝑝 ⩾ 5. Prove
that 𝑝2 + 2 is reducible (also known as composite).

Problem 2.1.13. Prove that there are infinitely many primes of the
form 4𝑘 + 3 for some nonnegative integer 𝑘.

2.2 Multiplicative Inverses in ℤ/⟨ℓ⟩
Which properties does the quotient set ℤ/⟨ℓ⟩ inherit from the
set ℤ of integers? Although ℤ/⟨ℓ⟩ acquires many features from
the integers, it does have some new traits. We first enumerate the
major common attributes.

Theorem 2.2.1. Let ℓ be a nonnegative integer. For any elements 𝑢, 𝑣,
and 𝑤 in the quotient set ℤ/⟨ℓ⟩, we have following eight properties:(𝑢 + 𝑣) +𝑤 = 𝑢+ (𝑣 +𝑤) (associativity of addition)𝑣 +𝑤 = 𝑤+ 𝑣 (commutativity of addition)𝑣 + 0 = 𝑣 (existence of additive identity)𝑣 + (−𝑣) = 0 (existence of additive inverses)𝑢 (𝑣𝑤) = (𝑢𝑣)𝑤 (associativity of multiplication)𝑣𝑤 = 𝑤𝑣 (commutativity of multiplication)𝑣 1 = 𝑣 (existence of multiplicative identity)𝑢 (𝑣 +𝑤) = 𝑢𝑣 + 𝑢𝑤 (distributivity)

Sketch of proof. All eight properties may be verified by choosing
representatives for the congruence classes and utilizing properties
of the integers. For example, choose integers 𝑘, 𝑚, and 𝑛 such
that 𝑢 = [𝑘], 𝑣 = [𝑚], and 𝑤 = [𝑛]. The definition of addition onℤ/⟨ℓ⟩ and the associativity of addition on ℤ gives(𝑢 + 𝑣) +𝑤 = ([𝑘] + [𝑚]) + [𝑛]= [𝑘 +𝑚] + [𝑛]= [(𝑘 +𝑚) + 𝑛]= [𝑘 + (𝑚+ 𝑛)]= [𝑘] + [𝑚+ 𝑛]= [𝑘] + ([𝑚] + [𝑛]) = 𝑢 + (𝑣 +𝑤)
which establishes the associativity of addition on ℤ/⟨ℓ⟩.

We overload the symbols 0 and 1.
The additive identity in ℤ/⟨ℓ⟩ is the
congruence class containing the
integer 0; 0 ∶= [0]ℓ = {𝑘 ℓ | 𝑘 ∈ ℤ}.
Similarly, the multiplicative identity is
the congruence class containing the
integer 1; 1∶= [1]ℓ = {1 + 𝑘ℓ | 𝑘 ∈ ℤ}.

Warning 2.2.2. Generally, the multiplicative cancellation law does
not hold in ℤ/⟨ℓ⟩. For instance, we have[2]6 [2]6 = [4]6 = [10]6 = [2]6 [5]6 ,
but [2]6 ≠ [5]6. Moreover, the product of two nonzero elements
may be zero such as [2]6 [3]6 = [6]6 = [0]6.

☡
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Lemma 2.2.3. Let ℓ be an integer with ℓ > 1. The congruence class[𝑚]ℓ has a multiplicative inverse in ℤ/⟨ℓ⟩ if and only if gcd(𝑚, ℓ) = 1.

Proof.⇐: For some integer 𝑗, suppose that [𝑗]ℓ is a multiplicative inverse
of the element [𝑚]ℓ in ℤ/⟨ℓ⟩. Since [𝑗]ℓ [𝑚]ℓ = [𝑗𝑚]ℓ = [1]ℓ,
there exists an integer 𝑘 such that 1 − 𝑗𝑚 = 𝑘ℓ or 𝑗𝑚+ 𝑘ℓ = 1.
Corollary 1.1.8 establishes that gcd(𝑚, ℓ) = 1.⇒: Suppose that gcd(𝑚, ℓ) = 1. Theorem 1.1.7 establishes that
there are integers 𝑗 and 𝑘 such that 𝑗𝑚+ 𝑘ℓ = 1. It follows that[𝑗]ℓ [𝑚]ℓ = [𝑗𝑚]ℓ = [1 − 𝑘ℓ]ℓ = [1]ℓ. Since multiplication inℤ/⟨ℓ⟩ is commutative, we have [𝑚]ℓ [𝑗]ℓ = [1]ℓ. We conclude
that [𝑗]ℓ is the multiplicative inverse of [𝑚]ℓ.

Problem 2.2.4. Find the last base‑ten digit of 799.

Solution. Since 72 = 49 ≡ 9 mod 10 ,73 = 72(7) ≡ 9(7) ≡ 63 ≡ 3 mod 10 , and74 = 73(7) ≡ 3(7) ≡ 21 ≡ 1 mod 10 ,
and 99 = 24(4) + 3, we have799 = 724(4)+3 ≡ (74)24(73) ≡ 124(3) ≡ 3 mod 10 ,
so the last base‑ten digit of 799 is 3.

Theorem 2.2.5. For any ℓ ∈ ℤ with ℓ > 1, the following are equivalent:
(a) The integer ℓ is prime.
(b) For any two elements 𝑢 and 𝑣 in ℤ/⟨ℓ⟩, having 𝑢𝑣 = 0 implies that𝑢 = 0 or 𝑣 = 0.
(c) Any nonzero element 𝑢 in ℤ/⟨ℓ⟩ has a multiplicative inverse.

Proof.
(a) ⇒(c): Suppose that ℓ is a prime integer. Choose an integer 𝑚

such that 𝑢 = [𝑚]ℓ. As 𝑚 ≠ 0, we have [𝑚]ℓ ≠ [0]ℓ and 𝑝 does
not divide 𝑚. Hence, Lemma 1.2.6 shows that gcd(ℓ,𝑚) = 1
and Theorem 1.1.7 establishes that there are integers 𝑗 and 𝑘
such that 𝑗𝑚 + 𝑘ℓ = 1. Since [𝑘 ℓ]ℓ = [0]ℓ, we deduce that[1]ℓ = [𝑗𝑚 + 𝑘ℓ]ℓ = [𝑗𝑚]ℓ [𝑚]ℓ + [𝑘 ℓ]ℓ = [𝑗]ℓ [𝑚]ℓ. Since
multiplication in ℤ/⟨ℓ⟩ is commutative, we see that [𝑗]ℓ is the
multiplicative inverse of 𝑢 = [𝑚]ℓ.

(c) ⇒(b): Suppose that every nonzero element in ℤ/⟨ℓ⟩ has a multi‑
plicative inverse. Consider two elements 𝑢 and 𝑣 in ℤ/⟨ℓ⟩, such
that 𝑢𝑣 = 0. When 𝑢 ≠ 0, the element 𝑢 has a multiplicative
inverse 𝑤. It follows that 𝑣 = 1𝑣 = (𝑤𝑢)𝑣 = 𝑤(𝑢𝑣) = 𝑤0 = 0.
We deduce that 𝑢 = 0 or 𝑣 = 0.

(b) ⇒(a): Suppose that 𝑢𝑣 = 0 implies that 𝑢 = 0 or 𝑣 = 0.
Choose integers 𝑚 and 𝑛 such that 𝑢 = [𝑚]ℓ and 𝑣 = [𝑛]ℓ.
We obtain [0]ℓ = 0 = 𝑢𝑣 = [𝑚]ℓ [𝑛]ℓ = [𝑚𝑛]ℓ, so ℓ divides𝑚𝑛. Our supposition ensures that [𝑚]ℓ = 0 or [𝑛]ℓ = 0, which
means that ℓ divides 𝑚 or ℓ divides 𝑛. From Definition 1.2.7, we
conclude that ℓ is prime.
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Problem 2.2.6. Simplify 92023 mod 7.

Solution. Since 9 ≡ 2 mod 7 and 23 ≡ 1 mod 7, we obtain92023 ≡ 22023 ≡ 2674(3)+1 ≡ (1)674 21 ≡ 2 mod 7 .
Problem 2.2.7. Determine the last two base‑ten digits of 3400.

Solution. Since32 ≡ 9 mod 10 38 ≡ (34)2 ≡ 812 ≡ 61 mod 10033 ≡ 27 ≡ 7 mod 10 312 ≡ 38(34) ≡ (61)(81) ≡ 41 mod 10034 ≡ 33(3) ≡ 7(3) ≡ 1 mod 10 316 ≡ 312(34) ≡ (41)(81) ≡ 21 mod 100320 ≡ 314(34) ≡ (21)(81) ≡ 1 mod 100
we obtain 3400 ≡ 320(20) ≡ (320)20 ≡ 120 ≡ 1 mod 100, so the last
base‑ten digit of 3400 are 01.

Exercises

Problem 2.2.8. Consider the integer 𝑚 = ∑𝑘𝑗=0 𝑑𝑗 10𝑗 where 𝑘 is a
nonnegative integer and 0 ⩽ 𝑑𝑗 ⩽ 9 for all 0 ⩽ 𝑗 ⩽ 𝑘.

(i) Show that 2 divides 𝑚 if and only if 2 divides 𝑑0.
(ii) Show that 3 divides 𝑚 if and only if 3 divides ∑𝑘𝑗=0 𝑑𝑗.

(iii) Show that 4 divides 𝑚 if and only if 4 divides 10𝑑1 + 𝑎0.
(iv) Show that 5 divides 𝑚 if and only if 5 divides 𝑑0.
(v) Show that 7 divides 𝑚 if and only if 7 divides𝑘∑𝑗=1 𝑑𝑗 10𝑗−1 − 2𝑑0 .

(vi) Show that 9 divides 𝑚 if and only if 9 divides ∑𝑘𝑗=0 𝑑𝑗.
(vii) Show that 11 divides 𝑚 if and only if 11 divides𝑘∑𝑗=0(−1)𝑗 𝑑𝑗 .
(viii) Show that 13 divides 𝑚 if and only if 13 divides𝑘∑𝑗=1 𝑑𝑖 10𝑗−1 + 4𝑑0 .


